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ABSTRACT

Wheel bearing fault detection, isolation and failure prognosis
are critical to improve perceived quality and customer
experience for retail vehicles, and to reduce the repair cost
and down time for fleet vehicles. Currently, most of the
research in bearing failure and degradation diagnosis focus
on vibration signal analytics. However, these techniques are
rarely applied in automotive industry due to the high sensor
cost, installation space limitation, and limited communication
bandwidth. In this work, an acoustic based approach for
wheel bearing fault detection and isolation is developed to
overcome these limitations. Since the bearing noise is a
precursor of bearing failure, the proposed method is a
prognosis solution. The whole solution is verified using the
data collected from a production vehicle. The results show
that the proposed method can predict the wheel bearing
failure with promising accuracy and robustness.

1. INTRODUCTION

The vehicle wheel bearing is one of the critical components
of vehicles chassis. The bearing failure may cause severe
safety issues that involve fateful consequences. Bearing
faults refer to deterioration or defects of the bearing
components including outer race, inner race, rolling element
and cages (McInerny & Dai, 2003). Typical root causes of
failures include excessive external force, bad engineering
design, degradation and wear out, and corrosion. Fault
diagnosis can play an important role to ensure the safety and
availability of the vehicles (Zhang & Du, 2014).

Considering that the wheel bearing defects can impact
vehicle driving, it is natural to check some vehicle signals if
deviate from their nominal values to identify the wheel
bearing defects. These signals include wheel speed
fluctuation, bearing temperature rising, vehicle efficiency
decreasing, etc. However, the wheel speed fluctuation and
vehicle efficiency decreasing are impacted by various
internal and external factors. It’s very challenging to be
employed as a fault signature to identify vehicle bearing
faults. Though the wheel bearing temperature can be a useful
indicator to reflect the health condition of bearing, there is no
thermal couple mounted closed to wheel bearing for most
production vehicles. In summary, it is not feasible to find out
a good fault indicator from the existing vehicle signals

Besides the existing signals in the vehicle, another approach
is to develop the wheel bearing diagnosis techniques using
external signals from the add-on sensors. In the history of the
bearing diagnosis and prognosis development, the sensor
signals (such as vibration, temperature, noise, etc.) related
approaches have been investigated extensively (Randall &
Antoni, 2011). The methods adopted to analyze bearing
vibration signals include time domain analysis and frequency
domain analysis. For time domain analysis, typical
approaches are statistical analysis and probabilistic analysis.
Some statistics are computed based on the time domain
signals and compared with pre-defined references to evaluate
the bearing health conditions (Prieto, Cirrincione, Espinosa,
Ortega, & Henao., 2013). For frequency domain analysis,
researchers usually focus on the vibration signal collected
from accelerometer. Digital signal processing (DSP)
techniques such as Fourier transform (Rai & Mohanty, 2007),
envelope analysis (Randall & Antoni, 2001), Empirical Mode
Decomposition (EMD) (Yu, Cheng, & Yang, 2005) and
wavelet transform (Jing & Qu, 2000) (Kankar, Sharma, &
Harsha, 2011) are used to design fault signatures to indicate
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the bearing degradation or failure. However, the vibration
signals are not always available in a commercial product.

Both time domain analysis and frequency domain analysis
are  aimed  at  finding  out  the  signatures  to  distinguish  the
defected bearing from a healthy one. Usually, the signatures
are specially designed based on the investigation of system
characteristics with domain knowledge. Once a promising
signature is developed or discovered, the diagnosis can be
done easily based on rules. However, sometimes it is difficult
to discover a useful signature. Recently, some machine
learning methods such as neural networks (Li, Chow,
Tipsuwan, & Hung., 2000) and support vector machine
(SVM) (Yang, Zhang, & Zhu, 2007) are also applied to build
a classifier after being trained using historical data or features
to differentiate whether the bearing condition is healthy or
not. These approaches are effective especially when there are
no promising fault signatures developed manually. One issue
of these data-driven methods is that it is not interpretative
compared with physics-model based methods.

In the field, the experienced drivers or technicians diagnose
the bearing faults based on the abnormal noise during driving.
This  inspires  us  to  study  the  wheel  bearing  diagnosis  and
prognosis using acoustic signals. The feasibility of applying
acoustic emission (AE) to bearing failures detection was
studied by Tan (Tan, 1990). It is found that AE activity
increases exponentially with defect size and rotation speed.
Zhang et al proposed a bearing defect detection method based
on time-frequency analysis by using trackside acoustic signal
(Zhang, Lu, He, & Kong, 2016). The limitation of these
studies is that the studies are still in the lab environment, and
therefore, the robustness and accuracy in real applications
need further validation.

Currently, the acoustic-based approach is not as well
developed as vibration signal-based analysis. Few studies can
be found related to vehicle wheel bearing diagnosis and
prognosis using acoustic signals. To fill this gap, the
objective of this paper is to develop, evaluate, and verify an
acoustic-based wheel bearing diagnosis and isolation
approach. This proposed method can be implemented
onboard to enhance the on-board integrated vehicle diagnosis
and prognosis performance. The proposed acoustic signal-
based wheel bearing fault diagnosis approach is described in
the next section in detail, followed by the validation and
comparison. The conclusion and future work are given at the
end of the paper.

2. ACOUSTIC-BASED WHEEL BEARING FAULT DIAGNOSIS

In this section, the acoustic signal-based wheel bearing fault
diagnosis approach is described in detail including the
selection and extraction of fault signatures, and the decision-
making logic. The proposed approach is outlined in Figure 1.
The input is the acoustic signals collected from microphones
mounted in the vehicle. Firstly, the time-frequency analysis
is employed to generate frequency response of the acoustic

signal. Based on the initial outcome, some operations such as
averaging and residual calculation are applied to enhance the
frequency analysis results. Some useful features, which are
related to the health condition of the wheel bearings, are then
extracted and selected to reduce the data dimension and
computational cost. Thereafter, a single dataset-based wheel
bearing fault detection (FD) module is developed. Based on
it, the wheel bearing FD algorithms is established.

The acoustic signals collected in this work are from 2
microphones mounted on the front dashboard (denoted as
microphone F) and inside the rear trunk (denoted as
microphone R) with a 2000Hz sampling rate. For frequency
analysis, the wheel speed signals are collected from the
vehicle CAN bus with a 100Hz sampling rate. Figure 2 shows
two acoustic signal examples collected from microphone F
for (a) a healthy wheel bearing and (b) a faulty wheel bearing.
From the time domain, it is difficult to find out the difference.
The wheel speed signal collected from the vehicle can be
converted to the frequency domain in the unit of Hertz with
the tire diameter information. A DC bias is also noticed in the
data which may be inherent for different microphones. The
diagnostics approach is expected to be robust again the bias.

To capture the characteristic of the audio signal in both time
and frequency domains simultaneously, short time Fourier
transform (STFT) is applied to the raw audio signals. The
parameters of STFT are set as follows: the window duration
is 1 second, the window sliding overlap rate is 0.5 second, the
frequency resolution Δ݂ = and the interested frequency ,ݖܪ1
range is [0, .ݖܪ[500

Considering the physics of bearing, the frequency response
of the audio signals remains time invariant if the vehicle
speed is constant. Therefore, for a short period that the
vehicle speed is constant, we can remove the noise by

Figure 1 Overall flowchart of acoustic-based wheel bearing
fault diagnosis approach
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(a)

(b)
Figure 2. The acoustic signals in time domain from the
microphone F with (a) healthy wheel bearing and (b) faulty
wheel bearing

averaging the spectrum in time direction, as shown in Figure
3. After spectrum averaging, the noise information in the
spectrum reduces, and consequently, the signal noise ratio
(SNR) increases, which improves the spectrum quality.
The comparison of averaged spectrum between a “good”
bearing and a “bad” bearing is shown in Figure 3. We can
find out that there are some peaks at 12 times (denoted as
12X), 18 times (18X) and 24 times (24X) of fundamental
frequency (wheel rotating speed) for a faulty wheel bearing.
However, for the healthy wheel bearing, the harmonics
phenomena don’t exist. Please note that the slow peak at 350
Hz in Figure 3(a) is not related to the bearing noise based on
its shape and frequency. It doesn’t show up in other test data.
It corresponds to some other noises collected during the test.
Please note that the 12X, 18X and 24X frequencies are not a
function of the outer race rate but it may be related to bearing
geometry, the vehicle system and the media that the acoustic
sound travels. Further investigation will be done in the future.

(a)

(b)

Figure 3 Averaged spectrum of the acoustic signals with (a)
a healthy bearing, and (b) a faulty bearing

Although the averaged spectrum can differentiate the faulty
bearing from the healthy one, there are still some limitations:
(1) the amplitude of averaged spectrum may vary along with
the microphone volume; (2) the amplitude of averaged
spectrum may vary when vehicle driving speed changes. To
remove the inconsistency, averaged spectrum residual is
obtained to enhance the fault signature.
Firstly, the tendency curve is obtained by smoothing the
averaged spectrum with a given smooth band width (we use
10Hz by default), i.e. 10-points moving average. And then
the residual is obtained by subtracting the smoothed spectrum
(tendency) from the averaged spectrum. By converting the
averaged spectrum to the spectrum residual, the difference
between the healthy bearing and the faulty bearing is
enlarged, which helps to improve the diagnosis accuracy.
Meanwhile, the values are normalized, which enhances the
robustness and generalization of discovered fault signatures.
Here the normalization is because the difference of two
spectrums in log scale is equivalent to the division of two
spectrum. That means the signal is normalized to its baseline
amplitude. Two examples of averaged spectrum residual for
a healthy bearing and a bad bearing are shown in Figure 4 (a)
and (b), respectively.
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(a)

(b)

Figure 4 Averaged spectrum residual of acoustic signals with
(a) a healthy bearing, and (b) a bad bearing

The harmonic amplitude at 12X, 18X, and 24X of
fundamental frequency are extracted as features (i.e. fault
indicators) to differentiate healthy bearings and faulty
bearings. The features are defined as the max values in a
narrow band centered at 12X, 18X, and 24X fundamental
frequencies. The band width is set as 1.6 times fundamental
frequency by default. For example, if wheel speed is 10 Hz,
then features are the max values from following frequency
area: [120 − 8, 120 + ݖܪ[8 , [180 − 8, 180 + ݖܪ[8 ,
[240 − 8, 240 + The bandwidth is determined by the .ݖܪ[8
accuracy of wheel speed estimation and the stability of the
driving during the data collection. This value is adjustable
based on the data property.

Table 1 lists the features extracted from several different test
cases, e.g. ‘Bad (30 mph)’ means the test is performed with a
bad bearing (e.g. degraded or faulty) in the cruise mode
(vehicle speed is 30 mph). “F end” indicates the location of
the microphone is front (on the dash board), and ‘R end’
indicates the location of the microphone is in the rear trunk.
In the bad cases listed below, the bad bearing is installed at
the front left wheel. We can find that the feature values differ
greatly between bad bearing and good bearing in F end.

The acoustic data from the healthy bearing and the bad
bearing are used to select features. To inject the bearing fault,
e.g. curb impact, the bearing is mounted to a rigid fixture with
a moment arm bracket. A predefined force is applied to the

Table 1 Features extracted from different test cases
Test
cases

F end R end
12X 18X 24X 12X 18X 24X

Bad
(30mph) 24.40 23.58 26.67 16.70 8.21 3.18

Bad
(50mph) 26.06 30.68 23.70 22.89 13.03 4.42

Bad
(70mph) 27.56 27.37 29.29 22.91 4.31 13.05

Good
(30mph) 6.68 10.12 1.53 8.82 9.63 -0.75

Good
(50mph) 5.53 2.67 3.43 2.24 2.99 3.14

moment arm to damage the bearing. In this work, one healthy
bearing and three damaged bearings with the impact force of
50kN, 60kN, or 70kN are employed, respectively. The 50kN
and 60kN bearings are considered as the degraded bearing
and the 70kN bearing is considered as the bad bearing to be
failed. The exact ratio of the Brinelling size to the roller
element diameter is not available, since the bearing is sealed
well and tested in the vehicle. However, during the vehicle
test, the noise level introduced by the bearing is proportional
to  the  impact  force,  which  is  evaluated  by  our  service
technician.

The acoustic data and wheel speed data are collected when
different bearings are installed. Figure 5 shows the features
extracted from the acoustic data with different bearings,
where both ‘healthy’ and ‘BentTieRod’ are healthy bearings,
‘bad_50kN’ and ‘bad_60kN’ are degraded bearings, and
‘bad_70kN’ is the faulty bearing. From Figure 5, we can find
out that the ‘12X harmonics’ and the ‘18X harmonics’ can
separate the healthy bearing and faulty bearing very well with
the largest distance between healthy data and faulty data, and
the features in both groups are condensed. Compared with the
feature ‘12X harmonics’ and the feature ‘18X harmonics’, the
feature ‘24X harmonics’ doesn’t have a comparable
performance. Therefore, the features ‘12X harmonics’ and
‘18X harmonics’ are selected as the fault signatures for
bearing diagnosis.

In order to monitor and diagnose the wheel bearing fault
onboard, a bearing fault diagnosis algorithm is triggered
periodically. The algorithm processes the data acquired
within given time span (e.g. 5 seconds), and makes a
decision.  We  call  this  as  ‘single  dataset  wheel  bearing  FD
module’. The flowchart is shown in Figure 6.

The input of the module is 4 wheels’ speeds and the acoustic
signal. When the data are imported into the module, the
module parameters will be initialized. The module
parameters include: time-frequency analysis parameters
(window length, overlap ratio and interested frequency
range) and the signal sampling rate. Thereafter, the
spectrogram of the acoustic signals is calculated using STFT.
To improve the spectrum analysis performance, the
averaging and residual algorithms are executed. The features
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(a)

(b)

      (c)
Figure 5 Feature visualization with different

combinations: (a) 12X harmonics + 18X harmonics; (b) 12X
harmonics + 24X harmonics; (c) 18X harmonics + 24X
harmonics

are designed as the peaks at 12X, and 18X fundamental
frequency from residual spectrum. Finally, the diagnosis
result is determined using a rule check. The rules involve 4
parameters ܶ1 , ܶ2 , ܶ3  and ܶ4  to differentiate the health
condition for wheel bearings. Here T1 is the upper limit of
Feature 1 to determine whether bearing is healthy or not, T2
is the upper limit of Feature 2 to determine whether bearing
is healthy or not, T3 is the lower limit of Feature 1 to

determine whether bearing is faulty or not, and T4 is the
lower limit of Feature 2 to determine whether bearing is
faulty or not. As depicted in the flowchart above, by
comparing  the  feature  data  with ܶ1 , ܶ2 , ܶ3  and ܶ4 , the
bearing diagnosis result is obtained.

Single dataset wheel bearing FD module algorithm processes
the data when the vehicle is driven in the cruise mode. But in
the actual driving, the driving speed may have a lot of
different patterns. In order to apply the algorithm to real-time
driving environment, some enabling conditions are needed to
trigger the single dataset wheel bearing FD module. Also, to
decrease the false positive rate, a voting mechanism is added
to make sure the diagnosis result is a comprehensive one
based on different speed levels and multiple decisions. The
overall wheel bearing FD model flowchart is shown in Figure
7.

When the data comes in, the first step is to check if the wheel
speeds are stable (in cruise mode) or not. Here, we treat speed
as stable, when the wheel speed variation less than ݖܪ0.5) ߂
by default). If the input data meets this enabling condition,
then  the  single  dataset  wheel  bearing  FD  module  will  be
called, and a diagnosis result based on this dataset is obtained.
The wheel speed is divided into 3 levels by default, and the
speed level of current dataset will be recorded in the buffer
together with the diagnosis result. The enabling wheel speed
range [ܸ1,ܸ2]  is determined by the vehicle design, and
suggested driving speed. For example, if we know a vehicle’s
suggested driving speed is 40-70 mph, then the
corresponding wheel speed can be obtained.

The buffer size is 15 by default. When the buffer is full, the
overall  diagnosis  result  will  be  given  based  on  the
information in the buffer. If there are more than 10 out of all
15 diagnosis results are “faulty”, and there are at least 2 wheel
speed levels in the buffer, then the overall diagnosis result is
“bad bearing”. If there are more than 10 out of all 15
diagnosis results are “faulty” but all the diagnosis results are
based on the datasets from same wheel speed level, then the
speed level information will be saved for the rule check next
time. Otherwise if there are more than 10 out of 15 diagnosis
results are either “faulty” or “degraded”, then the overall
diagnosis result is “degraded bearing”. If it is not detected as
“bad” or “degraded”, then the overall diagnosis result is
“healthy bearing”. Once the overall diagnosis result is
obtained, the buffer will be reset.

3. VALIDATION OF THE PROPOSED SOLUTION

In the previous section, we have introduced the whole
procedure for the wheel bearing FD. To verify the proposed
method, some experimental data are collected from our test
vehicle for the wheel bearings with different health
conditions.

As described before, the bad bearings with impact force
50kN, 60kN and 70kN are used in this work. All the
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algorithms including the single dataset FD module algorithm
and the overall wheel bearing FD algorithm is tested below.

Firstly, the performance test is performed based on the
organized test data samples. There are 141 test data samples
(5 seconds each) in total including “healthy bearing”,
“degraded bearing” and “faulty bearing”. If only “healthy
bearing” and “faulty bearing” are considered, the detection

accuracy is 100% correct with 0 false positive rate. That’s
because the feature distribution between the healthy bearing
and the faulty bearing are well separated. If we consider all

Figure 6. Single dataset wheel bearing FD module

Figure 7. Flowchart of overall wheel bearing FD algorithm
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3 classes, the confusion matrix is shown in Figure 8. The
detection accuracy of “healthy” is 100%, and there are no
“faulty” or “degraded” samples detected as “healthy”, which
means that the accuracy to separate healthy and
degraded/faulty cases is 100%. There are 4.84% “degraded”
samples detected as “faulty”. There are 31.58% “faulty”
samples detected as “degraded”. The performance for
degraded and faulty cases indicates the need of decision-
making logic to further improve the accuracy.

Secondly, some noisy data and various wheel speed data are
used to further validate the robustness of the module. The first
test is to check the algorithm on the acoustic data containing
other noises. The test data contains different types of noises,
such as driver talking, wind noise when window is down,
radio playing and police siren. It is shown in Figure 9 that the
single dataset bearing FD module is capable to detect the
wheel bearing condition as healthy.

Considering that the wheel bearing FD will be deployed to
the vehicle to realize real-time diagnosis, we evaluated the
algorithm under several typical driving scenarios other than
the cruise mode. As shown in Table 2, there are 4 test cases
with different bearing conditions. Each test case includes
several driving modes such as acceleration (acc), deceleration
(dec), cruise, pass, stop sign and so on. The acoustic signals
and wheel speed information are segmented to the 5-second
data set and fed into the system continuously. Once 15 single
data set results are generated, the overall diagnosis result will
be given. To validate the bearing FD algorithm, the acoustic
signal from the front microphone is used. For the first test
case, all wheel bearings are healthy. Each single data set
result in the buffer is healthy. The overall diagnosis result is
“Good”. For the second test case with a bad bearing (70kN),
there are totally 30 single data set diagnostic results in the
buffer, which are either “Faulty” or “Degraded”. The overall

Figure 8. Confusion matrix of single dataset wheel bearing
FD model

Figure 9. Max amplitude in the interested frequency band for
the audio data

Table 2 Test cases of overall wheel bearing FD algorithm
Test
case

Bearing
condition

Duration Driving mode

(a) Healthy 270s Acc, dec, cruise
(b) Faulty (70kN) 700s Cruise, stop, pass,

acc, dec
(c) Degraded

(60kN)
420s Acc, dec, cruise, pass

(d) Degraded
(50kN)

440s Acc, dec, cruise, pass

diagnosis result is “Bad”.  For the third and the forth test cases
with degraded bearings, the overall diagnosis results are
“degraded”. The test results indicate the accuracy of the
bearing FD algorithm is 100% without any false positive.

4. CONCLUSION

An acoustic-based approach is proposed and developed
for vehicle wheel bearing fault detection and isolation in this
work. It  has been found that the wheel bearing fault can be
diagnosed accurately using 12X and 18X wheel speed
frequency response. The proposed fault diagnosis methods
are robust to environmental noise, e.g. radio sound, driver
talk, police siren and wind noise as well as different driving
maneuvers, e.g. acceleration, deceleration, cruise, stop, and
lane change. Even though the performance of the proposed
approach is repeatable for different tests and different
bearings, a physical explanation of the fault signature
frequencies, i.e. 12X and 18X is still required. This will be
out next focus along with the verification regarding to vehicle
to vehicle variation and model to model variation.
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