
Rapid Uncertainty Propagation for High-fidelity Prognostics
Using SROMPy and Python

James E. Warner1, Patrick E. Leser2, and Jacob D. Hochhalter3

1,2,3 NASA Langley Research Center, Hampton, VA, 23681, USA
james.e.warner@nasa.gov
patrick.e.leser@nasa.gov

jacob.d.hochhalter@nasa.gov

ABSTRACT

This work introduces a practical approach for accelerating
probabilistic, high-fidelity prognostics using the stochastic
reduced order model (SROM) method and its availability in
the open-source Python package, SROMPy. SROMs are used
as an efficient Monte Carlo simulation (MCS) method, pro-
viding low-dimensional representations of random model in-
puts that enable rapid and non-intrusive uncertainty propaga-
tion. This study represents the first application of the SROM
approach in the field of prognostics and health management
and serves as a tutorial demonstration of the SROMPy soft-
ware package. The relative ease of applying SROMs with
SROMPy for uncertainty propagation is demonstrated on an
example of probabilistic, non-planar crack growth simula-
tion. Results show that the SROM approach agrees well with
results from MCS while providing the potential for orders
of magnitude computational speedup. The complete source
code and input data required to reproduce the results in this
paper are available online to facilitate further evaluation and
adoption of the SROM method by researchers in the field.

1. INTRODUCTION

The application of damage prognostics to real-world systems
requires high-fidelity simulations (e.g., finite element (FE)
analysis) to predict how damage will evolve in complex ge-
ometries. Furthermore, system uncertainties must be quan-
tified and propagated through these models in order to pro-
vide reliable, probabilistic predictions. However, traditional
Monte Carlo simulation (MCS) is impractical to use in these
settings due to the number of model evaluations required for
convergence, and the runtime required for each evaluation.
Therefore, more advanced methods for propagating uncer-
tainty are required to make probabilistic, high-fidelity dam-
age prognostics computationally tractable.

James Warner et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

There are two primary approaches for alleviating this com-
putational burden. The first involves reducing the time for a
single model evaluation by replacing an expensive computa-
tional model with an efficient surrogate model using machine
learning (Warner et al., 2017; Leser et al., 2016; Sankarara-
man, Ling, Shantz, & Mahadevan, 2011). The second in-
volves reducing the number of model evaluations required
for convergence by using more sophisticated stochastic meth-
ods for uncertainty propagation. These two approaches may
be combined, provided a satisfactory level of accuracy is re-
tained.

This work aims to accelerate high-fidelity damage prognos-
tics using the second approach of propagating uncertainty
with fewer model evaluations. The most popular class of
techniques for doing so are spectral methods, which express
stochastic solutions as orthogonal polynomials of the ran-
dom input parameters (i.e., polynomial chaos expansions).
Two well-established methods following this approach are the
stochastic collocation (Babuska, Nobile, & Tempone, 2007)
and stochastic Galerkin method (Ghanem & Spanos, 2003).
In their basic forms, stochastic collocation has the practical
advantage of being a non-intrusive method (i.e., no modi-
fications of the deterministic computational model are nec-
essary), but the computational expense grows exponentially
with the number of random inputs. Extensions of the ap-
proach have focussed on gaining efficiency by employing
sparse grids (Nobile, Tempone, & Webster, 2008).

The stochastic reduced order model (SROM) approach
(Grigoriu, 2009; Warner, Grigoriu, & Aquino, 2013; Grig-
oriu, 2011) was developed as an effective alternative to
spectral methods, and has since been successfully applied to
a range of stochastic problems (Sarkar, Warner, Aquino, &
Grigoriu, 2014; Warner, Aquino, & Grigoriu, 2015; Emery,
Field, Foulk, Karlson, & Grigoriu, 2015). This work, how-
ever, represents the first application of the approach in the
field of prognostics and health management. A SROM pro-
vides a low-dimensional discrete approximation to random

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

model parameters by selecting optimal representative sam-
ples, and then using them to propagate uncertainty with
relatively few model evaluations. The method is conceptu-
ally simple, non-intrusive, efficient, proven to converge to the
exact solution (Grigoriu, 2011), and has been shown to offer
advantages over the stochastic collocation and stochastic
Galerkin approaches for some problems (Field, Grigoriu, &
Emergy, 2015). Furthermore, the SROM approach has been
implemented in the open-source Python package, SROMPy1,
providing user-friendly utilization of the method (Warner,
2018a).

The goal of this study is to demonstrate the practicality of
the SROM approach for accelerating uncertainty propaga-
tion in damage prognostics and the relative ease of apply-
ing the method with SROMPy and Python. These goals are
highlighted in the context of probabilistic prognosis for non-
planar fatigue crack growth. Given uncertainty in initial dam-
age state and crack growth rate parameters, the SROM ap-
proach was used to generate probabilistic end of life esti-
mates in just a fraction of the time of MCS, while retaining a
high degree of accuracy. It was shown that this analysis can
be carried out using relatively few lines of Python code by
leveraging the functionality of SROMPy. In order to facilitate
reproducibility and encourage further evaluation of SROM-
accelerated prognostics, the complete source code and input
data for the example are available online2.

The following section provides the relevant background for
the study, starting with a formulation of the SROM approach
for uncertainty propagation and then giving a brief overview
of the SROMPy Python module that implements it. Then, an
example of probabilistic, non-planar crack growth using the
SROM method is presented, detailing the use of SROMPy to
model random input parameters and then propagate uncer-
tainty through the crack growth model. A comparison with
MCS is provided here to demonstrate the accuracy and com-
putational speedup provided by the SROM approach. Finally,
the study is concluded in the summary section.

2. BACKGROUND

This section gives the theoretical and practical background
regarding the use of SROMPy for uncertainty propagation in
damage prognostics. Generally speaking, uncertainty propa-
gation is the problem of characterizing statistics of a quantity
of interest, Y ∈ Γ′ ⊂ Rd′

, that depends on random parame-
ters, X ∈ Γ ⊂ Rd, through a deterministic modelM:

Y =M(X). (1)

Here, d and Γ are the dimension and range of the random
input vector, respectively, and d′ and Γ′ are the dimension
and range of the random output vector, respectively. In this

1Publicly available at https://github.com/nasa/SROMPy (Warner, 2018b)
2See https://github.com/nasa/SROMPy/examples/phm18

work, X represents variables that describe crack growth rate
and current damage state,M is a high-fidelity crack growth
simulation, and Y is the end of life of the specimen being
analyzed. The SROM theory and SROMPy capabilities are
described in the context of the general stochastic problem in
Eq. (1) before being applied specifically to probabilistic prog-
nostics.

2.1. SROM Theory

SROMs can be viewed as a “smart” Monte Carlo method for
stochastic problems. The approach efficiently discretizes the
stochastic space and significantly reduces the computational
complexity associated with propagating uncertainty relative
to MCS, while retaining the benefits of a non-intrusive
method. The approach is particularly beneficial for problems
that depend on time-consuming computational models, e.g.,
the high-fidelity crack growth simulation used in this study.

To solve Eq. (1), the model inputs X are first approxi-
mated by a SROM X̃, a simple random vector taking val-
ues x̃(1), ..., x̃(m) with probabilities p(1), ..., p(m). Then, the
outputs Y are estimated using local piecewise-constant or
piecewise-linear approximations of the modelM. These two
steps are elaborated on in the following sections. As many
details were omitted for the sake of brevity, consult the rele-
vant references (Grigoriu, 2009; Warner et al., 2013; Emery
et al., 2015) for further explanation.

2.1.1. Constructing a SROM for Model Inputs

When using the SROM approach, it is assumed that the statis-
tics of the model inputs X are known a priori. Let the follow-
ing expressions represent the marginal cumulative distribu-
tion functions (CDFs), moments of order q, and correlation
matrix of X

Fi(xi) = P (Xi ≤ xi) (2)
µi(q) = E[Xq

i] (3)

r = E[XXT], (4)

where E[·] is the expectation operator.

The SROM approximation, X̃, is a discrete random vector
defined by

X̃ ≡ {(x̃(k), p(k)), k = 1, ...,m}, (5)

where x̃(k) denote samples of X, and p(k) = P (X = x̃(k))
(Grigoriu, 2009). Note that p(k) ≥ 0 ∀k, and

∑m
k=1 p

(k) = 1

so that X̃ has a valid probabilistic description. It then fol-
lows that the statistics of X̃ corresponding to those of X in

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Equations (2) - (4) are given by

F̃i(xi) =

m∑
k=1

p(k)1
(
x̃

(k)
i ≤ xi

)
(6)

µ̃i(q) =

m∑
k=1

p(k)(x̃
(k)
i)q (7)

r̃(i, j) =

m∑
k=1

p(k)x̃
(k)
i x̃

(k)
j , (8)

where 1(condition) is the indicator function, evaluating to 1
if the condition is true and 0 otherwise. In this context, the
number of sample-probability pairs that define the SROM,m,
is referred to as the SROM size.

The defining SROM samples and probabilities are chosen
such that X̃ is an optimal representation of X in a statisti-
cal sense. This is done through the solution of the following
optimization problem:

X̃ ≡ argmin
{x̃},p

(
3∑

i=1

αiei({x̃},p)

)
(9)

s.t.
m∑

k=1

p(k) = 1 and p(k) ≥ 0, k = 1, ...,m,

where e1, e2, and e3 quantify the error between the SROM
and target CDFs, moments, and correlation matrix, respec-
tively. The weighting factors, αi, are used to ensure that each
error component have similar order of magnitude or to em-
phasize the SROM’s ability to represent a particular statistic
of X. While the particular form of the error terms is problem
dependent, one common example is

e1({x̃},p) =
1

2

d∑
i=1

∫
R

(
F̃i(x)− Fi(x)

)2

dx (10)

e2({x̃},p) =
1

2

d∑
i=1

q̄∑
q=1

(µ̃i(q)− µi(q))
2 (11)

e3({x̃},p) =
1

2

d∑
i,j=1

(r̃ij − rij)2
, (12)

where q̄ is the largest moment of interest. Note that Eq. (12)
allows the SROM approach to naturally handle correlated in-
put variables.

An additional strength of the SROM approach is that it can
still be applied if an explicit probability law for X is unavail-
able and there is only access to a collection ofN independent,
equally likely samples, {x̂(k)}Nk=1, of the vector. In this case,
the following empirical estimators for the statistics of X can

be used in the error terms in Equations (10)-(12):

F̂i(xi) =
1

N

N∑
k=1

1
(
x̂

(k)
i ≤ xi

)
(13)

µ̂i(q) =
1

N

N∑
k=1

(x̂
(k)
i)q (14)

r̂(i, j) =
1

N

N∑
k=1

x̂
(k)
i x̂

(k)
j (15)

2.1.2. Propagating Uncertainty to Outputs via SROMs

After a SROM is generated to represent the input parame-
ters according to the previous section, it is then used to form
a SROM-based surrogate model for uncertainty propagation.
The surrogate is either a piecewise constant or piecewise lin-
ear response surface that maps samples of X directly to Y
that can be used in place of the original model,M, for MCS.
The first step for either case is to evaluate Eq. (1) for each
sample defining the input SROM, X̃, i.e.,

ỹ(k) =M(x̃(k)), for k = 1, ...,m, (16)

to produce the collection of SROM output samples,
{ỹ(k)}mk=1.

For the simpler piecewise constant approximation, the surro-
gate model is then given by

ỸC(X) =

m∑
k=1

1 (X ∈ Γk) ỹ(k), (17)

where {Γk, k = 1, ...,m} is a partition of the range Γ such
that P (X ∈ Γk) = p(k). Specifically, {Γk} is a Voronoi
tessellation of Γ with centers at the samples x̃(k). In prac-
tice, however, the partition does not have to be constructed
explicitly and Eq. (17) can be implemented in a straightfor-
ward manner. Here, a given sample of X is allocated to a
particular cell Γk if it is closest to the input sample, x̃(k). The
surrogate model, ỸC , then simply assumes the value of the
corresponding SROM output sample, ỹ(k).

Equation (17) represents a closed-form expression that can be
rapidly evaluated using MCS to produce a collection of output
samples, {ŷ(k)}Nk=1, forming an estimator for the true model
output. Alternatively, ỸC(X) can be used to directly esti-
mate the statistics of Y using SROM approximations analo-
gous to Equations (6)-(8). For instance, the distributions and
moments of the output can be approximated as

P (Y ≤ y) ≈ P (ỸC ≤ y) =

m∑
k=1

p(k)1
(
ỹ(k) ≤ y

)
(18)

E[Y q] ≈ E[Ỹ q
C] =

m∑
k=1

p(k)(ỹ(k))q. (19)

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

A more effective piecewise linear surrogate model, ỸL, can
be constructed by considering a first order Taylor series ex-
pansion over each cell in {Γk} as follows

ỸL(X) =

m∑
k=1

1 (X ∈ Γk)
[
ỹ(k) +∇ỹ(k) · (X− x̃(k))

]
,

(20)
where ∇ỹ(k) denotes the gradient of the output with respect
to the components of X evaluated at sample k. Equation (20)
improves upon the accuracy of the simple piecewise constant
approximation in Eq. (17), but with the added expense for
computing gradients numerically using the finite difference
method, requiring m(d + 1) model evaluations versus m via
Eq. (16) alone. Note that Eq. (20) can be generalized to
higher order approximations by including addition terms of
the Taylor expansion (Field et al., 2015), but only piecewise
constant and linear models are considered here.

2.1.3. SROM Method Summary

Given a probabilistic description of random input parameters
to a computational model, the procedure for propagating un-
certainty through the model with the SROM approach is sum-
marized as follows:

1. Construct input SROM
• Solve Eq. (9)

2. Execute computational model for each SROM sample
• Evaluate Eq. (16)

3. Generate SROM output approximation
• Piecewise constant - use Eq. (17).
• Piecewise linear - use Eq. (20).

– Calculate gradients using finite difference.

Once the closed-form SROM output approximation has been
formed in step 3, it can be efficiently sampled using MCS
to estimate the output statistics (e.g., distributions and mo-
ments). Alternatively, Eqs. (18) and (19) can be used directly
for the case of the piecewise constant approximation.

Regarding the efficiency of the SROM approach, let tỸC
and

tỸL
denote the total computation time required to generate

the piecewise constant and piecewise linear SROM approxi-
mations, respectively. It follows that

tỸC
≈ tX̃ +mtM (21)

tỸL
≈ tX̃ +m(d+ 1)tM, (22)

where tX̃ is the time required to form X̃ in step (1) and tM
is the time for a single evaluation of the modelM. Here, the
added computational expense for ỸL is due to the additional
model evaluations required to estimate gradients.

The primary advantage of the SROM approach is that the so-
lution times in Equations (21) and (22) can be substantially

lower than traditional MCS by using far fewer model eval-
uations. To this end, let N represent the number of sam-
ples required for convergence with MCS, such that the to-
tal computational time is approximately NtM. Assuming
that tX̃ << tM, representing the common case where M
is a computationally intensive high-fidelity simulation3, then
the computational speedup, S, for the piecewise constant and
piecewise linear SROM approximation relative to MCS can
be approximated as

SỸC
≈ N

m
(23)

SỸL
≈ N

m(d+ 1)
, (24)

respectively. Since in many typical cases m << N , the
speedup values can be orders of magnitude in size.

2.2. SROMPy Overview

The SROMPy Python module (Warner, 2018b) is the first
publicly-available software package that implements the
SROM approach to uncertainty propagation. This section
provides a brief overview of the software’s fundamental ca-
pabilities4, including a simple example of approximating a
normal random variable with a SROM for illustration. A
basic understanding of the Python programming language
is assumed. The interested reader can consult the techni-
cal report (Warner, 2018a) that accompanied the release of
the software or the user documentation that comes with the
source code (Warner, 2018b) for more information.

2.2.1. Target Random Quantities

In order to solve an uncertainty propagation problem (Eq.
(1)), a user must first choose a probabilistic description for the
model inputs X. SROMPy provides built-in options for repre-
senting random quantities for both the case when X follows
known analytical probability distributions, and when only in-
dependent samples of it are available.

Currently, scalar random variables following beta, gamma,
and normal probability distributions are directly supported
in the software. Random vectors whose components follow
standard distributions and have known correlations are sup-
ported in SROMPy through the implementation of translation
random vectors, a method for modeling non-Gaussian ran-
dom vectors (Grigoriu, 1995; Arwade, 2005). When only a
collection of samples, {x̂(k)}Nk=1, is available to describe X,
SROMPy provides an implementation of a random vector with
sample-based statistics (Eq.(13) - (15)). While only a small
subset of all possible probability distributions are currently
available in SROMPy, it is straightforward to extend the pack-
3The time required to solve Eq. (16) to generate X̃ is typically on the order
of seconds or minutes.

4Details provided in this paper correspond to version 1.0 of SROMPy. Mod-
ifications may occur with future versions.

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

age to model new random variables with SROMs (Warner,
2018a).

2.2.2. SROM Functionality

The goal of SROMPy is to allow users to easily model random
quantities, X, using SROMs, X̃, and use them to efficiently
propagate uncertainty through computational models, as de-
scribed in Sections 2.1.1 and 2.1.2. These capabilities are
provided through the classes5 SROM and SROMSurrogate,
respectively.

The SROM class is the fundamental component of the
SROMPy package whose primary role is to select optimal
SROM samples and probabilities through the solution of
Eq. (9)6. The class also implements Equations (6) - (8) to
calculate SROM statistics and provides access to the optimal
samples so that a user can input them to their computational
model as in Eq. (16).

Once a user has generated output samples via Eq. (16), the
SROMSurrogate class is used to construct the SROM ap-
proximation to the model output. Specifically, this class pro-
vides an implementation of the piecewise constant and piece-
wise linear approximations in Equations (17) and (20), re-
spectively, that can be sampled to estimate output statistics.
There are also methods to evaluate the statistics directly for
the piecewise constant case, e.g., Equations (18) and (19).

2.2.3. Postprocessing

SROMPy provides a few simple utilities for comparing statis-
tics of a SROM versus a target quantity it is approximating
with the Postprocessor class. For example, the class
can be used to calculate and output errors in the SROM mo-
ment estimates, or to automatically produce CDF comparison
plots.

2.2.4. Example - SROM for a Normal Random Variable

Below is a simple example that illustrates a small subset of
SROMPy functionality from each of the three previous sec-
tions. In particular, a SROM X̃ with size m = 10 is gener-
ated to model a normal random variable,X ∼ N(µ, σ) ∈ R1,
with mean, µ = 3.0, and standard deviation σ = 1.5. The
CDF of the optimized SROM is then compared to that of the
target.

The Python source code that implements this example using
SROMPy is shown below.

from target import NormalRandomVariable
from srom import SROM
from postprocess import Postprocessor

#Initialize Normal random variable

5Python data structures
6SROMPy uses a BFGS optimization algorithm implemented in the scipy
Python module (Jones, Oliphant, Peterson, et al., 2001).

2 0 2 4 6 8
x

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

SROM

Target

Figure 1. Comparison of a SROM and target (Normal) ran-
dom variable CDF for m = 10.

normal = NormalRandomVariable(mean=3, std_dev=1.5)

#Initialize SROM and optimize to match the target:
srom = SROM(size=10, dim=1)
srom.optimize(normal)

#Compare SROM and Normal CDFs (produces Figure 1):
pp = Postprocessor(srom, normal)
pp.compare_CDFs()

Executing this code produces the CDF comparison plot
shown in Figure (1), showing the piecewise constant SROM
approximation versus the target normal CDF.

The above source code demonstrates the relative ease of de-
ploying SROM capabilities with SROMPy, where an arbitrary
random variable X is modeled with a SROM X̃ using just a
few lines of code. The first block of code imports the rel-
evant SROMPy classes needed for the example. Next, the
NormalRandomVariable class is used to represent the
target random variable in this example, X ∼ N(3.0, 1.5).
The SROM class is then used to approximate the normal ran-
dom variable with a SROM. Here, a call to the optimize
method executes the solution of the optimization problem in
Eq. (9) to determine the optimal SROM samples and proba-
bilities. Finally, the Postprocessor class is used to gen-
erate the CDF comparison plot seen in Figure 1.

3. EXAMPLE - PROBABILISTIC PROGNOSTICS

3.1. Experimental Setup

The SROM approach is demonstrated here in the context of
probabilistic prognosis for non-planar fatigue crack growth
using the SROMPy software package. The experimental setup
and crack growth model were borrowed from previous work
done in (Leser et al., 2016, 2017), where the focus in the cur-
rent study is on accelerating the uncertainty propagation pro-
cess using SROMs. The experiment used an edge-notched,
AA2024-T3 specimen with two holes drilled in it, as shown
in Figure 2. The crack was grown from the notch under a

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

2
0
3
.7

 m
m

51.31 mm

C L

y

x

2 x Ø 6.38 mm

Notch,

2.07 mm

Max Applied

Stress,

41.02 MPa

Fixed

displacement

y

x

12.95 mm

Figure 2. Diagram of the two-hole specimen.

constant amplitude of 41.0 MPa, with a load ratio R = 0.1,
at 10 Hz.

A high-fidelity, finite element (FE)-based fracture modeling
approach was developed to predict fatigue crack growth in
the edge-notched specimen. The fracture mechanics code
FRANC3D (Fracture Analysis Consultants Inc., 2011) was
used to propagate geometrically-explicit cracks in a FE mesh
via re-meshing while the parallel FE code ScIFEN (Warner,
Bomarito, Heber, & Hochhalter, 2016) was used to evaluate
the crack driving forces for a given crack configuration. The
crack growth rate, da

dN , was calculated at each step according
to

da

dN
= C(∆K)n, (25)

where ∆K is the stress intensity factor (SIF), a is the crack
size, N is the cycle number, and C and n are empirical pa-
rameters (Paris & Erdogan, 1963). The high-fidelity fracture
simulation grows a crack according to Eq. (25) by iterating
between remeshing and FE calculations until the stress inten-
sity factor reaches a critical value, representing failure of the
specimen. More details on the model can be found in (Leser
et al., 2017).

This example will be used to demonstrate the SROM ap-
proach to propagate uncertainty through the high-fidelity
crack growth model and generate a probabilistic prediction
of failure in the edge-notched specimen. It is assumed that
the uncertainty arises from the initial damage state (the y-
coordinate of the notch, y0) and the simplified crack growth
model used (the empirical parameters, C and n). In terms
of the general stochastic model in Eq. (1), the random input

0.250 0.260 0.270
y0

0
200
400
600
800

1000
1200
1400

Fr
eq

ue
nc

y

(a)

9.0 8.6 8.2 7.8 7.4
logC

0
200
400
600
800

1000
1200

Fr
eq

ue
nc

y

(b)

1.0 2.0 3.0
n

0
200
400
600
800

1000
1200

Fr
eq

ue
nc

y

(c)

Figure 3. Histograms of the input parameter samples: (a) y0,
(b) logC, (c) n

vector is X = [y0, C, n] ∈ R3 and the quantity of interest is
the specimen’s end of life (EOL), or the cycle at which failure
occurs, i.e., Y = [EOL] ∈ R1. The model, M, represents
the iteration between fracture mechanics and FE calculations
until the failure criteria is met.

This example demonstrates a common practical case where
an explicit probability distribution to describe X was not
available and was instead estimated using a Bayesian cali-
bration and Markov chain Monte Carlo (MCMC) approach
(Leser et al., 2017), resulting in a set of 5,000 independent
samples {x̂(k)}Nk=1. Histograms for each input parameter’s
samples can be seen in Figure 3. A MCS prediction was made
by running the crack growth simulation for each of the input
parameter samples. The resulting collection of EOL output
samples, {ŷ(k)}Nk=1, and its distribution were treated as the
reference solution. Several SROM approximations of varying
fidelity were generated and compared to the MCS solution to
assess accuracy and efficiency. These comparisons are first
shown in the following section, followed by a demonstration
of the SROMPy package for one particular case, detailing the
necessary source code to solve the problem.

3.2. SROM-Accelerated EOL Predictions

Given the uncertainty in input parameters X = [y0, C, n]
(Figure 3), the CDF of Y = [EOL] was estimated using
both the piecewise constant SROM approximation ỸC from
Eq. (17) and the piecewise linear SROM approximation ỸC
from Eq. (20). Three different SROM sizes were tested,
m = 5, 10, and 20, to observe the performance of the two dif-
ferent approximations for increasing model size. The SROM-
accelerated predictions were compared to the MCS reference

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

solution CDF to assess the accuracy and efficiency of each
case.

To facilitate probabilistic prognosis with the SROM ap-
proach, a SROM must first be generated to approximate the
random input parameters by solving the optimization prob-
lem in Eq. (9). The optimization was performed for the
three cases (m = 5, 10, 20). Since the random model in-
puts are described by the collection of samples in this exam-
ple, {x̂(k)}Nk=1, the sample-based statistics in Equations (13)-
(15) were used in the objective function error terms (Equa-
tions (10)-(12)). Equal weight was assigned to each compo-
nent of the objective function in Eq. (9) for simplicity (e.g.,
α1 = α2 = α3 = 1.0). In each case, the optimization prob-
lem took under 10 seconds to solve using a 2.8 GHz Intel
Core i7 processor. The resulting optimal SROMs obtained
for each model size are compared to the target random inputs
in Figure 4, showing the CDFs for (a) y0, (b) logC, and (c) n.
It can be seen that the accuracy of the SROM CDF estimate
improves with increasing model size. In particular, despite
the simple piecewise constant approximation, the three input
parameter distributions were well represented by the SROM
with size m = 20.

With SROMs constructed for the inputs with each model size,
the output to the crack growth simulation, Y = [EOL], was
approximated using a SROM surrogate model as described
in Section 2.1.2. The simulation was executed for each sam-
ple defining the input SROMs according to Eq. (16) to pro-
duce a collection of corresponding EOL samples, {ỹ(k)}mk=1.
Note that this step requires only 5, 10, and 20 crack growth
model evaluations for each case (as compared to evaluating
the model 5,000 times for every sample to produce the MCS
solution). These EOL samples were then used to construct
the piecewise constant SROM surrogate model, ỸC(X) (Eq.
(17)), to approximate the EOL distribution. A comparison of
the SROM CDF approximations using ỸC(X) and the refer-
ence MCS solution is shown in Figure 5(a) form = 5, 10, and
20. It can be seen that with just a small fraction of the crack
growth simulations relative to MCS, the SROM approach can
provide a reasonably accurate estimate of the EOL distribu-
tion that improves with increasing SROM model size.

The piecewise linear SROM surrogate, ỸL(X) (Eq. (20)),
was then constructed to illustrate the improvement in accu-
racy it provides. Here, additional crack growth simulations
were performed to estimate the required gradients,∇ỹ(k), us-
ing the finite difference method, i.e.,

(∇ỹ(k))i =
∂y(X)

∂xi

∣∣∣
X=x̃(k)

≈ M(x̃(k) + 1i∆i)−M(x̃(k))

∆i
,

(26)
for the gradient with respect to the ith input. Here, ∆i repre-
sents a small perturbation to the ith input parameter.

With the gradients and EOL samples calculated, the surrogate

model, ỸL(X), was used to generate EOL samples from the
entire collection of the given input samples, {x̂(k)}5000

k=1 . A
comparison of the resulting SROM CDFs and the MCS ref-
erence solution are provided in Figure 5(b) for each model
size. It can be seen that the piecewise linear SROM approx-
imation provides a substantial increase in accuracy, with all
three cases providing nearly identical EOL predictions com-
pared to the MCS solution. Note that for the m = 5 case,
only 20 crack growth simulations were required in total com-
pared with 5, 000 used to generate the MCS CDF, but very
little discrepancy is observed between the two solutions.

Table 1 shows the approximate computational speedup rel-
ative to the MCS solution achieved by the different SROM
approximations. Recall that the values of SỸC

and SỸL
as-

sume that the time to construct the input SROM (< 10 sec-
onds) is negligible compared to the time to run a crack growth
simulation (∼ 3 hours), which is valid for this example. The
potential for orders of magnitude computational speedup is
observed by generating probabilistic EOL predictions with
only a fraction of the simulations used by MCS. In particular,
using the piecewise linear model ỸL with m = 5 provides a
250X computational speedup while producing a highly accu-
rate approximation to the MCS estimate, as shown in Figure
5(b).

There are two important points to make regarding the compu-
tational speedup results above. First, no rigorous convergence
study was performed on the MCS predictions in this study, so
it is possible that a satisfactory reference solution could re-
quire fewer or more model evaluations. Therefore, the values
reported in Table 1 should be interpreted as potential compu-
tational speedup with the SROM approach, with further study
needed to provide a more explicit assessment for this applica-
tion. Second, while the results reported here were performed
in serial (on one computer processor), multiple processors can
be easily used for both MCS and the SROM approach since
all model evaluations are independent of one another. The use
of parallel computing in this manner would then decrease the
computation times by a factor equal to the number of avail-
able processors.

3.3. SROMPy Demo

The purpose of this section is to demonstrate the relative ease
of applying the SROM approach to probabilistic prognostics
using SROMPy. The three steps for propagating uncertainty
outlined in Section 2.1.3 will be followed to generate a SROM
EOL approximation, showing the Python source code to carry
out each step with SROMPy7. Here, it is assumed that two
data files are provided: (1) input samples MC.txt, con-
taining the 5,000 independent samples of the three input pa-
rameters, [y0, C, n], and (2) eol samples MC.txt, con-

7All source code and data for this example can be found here:
https://github.com/nasa/SROMPy/examples/phm18.

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

0.245 0.255 0.265 0.275
y0

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Target
m = 5
m = 10
m = 20

(a)

-8.8 -8.4 -8.0 -7.6
logC

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Target
m = 5
m = 10
m = 20

(b)

1.5 2.0 2.5 3.0
n

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Target
m = 5
m = 10
m = 20

(c)

Figure 4. A comparison of the SROM and target CDFs for the input variables: (a) y0, (b) logC, (c) n for different SROM sizes.

1.0 × 106 1.4 × 106 1.8 × 106

EOL (Cycles)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Target
m = 5
m = 10
m = 20

(a)

1.0 × 106 1.4 × 106 1.8 × 106

EOL (Cycles)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Target
m = 5
m = 10
m = 20

(b)

Figure 5. Predictions of EOL CDFs using the (a) piecewise constant and (b) piecewise linear SROM surrogate model for
different model sizes.

Table 1. Approximate computational speedups, SỸC
(Eq. (23)) and SỸL

(Eq. (24)), provided by the piecewise constant and
piecewise linear SROM EOL approximations, respectively, for different model sizes.

m 5 10 20

SỸC
1000 500 250

SỸL
250 125 62.5

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

taining the 5,000 corresponding EOL samples calculated by
running the crack growth simulation for each input sample.
The latter will be used to generate the MCS reference so-
lution for comparison. Furthermore, the implementation of
the crack growth model is assumed to be encapsulated in a
Python object called model8. The example will be solved
for the specific case of using a piecewise constant SROM ap-
proximation (Eq. (17)) to the EOL of the tensile specimen
for a fixed SROM size, m = 20. A basic understanding of
Python syntax is assumed. The full source code can be seen
in the appendix of this paper.

3.3.1. Step 1: Construct input SROM

The first step in the probabilistic prognostics analysis is to
define the target random vector for the model inputs, X,
and then generate a SROM approximation, X̃, for it. The
SROMPy implementation begins by importing the necessary
Python modules for the analysis in its entirety, which will be
elaborated on throughout the section:

import numpy
from postprocess import Postprocessor
from srom import SROM, SROMSurrogate
from target import SampleRV

The random input vector, X, is then created from the data file
that contains the input samples, input samples MC.txt,
as follows:

#Define target random vector from samples
samplesfile = "input_samples_MC.txt"
MCsamples = numpy.genfromtxt(samplesfile)
target = SampleRV(MCsamples)

Here, the open-source Python module numpy (van der Walt,
Colbert, & Varoquaux, 2011) is used to load the sample data
into the array MCsamples. This array is then used to ini-
tialize target, representing X, using the SROMPy class
SampleRV.

With the target random input vector defined, SROMPy can be
used to easily solve the optimization problem in Eq. (9) to
form the SROM X̃:

#Define SROM and determine optimal parameters
srom_size = 20
input_srom = SROM(size=srom_size, dim=3)
input_srom.optimize(target)

The SROM, X̃, with a size m = 20 is represented by
input srom, which is optimized to match the target ran-
dom vector. It can be seen that the complexities of solving
Eq. (9) are encapsulated in the simple function, optimize,
8Since the crack growth model depends on a commercial code, it cannot
be included with the source code for this study. It is shown in the demo
here to illustrate a typical SROM workflow. However, the input and output
data from the model are provided online so that the uncertainty propagation
results can be reproduced.

provided by the SROM class. To verify the SROM approxi-
mation of the input variables, the CDFs of X̃ and X are then
compared with the following code:

#Compare the CDFs (produces Figure 3)
pp = Postprocessor(input_srom, target)
pp.compare_CDFs(variablenames=

[r’logC’, r’y_{0}’, r’n’])

The resulting comparison plots can be seen in Figure 6.

3.3.2. Step 2: Execute model for each SROM sample

With a SROM generated for the random model inputs,
the next step in the probabilistic prognostics analysis with
SROMPy is to execute the crack growth model for each
SROM sample (Eq. (16)). This is performed with Python
as follows:

#Run the model for each input SROM sample:
srom_eols = numpy.zeros(srom_size)
(srom_samples, srom_probs)=input_srom.get_params()
for i, sample in enumerate(srom_samples):

srom_eols[i] = model.evaluate(sample)

This code produces the collection of model output
(EOL) samples, {ỹ(k)}mk=1, represented by the variable
srom eols. Here, the function get params() returns
the defining SROM samples and probabilities (Eq. (5)) in the
variables srom samples and srom probs, respectively.
The evaluate function of model runs a crack growth
simulation for the given inputs in the sample variable and
returns the corresponding EOL.

3.3.3. Step 3: Generate SROM output approximation

Now SROMPy can be used to straightforwardly produce a
piecewise constant SROM approximation (Eq. (17)) to the
EOL. This is done by using the SROM constructed in Step
1 (input srom) and the output samples of EOL generated
in Step 2 (srom eols) as inputs to the SROMSurrogate
class:

#Generate SROM surrogate for the EOL
eol_srom = SROMSurrogate(input_srom, srom_eols)

Here, the variable eol srom now represents ỸC(X) in Eq.
(17) whose statistics can be used to approximate those of the
MCS reference solution.

To generate the reference solution, the EOL sample data in
the file eol samples MC.txt is loaded and used to ini-
tialize the SampleRV class:

#Make random variable with MC EOL solution
mc_eol_file = "eol_samples_MC.txt"
MC_eols = numpy.genfromtxt(mc_eol_file)
eol_mc = SampleRV(MC_eols)

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

0.245 0.250 0.255 0.260 0.265 0.270 0.275
y0

0.0

0.2

0.4

0.6

0.8

1.0

F(
y 0

)
SROM

Target

(a)

9.0 8.5 8.0 7.5
logC

0.0

0.2

0.4

0.6

0.8

1.0

F(
lo

gC
)

SROM

Target

(b)

1.5 2.0 2.5 3.0
n

0.0

0.2

0.4

0.6

0.8

1.0

F(
n

)

SROM

Target

(c)

Figure 6. A comparison of the SROM and target CDFs for the input variables using SROMPy: (a) y0, (b) logC, (c) n.

1. 2× 106 1. 6× 106 2. 0× 106

EOL
0.0

0.2

0.4

0.6

0.8

1.0

F(
E

O
L)

SROM

Target

Figure 7. Prediction of the EOL CDF using a piecewise con-
stant SROM surrogate using SROMPy.

The CDFs of the MCS solution, eol mc, and the SROM
approximation, eol srom, can then be compared using the
Postprocessor as follows:

#Compare final EOL solutions SROM vs MC:
(produces Figure 7)
pp = Postprocessor(eol_srom, eol_mc)
pp.compare_CDFs(variablenames=["EOL"])

This code produces the comparison plot in Figure 7.

This example demonstrates that SROMPy can be used to pro-
vide accurate uncertainty propagation for prognostics with
relatively few lines of code. Of the source code shown above,
nearly half was devoted to generating the reference MCS so-
lution and producing the comparison plots. The main respon-
sibility of the user is in Step 2, generating outputs of their
computational model for the SROM input samples produced
by SROMPy. Note that while there are many more capabili-
ties and advanced options in SROMPy for fine-tuning analyses
that were not covered here in this simple case, the source code
shown above can be easily generalized and extended to other
prognostics problems.

4. SUMMARY

This study presented a practical uncertainty propagation
method that enables efficient high-fidelity prognostics using
stochastic reduced order models (SROMs). The open-source

Python package, SROMPy, was also introduced in this work
as a user-friendly option for adopting the SROM approach.
The method was demonstrated on an example of probabilis-
tic, non-planar crack growth simulation in an aluminum ten-
sile specimen. The SROM approach produced end of life pre-
dictions that were highly accurate with respect to a Monte
Carlo simulation (MCS) solution, while showing the poten-
tial to provide orders of magnitude computational speedup.
Furthermore, the source code to generate a SROM solution
for the example using SROMPy was included and discussed,
illustrating the ease of applying the method for an arbitrary
high-fidelity model. The complete source code and input
data required to reproduce the results in this paper are avail-
able online to facilitate further evaluation and adoption of the
SROM method in the field of prognostics and health manage-
ment (PHM).

While demonstrated here in the context of prognostics for
non-planar crack growth, the SROM approach has potential
utility in a range of PHM applications as a general alterna-
tive to MCS for uncertainty propagation. By significantly re-
ducing the number of required model evaluations relative to
MCS, the SROM approach can allow expensive high-fidelity
simulations to be used for probabilistic prognostics instead
of less accurate (but faster) surrogate models. Alternatively,
SROMs can be potentially combined with a surrogate model
to enable real-time prognostics, an avenue of future research.
The availability of the approach in SROMPy and the source
code that accompanies this paper provides a basis for follow-
on investigations.

REFERENCES

Arwade, S. J. (2005). Translation vectors with non-
identically distributed components. Probabilistic En-
gineering Mechanics, 20, 158-167.

Babuska, I., Nobile, F., & Tempone, R. (2007). A stochastic
collocation method for elliptic partial differential equa-
tions with random input data. SIAM J. Numer. Anal.,
45(3), 1005-1034.

10

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Emery, J. M., Field, R. V., Foulk, J. W., Karlson, K. N., &
Grigoriu, M. D. (2015). Predicting laser weld relia-
bility with stochastic reduced-order models. Interna-
tional Journal for Numerical Methods in Engineering,
103, 914-936.

Field, R. V., Grigoriu, M. D., & Emergy, J. M. (2015).
On the efficacy of stochastic collocation, stochastic
Galerkin, and stochastic reduced order models for solv-
ing stochastic problems. Probabilistic Engineering
Mechanics, 41, 60-72.

Fracture Analysis Consultants Inc. (2011). FRANC3D Refer-
ence Manual, Version 6.

Ghanem, R. G., & Spanos, P. D. (2003). Stochastic finite
elements: A spectral approach, revised edition. New
York, NY: Dover Publications, Inc.

Grigoriu, M. (1995). Applied non-Gaussian processes: Ex-
amples, theory, simulation, linear random vibration,
and matlab solutions. Englewoods Cliffs, NJ: Prentice
Hall.

Grigoriu, M. (2009). Reduced order models for random
functions. Application to stochastic problems. Applied
Mathematical Modelling, 33, 161-175.

Grigoriu, M. (2011). A method for solving stochastic equa-
tions by reduced order models and local approxima-
tions. Journal of Computational Physics, 231, 6495-
6513.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy:
Open source scientific tools for Python.

Leser, P. E., Hochhalter, J. D., Warner, J. E., Newman,
J. A., Leser, W. P., Wawrzynek, P. A., & Yuan, F.
(2017). Probabilistic fatigue damage prognosis using
surrogate models trained via three-dimensional finite
element analysis. Structural Health Monitoring, 16(3),
291-308.

Leser, P. E., Newman, J. A., Warner, J. E., Hochhalter, J. D.,
Leser, W. P., & Yuan, F. (2016, October). Probabilis-
tic prognosis of non-planar fatigue crack growth. In
Annual conference of the prognostics and health man-
agement society. Denver, CO.

Nobile, F., Tempone, R., & Webster, C. G. (2008). A sparse
grid stochastic collocation method for partial differen-
tial equations with random input data. SIAM J. Numer.
Anal., 46(5), 2309-2345.

Paris, P., & Erdogan, F. (1963). A critical analysis of crack
propagation laws. Journal of Basic Engineering, 85(4),
528-534.

Sankararaman, S., Ling, Y., Shantz, C., & Mahadevan, S.
(2011). Uncertainty quantification in fatigue crack
growth prognosis. International Journal of Prognos-
tics and Health Management, 2(1), 1-15.

Sarkar, S., Warner, J. E., Aquino, W., & Grigoriu, M. (2014).
Stochastic reduced order models for uncertainty quan-
tification of intergranular corrosion rates. Corrosion
Science, 80, 257-268.

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011).

The NumPy array: A structure for efficient nu-
merical computation. Computing in Science
& Engineering, 13(2), 22-30. Retrieved from
http://aip.scitation.org/doi/abs/10.1109/MCSE.2011.37
doi: 10.1109/MCSE.2011.37

Warner, J. E. (2018a). Stochastic reduced order models with
python (SROMPy). NASA/TM-2018-219824.

Warner, J. E. (2018b). Stochastic reduced or-
der models with python (SROMPy), Version 1.0.
https://github.com/nasa/srompy.

Warner, J. E., Aquino, W., & Grigoriu, M. (2015). Stochas-
tic reduced order models for inverse problems under
uncertainty. Computer Methods in Applied Mechanics
and Engineering, 285, 488-514.

Warner, J. E., Bomarito, G. B., Heber, G., & Hochhalter, J. D.
(2016). Scalable implementation of finite elements by
NASA - implicit (ScIFEi). NASA/TM-2016-219180.

Warner, J. E., Bomarito, G. F., Hochhalter, J. D., Leser,
W. P., Leser, P. E., & Newman, J. A. (2017). A
computationally-efficiency probabilistic approach to
model-based damage diagonsis. International Journal
of Prognostics and Health Management, 8(2), 1-17.

Warner, J. E., Grigoriu, M., & Aquino, W. (2013). Stochastic
reduced order models for random vectors. Application
to random eigenvalue problems. Probabilistic Engi-
neering Mechanics, 31, 1-11.

APPENDIX - SROMPY DEMO SOURCE CODE

import numpy
from postprocess import Postprocessor
from srom import SROM, SROMSurrogate
from target import SampleRV

#Define target random vector from samples
samplesfile = "input_samples_MC.txt"
MCsamples = numpy.genfromtxt(samplesfile)
target = SampleRV(MCsamples)
#Define SROM and determine optimal parameters
srom_size = 20
input_srom = SROM(size=srom_size, dim=3)
input_srom.optimize(target)

#Compare the input CDFs (produces Figure 3)
pp = Postprocessor(input_srom, target)
pp.compare_CDFs(variablenames=

[r’logC’, r’y_{0}’, r’n’])
#Run the model for each input SROM sample:
srom_eols = numpy.zeros(srom_size)
(srom_samples, srom_probs)=input_srom.get_params()
for i, sample in enumerate(srom_samples):

srom_eols[i] = model.evaluate(sample)

#Generate SROM surrogate for the EOL
eol_srom = SROMSurrogate(input_srom, srom_eols)

#Make random variable with MC EOL solution
mc_eol_file = "eol_samples_MC.txt"
MC_eols = numpy.genfromtxt(mc_eol_file)
eol_mc = SampleRV(MC_eols)
#Compare final EOL solutions SROM vs MC:
(produces Figure 7)
pp = Postprocessor(eol_srom, eol_mc)
pp.compare_CDFs(variablenames=["EOL"])

11

