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ABSTRACT

This paper presents a novel method for performing risk-based
prognosis and health management (rPHM) on centrifugal
pumps. We present the rPHM framework and apply common
modeling tools used in reliability and testability analysis—
dependency (D) matrices and fault tree analysis—as a basis
for constructing an underlying predictive model. We then in-
troduce the mathematics of the Continuous Time Bayesian
Network (CTBN), which is a probabilistic graphical model
based on a factored Markov process that is designed to cap-
ture system evolution through time, and we explain how to
apply a CTBN derived from D-matrices and fault trees to
consider the impact of a set of faults common to centrifugal
pumps on emerging hazards in the pump system. We demon-
strate the utility of using CTBNs for rPHM analysis with two
experiments showing the descriptive power of our modeling
approach.

1. INTRODUCTION

Centrifugal pumps have many applications including opera-
tions in municipal water supplies and waste management, ir-
rigation for farming, hydrant systems and many other indus-
trial uses. Many authors have studied the reliability of cen-
trifugal pumps but have not looked, specifically, at progno-
sis and health management (PHM) for pump systems. Our
contribution is in proposing a novel method to model this
pump failure progression for purposes of supporting PHM on
such systems. The method combines commonly used fault
tree analysis (FTA) and the diagnostic dependency matrix (D-
matrix) through the use of a stochastic model called a Contin-
uous Time Bayesian Network (CTBN). Similar to Dynamic
Bayesian Networks (DBN), the CTBN models state transi-
tions through time. Unlike DBNs that require representing
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time evolution in discrete time steps, the CTBN performs in-
ference over state progressions that occur in continuous time.

The CTBN is a type of Continuous Time Markov Process
(CTMP), where the Markov process is factored into under-
lying components or subsystems. The factoring process pro-
vides a compact representation for capturing failure seman-
tics from FTA and from the diagnostic D-matrix. The D-
matrix is a valuable addition to the model, allowing the appli-
cation of uncertain evidence from test observations to resolve
fault ambiguity groups. It also provides a means to incor-
porate and testing error rates (false alarms and non-detects)
directly into the model.

Our paper explains the theory and methodology behind ap-
plying a CTBN to PHM with a focus on centrifugal pumps.
We introduce a novel fault tree and D-matrix for a centrifu-
gal pump in the context of a CTBN. We perform inference on
the resulting CTBN using the common inference approxima-
tion technique, importance sampling. Importance sampling is
a variation of a commonly used forward sampling procedure
that enables the incorporation of evidence into the model of
different types and durations. The applied evidence is ob-
served from performing maintenance inspections or test pro-
tocols to the pump to determine its current health state, so
by applying evidence to the system, planners can model the
risks associated with potentially emerging failures or differ-
ent maintenance plans.

In general, exact inference with CTBNs is intractable, thus
generally requiring approximate inference (U. D. Nodelman,
2007). In fact, it has been proven that both exact infer-
ence and approximate inference are NP-hard with CTBNs
(Sturlaugson & Sheppard, 2014). For this reason, we apply
importance sampling and discuss how the CTBN models risk
and how the model can be used by planners to improve both
uptime and risk mitigation for the centrifugal pumps.
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2. BACKGROUND

Centrifugal pumps are an integral part of modern day in-
frastructure, providing basic functions in municipal water
supplies, sewage treatment, irrigation, heating and cooling
systems, along with many industrial applications (Behrends,
Houke, Bailey, Jansen, & Brown, 2001; Gülich, 2008). Iden-
tification and prediction of failures is of major concern to
practitioners who strive to make systems both more effi-
cient and cost effective. Toward this end, the framework of
risk-based prognostics and health management (rPHM) has
been proposed to manage the risk of these failures effectively
(J. Sheppard, Perrault, & Forrester, 2019). We model the ef-
fects of an example centrifugal pump system using a CTBN,
which manages the combinatorial explosion of relationships
between faults and effects by assuming conditional indepen-
dencies throughout the system. Our model differs from a
Bayesian network (Pearl, 1988) in that conditional dependen-
cies are now modeled through time. Our model also differs
from a Dynamic Bayesian Network (DBN) (Murphy, 2002)
because the model uses a Continuous Time Markov Process
(CTMP) as the underlying stochastic process, as opposed to
the DBN discrete step process (Howard, 1960). The continu-
ous time model also relaxes the directed acyclic requirement
of the traditional Bayesian network.

2.1. Risk-Based PHM

PHM is characterized by monitoring system health and degra-
dation, as well as forecasting future failures and associated
maintenance problems (Pecht, 2008). Historically a fore-
cast (prognosis) would be given by a domain expert. Do-
main expert-based models, however, present several draw-
backs. The first is that domain expert knowledge and experi-
ence can vary greatly between experts, causing the accuracy
their prognosis also to vary widely. Secondly, by using a do-
main expert, prognoses are difficult to replicate with many
aspects of the process being a black-box combination of ex-
pertise and intuition.

To be able to standardize PHM across sites, physics-based
models are a better choice. Such an approach removes the
variability of the human experience by replacing it with a
standardized model used in all locations. This standardized
model is more effectively testable. All decisions are made
through the same process, so a failure in a piece of equip-
ment can then be investigated with the certainty that the his-
torical prognosis was consistent for the same failure across
the organization. Unfortunately, such models rarely scale to
real-world systems due to the computational complexity as-
sociated with processing them (Kim, An, & Choi, 2017).

Due to the complexities associated with creating, validat-
ing, and using physics-based models in real-world systems,
alternative methods based on data-driven processes have
been proposed. These methods often employ techniques

from machine learning to capture regularities in historical
data. A common data-driven approach is based on sparse
Bayesian learning, incorporating so-called “relevance vector
machines” (Tipping, 2001). Alternative Bayesian approaches
incorporate particle filtering as a way of performing inference
over these models to handle some of the inefficiencies asso-
ciated with exact inference (Goebel, Saha, Saxena, Celaya, &
Christophersen, 2008; Orchard, Kacprzynski, Goebel, Saha,
& Vachtsevanos, 2008; Lall, Lowe, & Goebel, 2012).

We have developed a model that attempts to exploit the ad-
vantages of both physics-based models and data-driven mod-
els while minimizing the disadvantages. To that end, we em-
ploy methods from probabilistic graphical models, namely
the CTBN that incorporate information from engineering
models (fault trees and D-matrices) while also supporting
learning from historical data when available. We also support
methods of applying uncertain evidence as a means of incor-
porating information provided from an external (e.g., physics-
based) model as input to our CTBN (Sturlaugson & Shep-
pard, 2016; J. W. Sheppard, Gorton, Kalgren, & Sturlaugson,
2018).

As a discipline, PHM focuses on prediction and prevention of
faults and failures. However, not all faults and failures have
equal risk. For example, we modeled the cascade distillation
system for the water recovery unit on board the International
Space Station. The system can fail in a variety of ways, in-
cluding a motor failure in the centrifuge or a valve failure
in the chemical processing plant. The risk associated with a
motor failure is substantially lower than a valve failure since
motor failure delays the production of potable water. A valve
failure, on the other hand, could lead to toxic chemicals being
released into the closed atmosphere of the station, thus result-
ing in the immediate loss of the crew(Ghoshal & Sheppard,
2016). To address this inequality in the effects of failures, we
use rPHM. In rPHM, we extend the PHM model to include
risks associated with failures to more efficiently allocate re-
sources toward prevention.

The approach of incorporating risk into the predictive process
is already being used by the United States Nuclear Regulatory
Commission (USNCR), which uses the term “risk-informed
decision making.” USNCR implements this through Sys-
tems Analysis Programs for Hands-on Integrated Reliability
Evaluations (SAPHIRE), a system that uses minimal cut fault
trees to analyze the relationship of effects to failures (Smith,
Knudsen, Kvarfordt, & Wood, 2008). This approach, how-
ever, involves a static analysis and is not able to adapt readily
to evidence gained from observation and testing. The CTBN-
based approach, on the other hand, is able to do both, as well
as incorporate utility functions and decision points, support-
ing optimization of work plans (Perreault, Thornton, & Shep-
pard, 2016b; Sturlaugson, Perreault, & Sheppard, 2017).
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2.2. D-Matrices

The first step in any fault analysis is collecting data on the
health of various components in the system. However, we
cannot generally observe the state of a component directly,
so we must devise a series of tests whose outcomes give
a probability of a fault. In this framework, the compo-
nent is called the unit under test (UUT) and has a series
of tests t ∈ T associated to the UUT that test for faults
f ∈ F. More formally the relationships between faults F
and tests T are represented by a |T| × |F| matrix D, where
D = {d : 1t tests for f (t, f) ∀t ∈ T,∀f ∈ F}. We call D
a D-matrix. Since the fault’s state changes the probability of
a test outcome, we consider the test-to-fault relationship as
corresponding to a conditional probability density, P (ti|F),
though these densities are generally unknown in the model
(Simpson & Sheppard, 1994).

2.3. Fault Trees

Although many other methods exist for analyzing the effects
of failure or faults in a system, such as Fault Isolation Man-
uals (FIM), Failure Modes Effects and Criticality Analysis
(FMECA), and Fault Detection and Isolation (FDI) systems
(Kallesøe, 2005), this paper combines D-matrices with the re-
sults of performing fault tree analysis (FTA), (Watson, 1961).
FTA is a common method in the reliability literature to en-
code the relationships between component faults and system
failures. The fault tree is a directed acyclic graph whose
leaves are the set of faults and interior vertices are the set
of failures. The edges feed into logic gates, AND and OR,
which are placed between vertices to indicate causal relation-
ships.

While this structure allows for the same component to appear
in many locations in the tree so as to minimize complexity,
these are sometimes removed by using the minimal cut set of
the fault tree. In our method, however, we eliminate redun-
dancies but keep the hierarchical structure to facilitate track-
ing intermediate failures (J. Sheppard et al., 2019).

Additionally, we assume that the intermediate “failures” in
the fault tree correspond to hazards associated with dependent
faults occurring. Going forward, we use the notion of a failure
and a hazard interchangeably.

3. PUMP FAULTS AND FAILURES

In this section, we introduce the pump model we have devel-
oped to illustrate the rPHM process. Figure 1 shows the top
level portion of the fault tree we developed mapping pump
faults to system failures. As the figure indicates, we have di-
vided the pump complex into two assemblies—the motor and
the pump. The motor has two subassemblies—electrical and
mechanical. The pump has a shaft, an impeller, and mechan-
ical subassemblies. With each subassembly, we have identi-

fied common faults and their associated mean times between
failure (MTBF), which we estimated in hours. We have also
estimated mean repair times and associated costs. Both mean
repair times and MTBFs are treated as the parameters for ex-
ponentially distributed random variables. We chose to use a
noisy-OR construct where, if any fault occurs, the subassem-
bly fails, and if any subassembly fails, the main assembly
fails (Perreault, Thornton, Sheppard, & DeBruycker, 2017).
All faults and effects were adapted from (Kallesøe, 2005).
Rates were taken, when available, from (Mays, 1989). Costs
and unknown rates were estimated in the best judgment of the
authors.

The model faults are described below with complete descrip-
tions of rates and costs in Table 1. Since many faults are un-
able to be tested directly, we have also formulated a series of
tests with estimated false alarm and non-detect rates in Table
2. A description of the tests with non-detect and false alarm
rates are available here, and the associated D-matrix is shown
in Table 3.

3.1. Motor

Kliman et al. estimate that induction motor faults are com-
prised of bearing faults (40%-50%), stator faults (30%-40%),
and rotor faults (5%-10%), with the remaining faults account-
ing for only a small percentage of total faults (Kliman, Pre-
merlani, Koegl, & Hoeweler, 1996). Both stator faults and
rotor faults are considered electrical faults.

We have included five electrical faults in the motor: loss of
supply voltage, short circuit between windings, short circuit
to ground, broken rotor bar, and air grab due to motor shaft is-
sues. Electrical issues are detected through changes in torque
oscillation, pack transform current, and in the case of a short
circuit, the motor temperature.

We model two mechanical faults: wear of bearings in the
motor and rub impact between stator and rotor. The bearing
faults are tested in the same way as the short circuits by moni-
toring changes in the pack transform current, the torque oscil-
lations and the engine temperature. The rub impact between
stator and rotor is also detected by changes in the harmonic
oscillations.

3.2. Pump

We divide the pump into three subassemblies: impeller, me-
chanical, and shaft. Common shaft problems involve a bent or
broken shaft or a shaft misalignment between the motor and
the pump. Faults on the shaft are detected through changes in
harmonic vibrations and changes in torque oscillation. Com-
mon impeller faults include impurities in the water ranging
from sand to larger obstacles, dry running, and wear or com-
plete loss of the impeller. The faults are detected through
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Electrical Failure
Fem

Mechanical Failure
Fmm

Impeller Failure
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Mechanical Failure
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Fsh

Motor Failure Pump Failure

System Failure

Figure 1. Fault Tree with High-Level Faults

Table 1. Faults with associated failure rates and repair rates and costs.

Faults Part Name MTBF(hrs) MTTR(hrs) Repair Costs
Fem1 Loss of supply voltage 183,000 2 1000
Fem2 Short circuit between windings 746,000 2 1000
Fem3 Short circuit to ground 70,100 2 1000
Fem4 Broken rotor bar 701,280 8 5000
Fem5 Air grab due to motor shaft issue 600,000 8 5000
Fmm1 Wear of the bearings in the motor 11,000 6 2500
Fmm2 Rub impact between stator and rotor 8,015,000 8 4000
Fsh1 Bent shaft 36,000 12 3200
Fsh2 Misalignment between the motor and the pump 679,000 1.5 800
Fi1 Dry running 32,500 1 400
Fi2 Impurities fixed on the impeller 205,800 4 400
Fi3 Wear of the impeller 205,800 8 1800
Fi4 Large obstacles in the liquid 205,800 4 400
Fi5 Sand and other impurities in the water 205,800 4 400
Fi6 Missing sealing ring 205,800 2 250
Fi7 Loss of the impeller 205,800 8 1800
Fmp1 Dry running 60,400 1 100
Fmp2 Inlet flow equal to zero 60,400 1 100
Fmp3 Wear of the bearings in the pump 28,700 6 2600
Fmp4 Wear of seals 28,200 2 250
Fmp5 Rub impact between the impeller and the casing 135,900 8 9800

changes in pressure or pressure harmonics, impeller torque,
motor torque oscillations and harmonic vibrations.

The mechanical faults in the pump are wear of the seal and

bearings, no inlet flow, and rub impact between the impeller
and the casing. In the case of a seal fault, the discerning test
is leakage flow from the pump. In the case of dry running or
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Table 2. Tests Abbreviations, Descriptions with No-Detect and False Alarm rates

Id Full Name Description ND FA
TOT Torque Oscillations Test Changes in harmonic torque oscillations .02 .03
PT Pressure Test Checks system pressure .01 .008
ITS Impeller torque sensor Monitors the torque load from the impeller .02 .01
HPT Harmonic Pressure Test Tests for harmonic pressure oscillations .005 .01
HVT Harmonic Vibrations Test Checks harmonic vibrations of the pump .02 .015
BT Bearing Temperature Test Monitors bearing temperature .005 .008
MTG Motor temperature gauge Monitors motor temperature .008 .02
LT Leak test Tests leakage flow from pump .03 .01
PTCA FFT pack transform current Monitors oscillations in the current length .004 .03
SCG Stator current gauge Checks stator current balance .005 .03
SPT Shaft speed test Checks shaft speed .01 .004

Table 3. D-Matrix Mapping Tests to Faults

TOT PT ITS HPT HVT BT MTG LT PTCA SCG SPT



Fem1 0 0 0 0 0 0 0 0 1 0 0
Fem2 0 0 0 0 0 0 1 0 1 0 0
Fem3 1 0 0 0 0 0 1 0 1 1 0
Fem4 1 0 0 0 0 0 0 0 1 0 0
Fem5 1 0 0 0 0 0 0 0 0 1 0
Fi1 0 1 1 0 0 0 0 0 0 0 0
Fi2 1 0 0 1 1 0 0 0 0 0 0
Fi3 1 1 1 1 1 0 0 0 0 0 0
Fi4 1 1 1 1 1 0 0 0 0 0 0
Fi5 0 1 1 0 0 0 0 0 0 0 0
Fi6 0 1 1 0 0 0 0 0 0 0 0
Fi7 0 1 1 0 0 0 0 0 0 0 0

Fmm1 1 0 0 0 0 0 1 0 1 0 0
Fmm2 1 0 0 0 1 0 0 0 0 0 0
Fmp1 0 0 0 0 0 1 0 0 0 0 0
Fmp2 0 0 0 0 0 1 0 0 0 0 0
Fmp3 1 0 0 0 1 1 0 0 0 0 0
Fmp4 0 0 0 0 0 0 0 1 0 0 0
Fmp5 1 0 0 0 1 0 0 0 0 0 0
Fsh1 1 0 0 0 1 0 0 0 0 0 0
Fsh2 1 0 0 0 1 0 0 0 0 0 0

no inlet flow, the bearing temperature can be tested. Worn-
out bearings can also be tested by bearing temperature and
through the harmonic vibrations test or torque oscillation test.
The rub impact between impeller and the casing is tested by
torque oscillation and harmonic vibrations analysis.

4. MODELING SYSTEM EVOLUTION

In the following, we provide background information on the
main model type for our application. We introduce the ba-
sics from the perspective of a CTMP and the explain how the
CTMP can be factored to yield a CTBN. We then explain the
basic inference process employed.
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4.1. Continuous-Time Markov Process (CTMP)

To begin to understand the CTBN, we introduce the Continu-
ous Time Markov Process (CTMP). A CTMP over some vari-
able X with n discrete states is defined by a row vector initial
distribution at time, t = 0, namely P 0

X , and an intensity ma-
trix Q (also called a infinitesimal generator) representing the
transitions between states.

QX =


−qx1 qx12 . . . qx1n

qx21
−qx2

. . . qx2n

...
...

. . .
...

qxn1
qxn2

. . . −qxn


The amount of time that the process stays in some state xi
is distributed exponentially with parameter qxi

with a corre-
sponding expected time to transition of 1

qxi
. A multinomial

distribution can then be parameterized with
qxi,j

qxi
represent-

ing the process of transitioning from state xi to state xj . The
distribution of the CTMP by some time t is then given as

PX(t) = P 0
X exp(QXt)

where exp(·) is the matrix exponential. The sufficient statis-
tics for a CTMP are the amount of time that a process variable
stays in a state x, commonly denoted by T [x], and the number
of times that X transitions from state x to state x′, denoted
M [x, x′] (U. Nodelman, Shelton, & Koller, 2002a).

4.2. Continuous Time Bayesian Network

A CTBN is a compact graphical representation of a factored
CTMP. More formally, a CTBN is faithful to a probability
distribution over trajectories σ, of a set of random process
variables X, which are distributed according to a conditional
CTMP. A trajectory represents a continuous sequence of state
changes of X, recording both the state change and duration
within a state. A conditional Markov process is an inhomoge-
neous Markov process whose distribution varies based on the
set of instantiated values of the conditioning process variables
U. The distribution is represented by an intensity matrix, now
called a conditional intensity matrix (CIM), where each set of
instantiated values has its own CIM Qx|U (U. Nodelman et
al., 2002a; Saria, Nodelman, & Koller, 2012).

We can now define a CTBN as an initial distribution based
on a Bayesian network B0 over X with continuous-time tran-
sition model represented by a directed graph G whose nodes
represent random process variables with a node’s parents be-
ing the set of conditioning process variables U. Each vari-
able has a CIM associated with it (U. Nodelman et al., 2002a;
Saria et al., 2012).

More succinctly, given a set X of discrete random variables
X1, . . . , XN , a CTBN over X can be described with an ini-
tial distribution P 0

X , which is a Bayesian network, a directed

(possibly) cyclic graph G, whose nodes represent X, and a
set of parent random variables Pa(Xi) that dictates the cor-
responding set of intensity matrices, and finally a set of con-
ditional intensity matrices, denoted Qx|U for each discrete
random variable (U. Nodelman et al., 2002a).

4.3. Inference

Inference is process of estimating the state of the stochastic
process as it evolves through time based on the observation
of an instantiated partial trajectory. The two main applica-
tions of inference in CTBNs are estimating posterior densities
over a given time interval for a known parameterization of
the CTBN or learning the parameterization of a CTBN from
data(Fan, Xu, & Shelton, 2010). Our focus here is the former.

Exact inference in CTBNs is intractable since it requires
“amalgamating” the CIMs into a single intensity matrix
which describes the CTMP. In fact, approximate infer-
ence is also intractable (Sturlaugson & Sheppard, 2014).
Even so, multiple efficient “approximate” inference methods
have been proposed that prevent the need for amalgamation
(U. Nodelman et al., 2002a). One common form of approxi-
mate inference is importance sampling, which we discuss be-
low.

4.3.1. Importance Sampling

Suppose we want to know θ = Ef [h(x)], where x is a high
dimensional random vector that is difficult to simulate, or al-
ternatively where the variance of the density h(x) is high.
One method we could use is to calculate

θ = Eg

[
h(x)f(x)

g(x)

]
with the restriction that f(x) = 0 wherever g(x) = 0. We
generate successive random vectors, xi from g(·) and then
use 1

n

∑n
i=1

h(xi)f(xi)
g(xi)

to estimate θ. If the random variable,
h(x)f(x)

g(x) has low variance, then this results in an efficient es-

timator, θ̂. This method is called importance sampling (Ross,
1990).

Noting that f(xi) and g(xi) are the probability of xi oc-
curring according to their respective densities, it is usual
that f(·) is small where g(·) is big, which implies that the
likelihood ratio f(x)

g(x) is often small. However, we need for

Eg

[
f(x)
g(x)

]
= 1, so the likelihood ratio must sometimes be

very large and the variance of h(x)f(x)
g(x) will often be large, un-

less we pick g(·) where likelihood is large and h(·) is small.
This will stabilize h(x)f(x)

g(x) (Ross, 1990).

6
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4.3.2. CTBN Importance Sampling

Importance sampling in the context of the CTBN is a method
to incorporate evidence into the model. Evidence corresponds
to observations of the state of the system and inferring how
these observations modify beliefs in the resulting trajectories.
Two basic observations are the state at a specific point in time
(point evidence) and observing the duration that the system
was in the state (continuous-time evidence). Evidence has
also been extended to include observations where state cannot
be observed directly and therefore probability densities are
defined over the states and over the duration1 (Sturlaugson &
Sheppard, 2016).

Originally proposed by (Fan & Shelton, 2008), importance
sampling modifies a forward sampling procedure proposed by
(U. Nodelman, Shelton, & Koller, 2002b) to incorporate the
application of evidence of different durations and at different
intervals. The method generates samples that conform to the
observed evidence. Since the observed evidence modifies the
state space, we correct for this modification of the sampling
space by using likelihood weighting. The prediction is the
likelihood weighted average of the samples. A more thorough
treatment can be found in (Fan et al., 2010) and (Sturlaugson
& Sheppard, 2016).

5. CTBN REPRESENTATION OF PUMP RELIABILITY

In this section, we walk through the process of converting the
information about a pump, captured in terms of D-matrices
and fault trees, into a corresponding CTBN.

5.1. Mapping a D-matrix to a CTBN

Since the CTBN is focused on failure progression, we first
need to understand the interaction between tests and faults.
We map a D-matrix to a CTBN and then perform inference.
Each fault is an independent random variable in our model,
and a test random variable is conditionally dependent on the
faults that it monitors. Creating a CTBN from a D-matrix is
straightforward and capitalizes on the performance gains of
the independent graphical model representation. Details of
the conversion process can be found in (Perreault, Thornton,
Strasser, & Sheppard, 2015). Other graphical model repre-
sentations have similar performance gains, but since the fault
events are also dependent on time with no time step appro-
priate for all faults, we believe the CTBN with its associated
conditional CTMPs to be a more accurate representation.

We build the CTBN graph, G, so that its vertices correspond
to T and F with a directed edge (fi, tj) if and only if tj tests
for fault fi. The conditional intensity matrices, Qtj |Fj

are
then determined by the state of the faults Fj monitored by tj .
In most scenarios, the number of discrete states for both tests

1There is also negative evidence about a state in which the system cannot be,
but this is outside the scope of this paper

and faults is small, which moves tractability of this problem
to depend upon the number of intensity matrices. Each fault
has exactly one intensity matrix as it has no parents; how-
ever, for tests, an intensity matrix is needed for each state of
each fault it detects, giving an upper bound on time complex-
ity of O(cm) where c is the maximum number of states of
the faults the test detects, and m is number of faults that the
test detects. This demonstrates the importance of unit tests
or tests that detect faults on a small number of components,
(Perreault, Thornton, Strasser, & Sheppard, 2015). An ex-
ample conversion of the D-matrix from Table 3 to CTBN is
shown in Figure 2.

5.2. Mapping a Fault Tree to a CTBN

We view failures (or hazards) as being conditioned upon
faults, such that the joint distribution of failures is decom-
posed into factors, where each factor is independent of its
nondescendants in the fault tree given its parents. Since the
faults are the leaves of the fault tree, they become the parents
of the failures and as such are parameterized using uncon-
ditional intensity matrices, i.e. homogeneous intensity matri-
ces. These are the same unconditional intensity matrices used
for the D-matrix conversion.

The failures, which have both faults or other failures in its par-
ent set, are considered conditionally dependent on its parents,
and a failure will have an intensity matrix that is conditional
on the instantiation of the set of parents. The intensity matri-
ces in the binary case will represent known failure and repair
rates, which can be found easily or estimated from histori-
cal data. The failure rate, λ, differs from mean time between
failures (MTBF) and, in our model, is the parameter of the
exponential density indicating the probability that the failure
will occur. If a failure occurs, then the repair rate, µ, param-
eterizes an exponential density indicating the probability at
which time the failure will be fixed. The repair rate can be
omitted if the failure is unrepairable (Perreault, Thornton, &
Sheppard, 2016a). An example conversion of the fault tree in
Figure 1 is shown in Figure 3.

One of the obvious limitations of the CTBN model is the
reliance on the exponential distribution when we know that
very few components are truly Markovian. One successful
approach to handle this problem is to relax this restriction in
Markov processes into a semi-Markov process using a phase-
type distribution. This relaxation using a phase-type distribu-
tion is also possible for the CTBN, and the process has been
demonstrated with both Weibull and log-normal failure distri-
butions (Perreault, Thornton, Goodman, & Sheppard, 2015).
The CTBN can then be used to approximate non-exponential
distributions that provide similar modeling flexibility to semi-
Markov processes.
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Fem1 Fem2 Fem3 Fem4 Fem5

PTCA MTG TOT SCG

Figure 2. Example CTBN Structure for Fault to Test Relationships

Pump

Motor

Elec Mech

Fem1 Fem2 Fem3 Fem4 Fem5 Fmm1 Fmm2

Figure 3. CTBN parameterization of a Fault Tree Subsystem
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Table 4. Predicted Uptimes and Failures per 10,000 hours

Component Uptime Failures
system 0.998402 3.1305
pump 0.999013 1.9845
motor 0.998774 1.1488
fem* 0.996600 0.2416
fem1 0.994869 0.0567
fem2 0.988081 0.0119
fem3 0.996640 0.142
fem4 0.992915 0.0138
fem5 0.994878 0.0172
fmm* 0.998839 0.9074
fmm1 0.998841 0.9062
fmm2 0.994301 0.0012
fsh* 0.999563 0.2833
fsh1 0.999565 0.2688
fsh2 0.983878 0.0145
fi* 0.999470 0.5917
fi1 0.999614 0.3069
fi2 0.996803 0.0465
fi3 0.998068 0.0483
fi4 0.998428 0.0495
fi5 0.998115 0.0511
fi6 0.999475 0.045
fi7 0.999444 0.0445
fmp* 0.999474 1.1108
fmp1 0.999484 0.1667
fmp2 0.998290 0.1656
fmp3 0.999264 0.3497
fmp4 0.999780 0.3495
fmp5 0.999455 0.0799

6. EXPERIMENTS

In the following selection, we present experiments to demon-
strate the utility of using a CTBN for risk-based PHM.

The first experiment verifies that the CTBN can correctly
approximate the rates given by a traditional exponential
parameter-based reliability analysis. Using the rates de-
scribed above to estimate MTBF of the individual compo-
nents by simulating the components trajectories using the im-
portance sampling algorithm proposed by (Fan & Shelton,
2008). A Monte Carlo simulation of 1000 trials using the dis-
junctive CTBN model (Perreault et al., 2017) was performed.
Each trial sampled failure time for each of the five compo-
nents of the electrical system and recorded the first failure.
This failure estimated the first time to failure of the motor
electrical subassembly.

Using the properties of the order statistics of the exponen-
tial distribution, we know that if each individual component
failure is independently exponentially distributed, then the
system will fail on average every 41,300 hours. The aver-
age failure time in the Monte Carlo simulation was 41,700
hours, which is consistent with the underlying assumptions
of the model. The Monte Carlo simulation also predicts the
frequency of different types of faults and the corresponding

average cost of repair for the subsystem. The expected cost
of the repair of the subassembly is 1524 units with an ex-
pected repair time of 2.7 hours. We can see the breakdown of
the frequency of component faults in Figure 4.

In the second experiment, we model uptime and failures per
10,000 hours for entire system. We performed 10,000,000
runs of 10,000 hour simulation averaging uptime, failures
and expected cost of the failures. The experiments were per-
formed again using the noisy-OR model and the CTBN im-
portance sampling algorithm. We then use the repair cost in-
formation from Table 1 as a means of estimating the expected
repair cost over the 10,000 hour period.

7. RESULTS AND ANALYSIS

As we can see in Figure 5a, the cost of maintaining the pump
is roughly 60% more than maintaining the motor. If we dive
slightly deeper into the model in Figures 5b, 5c, 5d, we can
see that the most costly faults are occurring in the mechani-
cal subassembly of the pump, particularly, the rub impacted
between the impeller and casing and the wear of bearings in
the pump. The rub impacted between the impeller and casing
is costly, because the entire assembly needs to be replaced
and the wear of bearings in the pump is commonly repaired
through pump replacement. In this analysis, by performing
preventative maintenance on both the bearings and the im-
peller, we can reduce our unexpected costs in the pump. The
next important fault to address is the broken shaft, while im-
peller problems, though common, contribute less to the cost
of running the pump.

Results for each component, subassembly, assembly, and sys-
tem are available in Table 4. Overall we expect the system to
exhibit 3.13 failures per 10,000 hours, with 1.98 in the pump
assembly and 1.15 in the motor assembly; although, the mo-
tor assembly has slightly lower uptime because of longer re-
pair times in the assembly. If we evaluated this without cost
associated, we see the mechanical pump subassembly is still
a common source of faults with 1.11 faults. A close second is
the motor mechanical subassembly with 0.9 faults per 10,000
hours. To increase uptime, improving performance of these
two subassemblies would be an appropriate focus.

8. CONCLUSION

The CTBN model is capable of modeling over both state and
time, providing an improvement over basic hazard models. It
simulates not only that a fault occurs, but also predicts the du-
ration of the fault and repair, providing a model of the cyclic
process of failure and repair. The understanding that we gain
from analyzing this structure can be used to build better work
plans and perform maintenance in a cost effective manner. An
sample simulation of the assemblies’ life-cycle is included in
Figure 6.
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Figure 4. Probability of First Component Failure in Fem

For example by placing the inspections on intervals in the
model, we are able to model system degradation based on the
inspection’s outcome. One advantage of the CTBN model is
that it supports both continuous inspections and just-in-time
inspections at variable intervals, improving assessment over
traditional interval based inspection strategies. These differ-
ent types of inspection are a more appropriate procedure to
design work-plans, giving maintenance the ability to choose
more flexible inspections for each fault.

Additionally through the use of risk analysis, the CTBN gives
advice about the allocation of resources, thereby improving
mission readiness. Using Monte-Carlo techniques, we predict
when failures occur, how long they will last, the cost of fail-
ure, and the probability of a failure occurring. This provides
excellent visibility into system behavior. Also, by applying
evidence from tests to the system, the program models the
future performance of individual components and subassem-
blies under uncertainty.

9. FUTURE WORK

Several avenues of future work are available. An obvious ex-
tension is to build workplans automatically from the risk and
reliability analysis. Ideally, we would like to be able to de-
sign efficient workplans algorithmically through the CTBN
framework. We would also like to start to work with more
complex systems using dynamic fault trees.

The second extension involves improving the efficiency of the
computation when doing inference. We believe there are opti-
mizations to our inference engine for performance gains. This
would increase the tractability of the CTBN framework on
new systems and speed-up the experimental life cycle. Some
of these improvements may be based on the specific nature
of modeling system failure, where other improvements may
draw on inference techniques, for example, based on varia-
tional methods.

The third extension focuses on developing methods for quan-

tifying uncertainty in the system. By studying uncertainty in
the model, we can understand where the algorithm is operat-
ing with less certainty and then focus our attention on those
parts of the system, because study of the system assemblies
with less certainty will provide larger gains in readiness than
studying systems with small error bars.

The fourth area to consider is improving the risk analysis
framework. Calculating the present value of risk over a dy-
namic system is a challenging problem with widespread ap-
plication. Improving this risk analysis process yields large
gains in readiness.
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