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ABSTRACT 

In this paper we propose a novel semi-supervised fault 
detection methodology for a vehicle suspension system with 
one-class multi-sensor data. Supervised data-driven methods 
have been applied in fault detection successfully in recent 
studies. However, it is difficult and expensive to collect data 
under faulty condition for supervised learning while data 
collection under normal condition is much easier and 
cheaper. Fault detection under such situation is a one-class 
classification problem that requires classification models to 
identify the positive class when the negative class is either 
absent or poorly sampled. The efficiency of classifiers is 
constrained by defining the normal class boundary only with 
the knowledge of positive class as well as the problem of 
biased or incorrect feature extracted from the positive class. 
In proposed method, A deep semi-supervised learning 
method integrated with physical-based domain knowledge is 
applied for feature extraction. The suspension system for a 
full car model is modeled using a simulation tool, SIMPACK 
to generate the synthetic multi-sensor data. Our results show 
the effectiveness of the proposed in fault detection and 
diagnostics with one-class data. 

1. INTRODUCTION 

Condition monitoring with online fault detection and 
identification(FDI) has become a domain of interest in the 
few last decades in many applications, such as aerospace, 
automotive, nuclear and chemical engineering. Accurate fault 
detection in early stage assists systems to retain higher safety 
and to provide time and useful information for maintenance 
crew to schedule the maintenance, avoiding unplanned down-
time and unscheduled maintenance. 

In general, two major categories of these approaches have 
been developed for online fault detection and identification: 

model-based and data-driven.  Each category of methods has 
its own advantages and limitations and consequently they are 
often combined in practical applications called hybrid model. 
Model-based techniques are applicable when accurate 
mathematical process or dynamic model is available. In this 
work, we narrow ourselves down to the data-driven method 
because of the non-linearity and parameters unknown for 
system. 

Intensive data-driven approaches have been employed 
recently, for example, PCA-T2 (Qin,2003), Self-Organizing 
Map (SOM) (Lapia, Brisset, Ardakani, Siegel and Lee, 2012) 
and Neural Network (Sobie, Freitas, Nicolai,2018). Detailed 
reviews of data-driven faulty assessment in rolling bearing 
can be found in Cerrada, Sánchez, Li, Pacheco d, Cabrera, 
and Oliveira et al. (2018). The performance of these machine 
learning approaches depends heavily on the representation of 
the data that are given. Statistical learning and traditional 
machine learning methods are applied to predict and classify 
the faults based on the features extracted from the raw data.  
Types of features in industrial application involve time 
domain, frequency domain and time-frequency domain from 
raw sensor measurements utilizing proper signal processing 
techniques. Kimotho and Sextro (2014) summaries some 
possible time domain and frequency features for vibration 
signals. However, the natural of nonstationary and 
nonlinearity of a system requires techniques to capture the 
local time-frequency properties of the vibration. Variety of 
approaches are used to extract time-frequency domain 
knowledge. Wavelet transform(WT) is widely used in feature 
extraction. Loutas and Kostopoulos (2012) reviews the 
utilization of wavelet transform in condition-based 
maintenance. Hilbert-Huang Transform (HHT), Empirical 
Mode Decomposition(EMD), short time Fourier 
transform(STFT) and Wavelet Packet Transform (WPT) are 
also common tools for time-frequency features (Loutas et al. 
2012). In practical fault detection problem, extracted 
representation of the data is predesigned with domain 
knowledge and manual decision. As such bias and 
uncertainties are usually introduced by hand-craft feature 
extraction, possibly leading to inaccurate classification 
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results. Moreover, unlike working on certain known 
mechanical systems with sufficient information, hand-crafted 
feature extraction techniques do not surely recognize 
discriminative features when working on a new or different 
complex system. 

To resolve the feature selection bias problem, deep neural 
network-based classification and feature extraction are in the 
interest of research to improve the classifier performance. 
Compared to traditional machine learning methods, deep 
neural network (DNN) attempts to explore the high-level 
abstractions in data using multiple processing layers with 
complex structures, resulting in better representations of the 
inputs by learning from input examples (Lu, Wang, Qin and 
Ma, 2017). Nowadays, deep neural networks are successfully 
applied in fault detection area. For example, continuous 
wavelet transform (CWT) and convolutional neural network 
(CNN) are collaborated to detect earth fault in resonant 
grounding distribution systems (Guo, Zeng, Chen and Yang, 
2018). He and He (2017) developed a deep learning 
LAMSTAR network to diagnostic the bearing faults. 
Verstraete, Ferrada, Droguett, Meruane and Modarres (2017) 
used CNN for rolling element bearing fault diagnosis. Zhang, 
Peng, Wu, Yao and Guan (2017) presented a deep neural 
networks based fault diagnosis for raw bearing data. Lu et al. 
(2017) proposed a rotary machinery components fault 
diagnosis based on features extracted by stacked denoising 
autoencoder. 

The success of DNN-based feature extraction relies on 
abundance and sufficiency of labeled historical data. In 
practice, labeling by expertise is highly time consuming and 
expensive. In addition, faults of the system are not always 
analyzed exhaustively. Scarcity of samples from faulty 
conditions will unbalance the data. For example, mission-
critical assets such as airplane engine and nuclear power 
plane are highly reliable and have few data from failure 
scenarios. Thus, the labeled historical data set is highly 
unbalanced as it contains data only from nominal condition, 
namely, a one-class classification or abnormal detection 
problem. In the classical supervised multi-class 
classification, features are learned with the objective of 
maximizing inter-class distances between classes and 
minimizing intra-class variances within classes solely utilize 
labeled data. However, in the absence of multiple classes 
such a discriminative approach is not possible (Perera and 
Patel 2018). In the lack of sufficient fault status information, 
the traditional supervised deep learning techniques are not 
applicable in this situation.  

Semi-Supervised Learning (SSL) has attracted attention 
because of its utilization not only from the labeled training 
data, but also from the structural information in unlabeled 
data(Zhu,2008). Semi-Supervised feature extractor aims to 
extract information from both labeled data and unlabeled 
dataset. Thus, classifier using these extracted features will be 
more separable. Manifold regularization (MR), a 

conventional technique in SSL, is first introduced to fault 
detection area by Yuan and Liu (2013). The improved 
predictive performance implies the effective of techniques. 
Jiang, Xuan and Shi (2013) proposed a features extraction 
method based on semi-supervised kernel marginal fisher 
analysis. The low-dimension features then fed into simple 
classifier to isolate the bearing fault.  

In this paper, we proposed a fault detection method with deep 
semi-supervised feature extraction to improve the accuracy 
of fault detection and apply the methods in rail suspension 
system for demonstration and validation. The main 
contribution of this work is that we propose a semi-
supervised deep learning-based feature extraction method to 
extract distinct high-level features. The extracted features are 
then used for detection purpose. Compared with supervised 
deep learning, this work uses DNN only as feature extractor 
not a classifier since it is impossible to use multi-class 
classifier in a one-class classification problem directly. 
Different from unsupervised deep learning, i.e. autoencoder, 
proposed method utilizes the label information from labeled 
data which increases the accuracy for the detection. Thus, the 
extracted features are more distinct by using proposed semi-
supervised feature extraction.  

The remainder part of this paper organized as follow. In 
section 2, problem is introduced. Proposed methodology is 
outlined in section 3. In section 4, a simulation-based rail 
suspension system case study is performed. The result of the 
implementation is stated. The main conclusions of this study 
are described in section 6. 

2. PROBLEM  STATEMENT 

In this paper, a deep semi-supervised feature extraction 
method combined with domain knowledge is proposed to 
improve the accuracy of fault detection. We demonstrate the 
efficacy of the method on a rail vehicle suspension system 
considered as time-varying dynamic system. Details of the 
physical model are described in section 4.1. Experiments are 
generated as training dataset and test dataset. Each 
experiment has 18 acceleration sensor measurements with 
corresponding label. Let 𝑥"

# denote the 𝑖%& experiment value 
of sensor 𝑗, in which	𝑥"

# ∈ 	ℝ+ ,𝑖 = 1,… , 𝑛 and 𝑗 = 1,… ,𝑚. 
n is the number of experiments. m is the number of sensors.  
Furthermore, let x" = [𝑥"4 𝑥"5 … 𝑥"+] . The sensor 
measurement matrix is  𝐱 = {x4 x5 … x9} , 	x; ∈ 	ℝ< . 
Corresponding label set 𝐲 =	 {y4, y5, … y9}  are the label of 
the experiments. The complete dataset is shown as  𝐷 =
{(x", y")}"B4,..,<	. 

In our problem setting, 200 experiments are conducted under 
nominal condition and labeled as “healthy”, while 100 
experiments are operated under faulty conditions with 
different failure modes are unlabeled.  
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The objective of this paper is to collaboratively use semi-
supervised deep learning for feature extraction and one-class 
classification for fault detection. The one-class classification 
problem is to recognize instances of a concept by only using 
examples of the same concept (Perera et.al ,2018). In such 
scenario, instances of only a single object class, i.e. 
experiments with healthy condition, are labeled. During 
testing, the classifier may encounter instances from other 
classes, i.e. experiments with different failure mode. The goal 
of the classifier is to distinguish objects of the known class 
from objects of other classes. The proposed fault detection 
method with semi-supervised feature extraction aims to learn 
the non-linear mapping from original data to feature 
representation and further achieve more accuracy prediction 
given unlabeled data.  

3. PROPOSED  METHODOLOGY  

In this section, a fault detection method with semi-supervised 
learning feature extraction is presented in detail. 

As stated in section 1, deep neural network is a promising 
way to extract the representative features.  However, for the 
scenario discussed in this paper, the labels of the labeled 
datasets are one-class that consisting of nominal conditions. 
Therefore, it is impossible to adopt a supervised CNN 
architecture used for classification directly. Unsupervised 
learning technique such as autoencoder and variants of 
autoencoder is commonly used in feature extraction for one-
class classification. It could not take use of the known labels 
during the learning process. To maximize the utilization of 
the information from both labeled and unlabeled data, a 
feature extraction method in semi-supervised fashion is 
considered. 

The Semi-supervised feature extraction method aims to learn 
an accurate latent space representation. This representation is 
not only an indicator for nominal/healthy scenario, but also a 
sufficient description for various fault scenarios.  

A fault detection method with semi-supervised learning 
feature extraction is proposed as follows.  The layout 
procedure is provided in Figure. 1. 

1) Data preparation: Generate the time-frequency 
domain features. The raw acceleration 
measurements are pre-processed to extract time-
frequency features in our specific case. Given a data 
set which contains labeled data and unlabeled data, 
pre-processing is performed using short time 
Fourier transform (STFT). The output of the 
preprocessing is the spectrogram of frequency 
response. 

2) High-level feature extraction: Use deep neural 
network to extract high-level features from obtained 
time-frequency features. The selection of neural 
networks is based on application. In our case, since 
time-frequency features are used, Convolutional 

Autoencoder(CAE) and Convolutional Neural 
Network(CNN) are selected and used in semi-
supervised fashion. Then CAE captures the data 
representation from features of both labeled and 
unlabeled data set. CAE passes the initial weights to 
CNN. CNN is then fine-tuned using features only 
from labeled data set. The trained CNN as a feature 
extractor is used to extract feature for data set. The 
activations for the fully connected are high-level 
features. The reason for selection and detailed 
procedure will be discussed in section 3.2. 

3) Fault Detection: Train one-class classifiers using 
high-level features. Predict the unlabeled 
experiment using trained one-class classifiers.  

 

Figure 1. General procedure of proposed method 

3.1. Time-frequency domain Features 

Since frequency domain features are the indicator of faults 
and system is time-varying, spectrum matrices are needed to 
capture the non-stationary characteristic. Time-frequency 
features are changing along with time, which provides helpful 
information for further analysis. 

If the labeled dataset is a balanced dataset, it is possible to 
select relevant frequency bands using feature selection 
techniques, such as, sequential forward and backward 
selection, statistical test and heuristic method. Usually, the 
selection is based on optimization of the classifier 
performance. However, under our assumption, labeled 
dataset is no longer balanced and corresponding problem is 
no longer a supervised multi-class classification problem. 
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Feature selection techniques are not applicable to choose 
optimal frequency bands.  

To mitigate this problem, spectrum matrix can be used 
directly as a time-frequency feature. These spectrum matrices 
are converted into grey-scale images and then used as the 
input of high-level feature extraction. 

3.2. High Level Feature Extraction 

With physical domain knowledge, system fault will change 
the spectrum matrix. Images which are converted from 
spectrum matrices will then change accordingly. An efficient 
way to detect the abnormality of images is the Convolutional 
Neural Network (CNN). However, as stated in the beginning 
of section 3, semi-supervised feature extraction can fully 
utilize the information to learn the non-linear mapping to 
lower dimension space.  

Unsupervised learning is used to map input 𝐱  to lower 
dimension with labeled and unlabeled samples. Erhan, 
Bengio, Courville, Manzagol and Vincent (2010) proved the 
effectiveness of the role of unsupervised pre-training. In 
traditional way, unsupervised pre-training is used to improve 
the generalization error of trained deep architectures. From 
2010, it is more common to train a deep neural network since 
the size of data has increased drastically. However, if the 
problem is becoming complex with little available labeled 
training data but plenty of unlabeled training data, pre-
training is still effective.  

Since the training data set is limited in the scenario discussed 
in this paper, pretraining of data is necessary and effective. 
The most challenging part of the problem is the absence of a 
discriminative feature for the labeled training data. Without 
knowing the information of faulty conditions, the feature 
detectors may fail to extract the useful information solely 
from healthy data to detect the anomality  

In this light, unsupervised convolutional autoencoder with 
labeled and unlabeled data set is used to pretrain the 
convolutional neural network. The aim of pre-training is to 
extract the distinct representation from normal condition. The 
weights of CAE are the initialization of CNN. Training CNN 
with labeled data fine-tunes the weights of layers. The final 
trained CNN is the feature extractor to learn latent space.  

A lay-out of high-level feature extraction process is shown in 
Figure 2. 

 
Figure 2. High-level feature extraction process of proposed 
method 

3.2.1. Unsupervised Pre-training using Convolutional 
Autoencoder (CAE) 

An auto-encoder (AE) model is constructed based on an 
encoder-decoder paradigm. An encoder transforms an input 
from a high-dimension efficient feature space into the lower 
dimension one. Then a decoder reconstructs the data from 
resulting feature space. Encoder and decoder are symmetric 
in architecture. Autoencoder performs as a power feature 
decoder and can be used for unsupervised learning. The 
objective of autoencoder is to minimize the difference 
between reconstructions 𝐱D  and the inputs 𝐱. The objective 
function can be written as  

ℒ(𝐱, 𝐱D) = 	‖𝐱 − 𝐱D‖ 

The success of CNN in supervised image classification 
inspired Masci, Meier, Ciresan and Schmidhuber (2011) to 
propose a new architecture for autoencoder - Convolutional 
autoencoder(CAE). CAE learns the visual features by 
reconstructing images through convolutional layers. 
Traditional AE used fully connected layer as encoder and 
decoder whereas CAE changed into convolutional layers. 

In general, CAE is a special type of CNN. However, the 
objectives of two neural networks are different. CNN is 
supervised learning classifier which aims to classify the input 
while CAE is an unsupervised learning method to extract the 
high-level representation of the images. Figure 3 indicates the 
general architectural of a convolutional autoencoder. 

 
Figure 3. General architectural of CAE 
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The encoder of ACE is exactly the same with CNN (see 
section 3.2.2). During the decoder process, unpooling and 
decovolution are often used. Unpooling is denoted reverse 
max pooling. In the convolutional network, the max pooling 
operation is non-invertible. However, by recording the 
locations of the maxima within each pooling layer, the 
unpooling operation are able to place the reconstructions 
from the layer into appropriate locations, preserving the 
structure of the stimulus (Zeiler and Fergus, 2013). 
Deconvolution in convolutional neural network means the 
inverse process of convolutional, which is the same with 
convolutional layer. 

Since the convolutional encoder is used as pre-training 
process, it should have same architecture with CNN by 
natural.  The proposed CAE architecture is shown in Figure 
4.  

 

 
Figure 4. Proposed CAE architecture 

 

3.2.2. Fine – tuning Weights using Convolutional Neural 
Network(CNN) 

Convolutional neural network(CNN) is a specialized 
category of neural network for processing data that has a 
known grid-like topology. CNN has been succeeded being 
applied in image classification, speech recognition and DNA 
sequences classification. Convolution leverages three 
important ideas that can help to improve a machine learning 
system: sparse interactions, parameter sharing and 
equivariant representation (Goodfellow, Bengio and 
Courville, 2016). A regular CNN architecture contains three 
main types of layers:  Convolutional Layer, Pooling Layer, 
and Fully-Connected Layer. A full CNN shown in Figure 5 
is constructed by stacking these layers.   

 
Figure 5. General architecture of CNN 

The input of CNN is an image which represents as an array 
of pixel value. Convolutional layers utilize the filter as 
feature detectors to capture the pixel structure of the original 
input image.  

The following layer is a pooling layer which effectively 
reduces the number of parameters and amount of 
computational burden, but it retains the important 
information in the work. The convolutional layer is similar in 
respect to feature construction. the pooling layer in a CNN 
could be related to a feature selection layer (Verstraete et 
al.,2017).   

The output of the convolutional layer and pooling layers is 
the high-level feature representation of the original image. 
Final layer, fully connected layer, uses these features to 
classify the input data.  

In this work, as stated before, CNN as a supervised multi-
class classifier cannot be used directly for one-class data. As 
an alternative, time-frequency features, i.e. spectrograms 
from different subsystem are considered as different classes. 
Thus, the whole system is partitioned into multi-subsystems. 
The one-class problem is therefore transferred into multi-
classes problem.  

The CNN architecture we proposed in this work is shown in 
Figure 6. CNN is first initialized using weights from CAE. 
Then labeled data is used to fine-tune the weights in CNN.  

 
Figure 6. Proposed CNN architecture 

3.3. Training Process and Fault detection 

The proposed testing procedure involves two phases-feature 
extraction and detection. First, during feature extraction 
phase, A set of features G are extracted from labeled dataset 
and unlabeled data. The extracted features are stored as 
representation and will be used in the detection phase.  

One-class classifier, such as one-class Support Vector 
Machine(SVM) and K-nearest neighbor can be used to 
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trained using representation. One-class SVM classifier is 
used in this paper. The classifier will detect whether one 
specific subsystem is fault or not. Thus, multiple one-class 
classifiers are trained for each subsystem. If no subsystem has 
predicted as fault, the testing experiment is considered as 
healthy. Otherwise, this experiment is predicted as fault.  

 
Figure 7. Testing process for proposed method 

4. SIMULATED CASE STUDY: RAIL VEHICLE 
SUSPENSION SYSTEM  

In this section, a simulated case study will be outlined to 
validate the proposed method. The physical model of 
suspension system is first introduced, followed by the setup 
of simulation and preparation of dataset. After data 
preprocessing, results are provided and analyzed. 

4.1. Physical Model of Suspension System 

Suspension system, consisting of tire, spring, dampers and 
linkages, plays a critical role in rail vehicle. The suspension 
system supports the car body and bogie, to isolate the forces 
generated by the track unevenness at the wheels and to 
control the altitude of car body (Wei, Jia, Liu, 2013). It is an 
important component for comfortable riding as well as easily 
handling. The fault occurred at spring or dampers would 
decrease the level of system stability while passing through 
curves. What’s more, it would also cause a potential loss of 
contact between the vehicle to the road.  

The traditional rail vehicle suspension system is under 
investigation in this paper. As shown in Figure 8, full car 
model consists of four wheelsets, two bogies (leading and 
trailing bogie) and a car body. The complete system has 23 
degrees of freedom.  

 
Figure 8. Simplified full-car model (PHM 2017 data 

challenge) 

The standard vector matrix form of the full- car state space 
model is 

𝑀�̈� + 𝐶�̇� + 𝐾𝑍 = 𝐶O�̇� + 𝐷O𝑈 

where 𝑍  is the vertical displacement vector of bogie and 
carbody. 𝑈 is input of wheelsets. 𝑀,	𝐶,	𝐾 are mass, damping 
and stiffness matrices, respectively. 𝐶O,	𝐷O are damping and 
stiffness matrices of excitations. (Girstmair, Heigermoser and 
Rosca, 2017). 

Inspired by Li, Liu, Tian, Cui and Wu (2017), the full-car 
model can be considered as 8 independent subsystems. Each 
subsystem is a quarter car model with 2 DOF. Detailed 
subsystem is same with Li et al. (2017). Figure 9 shows the 
structure of such subsystem.  

 
Figure 9. 2 DOF subsystem  

The transfer function of secondary suspension is  

𝐺R(𝑠) =
𝑍R(𝑠)
𝑍T(𝑠)

= 	
𝐶R𝑠 +	𝐾R

𝑚R𝑠5 + 𝐶R𝑠 +	𝐾R
 

The transfer function of primary suspension is  

𝐺T(𝑠) =
𝑍T(𝑠)
𝑊(𝑠) 	

= 	
𝐶T𝑠 +	𝐾R

𝑚T𝑠5 + V𝐶T + 𝐶R(1 − 𝐺R(𝑠))W𝑠 +	V𝐾T + 𝐾R(1 − 𝐺R(𝑠))W
 

Parameter degradation could change both primary and 
secondary transfer function and therefore change the gain of 
the system.  The gain system, also known as frequency 
response, is defined as the ratio the steady-state output 
amplitude to and the steady-state input amplitude. It is used 
to characterize the dynamics of the system. As a quantitative 
measure of the output spectrum in response to input, 
frequency response is widely used to characterize the 
dynamics of the system.  

4.2. Simulation Setup and Dataset Preparation 

It is necessary to design a systematic experiment to validate 
the proposed method stated in section 3. The data set to be 
used in this paper is simulated by multibody simulation 
toolkit SIMPACK. SIMPACK is a general purpose 3D 
Multibody Simulation (MBS) software designed to simulate 
non-linear mechanical systems, analyze vibrational behavior, 
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calculate forces and accelerations, and describe and predict 
the motion of any complex multibody system(Iwnicki,2006). 

The model of rail vehicle suspension system has been stated 
in section 4.1. Eighteen sensors are introduced arbitrarily to 
measure the vertical acceleration. The locations of these 
sensors are highlighted in red dots in the Figure 8. The 
sampling frequency is 200Hz. The vehicle runs on the track 
at 70 km/h (with randomness of ± 5 km/h). Total simulation 
duration is 30s, i.e. there will be 6000 measurement sets. The 
track in the simulation is the normal rail gauge of 1435 mm 
with UIC60 profile. Three directions (vertical, lateral and 
rolling) track irregularity are introduced of the fifth-grade 
track irregularity spectrum of the US railway lines. The 
simulation is conducted in the track section contains curved 
section with superelevation. The aerial view of the track is 
shown in Figure. 10 

 
Figure 10. Aerial view of track  

Failure modes of the system are simulated as the attenuation 
of component vertical parameters. Here components refer to 
the springs and dampers in primary and secondary suspension 
system. The degradation level is from 70% to 10% of original 
status. 

Labeled training dataset consists of 200 healthy experiments. 
Testing dataset consists 100 experiments including both 
healthy and faulty scenarios. Note that for healthy 
experiments, parameters (stiffness, damping ratio and 
carbody mass) vary in ± 10% range to increase the level of 
uncertainty. 

4.3. Time-Frequency Feature Extraction 

The detailed time-frequency feature extraction procedure is 
presented in this subsection. As described in subsection 4.1, 
frequency response can represent the major characteristics of 
a time-invariant system. However, rail vehicle suspension 
system is as assumed to be a time-varying system. Besides, 
the connections between eight subsystems are tight. The roll 
and pitch motion of vehicle can slightly change the position 
of the center of gravity. As a result, 𝑀R  and 𝑀T   of a 
subsystem are always changing along with the running of the 
vehicle. This phenomenon is known as the load transfer and 
shown in Figure 11. To mitigate the impact of such 

phenomena,  time-frequency features are required  to capture 
the time-varying behaviors of the vehicle.  

 
Figure 11. Load transfer of suspension system 

 
During the detection process, 16 frequency responses are 
captured for 8 subsystems. They are then extracted to 
spectrograms based on domain knowledge. 

The procedure of time-frequency domain feature extraction 
for each subsystem is provided as follows.  A corresponding 
flowchart is shown in Figure 12: 

1) The raw vertical acceleration measurements of input 
𝑥(𝑡)  and output 𝑦(𝑡)  (e.g. sensor reading from 
primary suspension and sensor reading from 
wheelset in the same subsystem) are filtered by a 
low-pass filter. As discussed by (Mei, 2008), the 
natural frequencies of the bogies modes are 
normally found between 7Hz and 20 Hz. To be on 
the safe side, a lowpass filter 30Hz is applied. 

2) Divide filtered raw measurements into 𝑁[\] 
segments with L points of each.  A fixed overlapping 
time interval is also introduced between segments. 
For each segment, system is considered to be time-
invariant since the elapsing time is relatively short. 
The time window is chosen to be around 1 second 
with half second overlapping. 

3) Calculate the frequency response for each 
subsystem.  

𝐻(𝑒#`) = 	
𝑆bc(𝑒#`)
𝑆bb(𝑒#`)

 

where 𝑆bc(𝑒#`)  is the estimated cross spectral 
density in the frequency domain of input 𝑥(𝑡) and 
output 𝑦(𝑡) . 𝑆bb(𝑒#`)  is the estimated 
autocorrelation of input 𝑥(𝑡)  in frequency(or 
equivalently the power spectral density of input)  

4) Time-frequency feature is the amplitude of 𝐻(𝑒#`) 

5) Scaling the spectrograms into grey-scale 32×32 
pixel images 

The resulting images are then used as an input to a deep 
neural network. Since the calculated time-frequency feature 
is a good representation of  the estimated frequency response 
and the transfer function, the extracted features are capable to 
detect the degradation of components. 
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Figure 12. Flowchart of data pre-processing.  

4.4. Simulation Results 

The results of the proposed semi-supervised feature extractor 
are obtained and analyzed in this subsection.  As a 
comparison, results from other 3 methods are carried out.  

1) Low-level features (LLF). After generating the 
time-frequency features (i.e. Data-preparation step 
in proposed method), the one-class SVM is used 
directly to detect the fault directly without further 
feature extraction 

2) High-level features from CAE (HLF-CAE).  The 
input of CAE is grey scale images. CAE is trained 
using labeled and unlabeled data.  The high-level 
features are solely extracted by unsupervised CAE.  

3) High-level features from CNN (HLF-CNN).  
Labeled healthy data are used to fine tune the 
supervised CNN.  Trained CNN as a feature 
extractor can be used to extract high-level features 
for final detection.  One-class SVM is used to 
identify healthy and faulty experiments. The trained 
weights of CNN are identical to those of CAE. The 
high-level features are only extracted by CNN.  

The metric to assess the performance of the model is  

Accuray

=
The	number	of	experiments	correctly	predicted	

Total	number	of	testing	experiments  

The comparison of prediction accuracies among several 
methods is provided in Table 1.  It is shown that the proposed 
deep semi-supervised method can predict the most number of 
experiments correctly.   

Table 1. Prediction accuracies with different features 

Model Accuracy 

LLF 0.69 

HLF_CAE 0.74 

HLF_CNN 0.71 

HLF_SSL 0.85 

 

The confusion matrices calculated based on all the four 
methods are shown in Figure13, Figure14, Figure15 and 
Figure 16 respectively.  

 
Figure 13. Confusion matrix with low level features 

  
Figure 14. Confusion matrix with CAE features 
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Figure 15. Confusion matrix with CNN features 

 
Figure 16. Confusion matrix with proposed semi-

supervised features 

From the confusion matrices we can see that, the proposed 
method achieves best result of accuracy, especially in 
detecting faults. One explanation is that the proposed 
method maximizes the use of available information.   

For CAE, autoencoder can learn mapping function from 
input to lower dimension space. This mapping is not related 
to the labels. Thus, autoencoder did not show significant 
improvement compared with low-level feature experiment.  
The CNN features experiment shows the effectiveness of 
supervised learning. The high accuracy in predicting healthy 
experiments is because the trained CNN can extract 
representation that clusters the normal conditions together. 
However, it is hard to differentiate healthy and faulty 
conditions using only CNN high-level features.  Overall, the 
proposed method outperforms the other models.  

One contribution of our problem is to learn a representation 
that can distinguish nominal conditions and faulty 
conditions. For instance, feature spaces of extracted features 
from right side secondary suspension system of leading 
bogie are compared in Figure 17, 18, 19 and 20. In the 
figures, ‘×’ indicates normal samples and ‘○’ indicates 

faulty samples. The 2D visualization is performed using t-
SNE (Matten and Hinton, 2008).  

Figure 17 is a 2D visualization of the extracted 1024-
dimensional low-level features, i.e. 32×32 spectrogram. It is 
hard to separate the normal and abnormal conditions from 
low level features directly. Data from one-class are not in 
the same cluster, indicating that low-level feature are not 
suitable for detection. 

 
Figure 17. Feature space obtained without high-level feature 

extraction (Low-level features experiment) 
 
Figure 18 shows the 2D visualization of obtained high-level 
50-dimensional features extracted only with unsupervised 
CAE.  Without fine-tune by supervised CNN, data from one 
class (normal or abnormal class) cannot form a cluster that 
covers very few data points of another class. 

 
Figure 18. Feature space obtained only using the 

unsupervised CAE (CAE features experiment) 
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Figure 19. Feature space obtained only using CNN (CNN 

features experiment) 

 
Figure 20. Feature space obtained using the proposed 

method (Semi-supervised features experiment) 

Figure 19 is the 2D visualization of the extracted 30-
dimensional high-level features extract solely with CNN. 
Since the data from one class is sufficient to extract data 
representation, the data from normal conditions are clustered 
together in the extracted feature space. However, the data 
from faulty conditions are in the same cluster too. Normal 
and faulty samples are not able to be separated.  

Figure 20 is the 2D visualization of the extracted 30-
dimensional high-level features extracted with proposed 
method. Samples from normal condition and faulty condition 
are more separable than Figure 15,16,17. Although it seems 
some fault samples still fall in the normal boundary, it is 
because the fault refers to system level, but in this subsystem, 
the data from this faulty experiment are still within nominal 
range. The semi-supervised feature extraction did show the 
ability to separate the nominal condition and faulty condition. 

5. CONCLUSION 

In this paper, a fault detection method with deep semi-
supervised feature extraction is proposed to solve for one-
class classification problem. It is better than traditional 
supervised and unsupervised learning methods in sense of 
performance and utilizing more information 

Semi-supervised feature extraction keeps the information 
from labeled and unlabeled data to the utmost and improve 
the performance of the fault detection. The presented method 
preprocesses the acceleration measurements using short time 
Fourier transform(STFT) to extract low-level time-frequency 
domain features. Deep Semi-supervised feature extractor is 
then introduced to extract high-level representation. The one-
class classifier is implemented finally to detect the fault. A 
rail vehicle suspension system model is constructed, and 
numerical simulations are conducted.  Compared with three 
other prevailing methods, results indicate the effectiveness 
and better performance of proposed method.  
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