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ABSTRACT 

Cyber-physical systems (CPS) security has become an 

increasingly important research topic in recent years. Geared 

towards more advanced cyberattack detection techniques as 

part of strategies for enhancing the security of CPS, in this 

paper we propose a machine learning based cyber-attack 

detection scheme. The proposed scheme is a physical-domain 

technique; specifically, it assumes the physical 

measurements of the system carry sufficient information for 

capturing the system behavior, thus can be used for 

differentiating normal operation and attacks. CPS are 

complex in nature and the number of physical measurements 

available for CPS is often overwhelmingly high. Thus, 

accurately modeling CPS’ dynamic behavior, more 

importantly, distinguishing normal and adversary activities 

based on the large number of physical measurements, can be 

challenging. To address the challenge, we have focused our 

research effort on feature engineering, that is, to intelligently 

derive a set of salient signatures or features from the noisy 

measurements. We make sure the derived features are more 

compact and, more importantly, have more discriminant 

power than the original physical measurements, thus enabling 

us to achieve more accurate and robust detection 

performance. To demonstrate the effectiveness of the 

proposed scheme, in our experimental study we consider gas 

turbines of combined cycle power plants as the cyber-

physical system. Using the data from the high-fidelity 

simulation we show that our proposed cyberattack detection 

scheme is able to achieve high detection performance.  

1. INTRODUCTION 

Cyber-physical systems (CPS) are referred to an integral 

system of computation, networking and physical elements, 

having strong interaction between cyber and physical 

domains (Khaitan and McCalley, 2015). CPS provide the 

foundation of numerous critical infrastructure, such as, 

transportation networks, electric power distribution 

networks, and water and gas distribution networks. With the 

advent of Internet of things (IoT), more and more devices 

with security vulnerabilities are linked to CPS. Thus, 

ensuring CPS security (US DHS, 2018; Mitchell and Chen, 

2014) becomes ever increasingly important, especially since 

the Stuxnet attack in 2010 (Falliere, et al., 2011).  

Current intrusion detection systems (IDS), primarily 

designed for conventional Information Technology (IT) 

systems, are not effective for CPS; that is, cyber-threats can 

still penetrate through the IT protection layer and reach the 

physical “domain”. Such attacks, if not detected and 

neutralized, can diminish the performance of the control 

system and may cause total shut down or catastrophic damage 

to the physical assets. For example, Stuxnet that penetrated 

the SCADA system of Iranian nuclear facilities and caused 

centrifuge motors to change their spinning frequency, which 

destroyed centrifuges (Falliere, et al., 2011).  

Physical-domain cyberattack detection (pdCAD) techniques 

that perform detection by leveraging physical properties of 

the physical asset or process have proven to be more effective 

in securing CPS from malicious attacks (Urbina, et al., 2016).  

A majority of the existing pdCAD methods involve explicitly 

modeling the “normal behavior” of the physical system based 

on the physics and declaring attack if the model behavior 

deviates from the normal behavior. For those pdCAD 

methods, building a high-fidelity model is the key to success. 
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State space models are predominantly used for building the 

physics-based models, especially when dealing with control 

systems, for example, in Ozay, et al. (2013), Kosut, et al. 

(2011), and Urbina, et al., (2016). The attack detection (AD) 

methods involving state space models are also called “state 

estimation-based detection”. 

More recently, machine learning technology has been 

adopted for pdCAD. Machine learning based attack detection 

methods generally do not need to explicitly model “normal 

behavior” of the system1. Rather the cyberattack detection 

problem is formulated as a classification problem, that is, to 

classify normal vs. attacks directly based on the available 

physical measurements. For example, Ozay et al. (2015) 

developed a physical layer attack detection framework for 

false data injection attack detection in smart grids. Others 

include Wallace et al. (2014), Wang et al (2017). 

For real-world CPS applications, performing attack detection 

directly on physical measurements may be difficult in 

achieving the desired detection performance. With more and 

more devices connected to CPS, the CPS becomes more 

complex and the number of physical measurements can 

potentially become overwhelmingly large, which makes 

attack detection even more challenging.  

To address the challenge, in this paper, we propose a 

behavior-based machine learning attack detection scheme. 

The key component of the proposed scheme is its advanced 

feature engineering module, which is to intelligently derive a 

set of salient signatures or features from the noisy 

measurements. Such derived features not only are more 

compact and less noisy, but also have more discriminant 

power than the original physical measurements, thus enabling 

us to achieve more accurate and robust detection 

performance. Also, our proposed scheme differs from other 

existing machine learning based detection methods in that we 

innovatively adopt the extreme learning machines (ELM), a 

recently developed machine learning algorithm (Huang, et 

al., 2012), as our attack detection algorithm. 

Power plants are an important CPS application. It is our 

national interest to have an enhanced resilience of power 

plants by reducing the risk of operational disruptions due to 

cyber-attacks, which is exactly what the Cybersecurity for 

Energy Delivery Systems (CEDS) programs of the 

Department of Energy (DOE) are aiming for. In this paper we 

will use the gas turbines of combined cycle power plant as 

the CPS for demonstrating our proposed attack detection 

scheme. 

The reminder of the paper is organized as follows. The 

proposed methodology is described in detail in Section 2. 

                                                           
1
Some machine learning-based attack detection models, e.g., 

one-class classifier-based attack detection, do model the 

“normal behavior” of the system. 

Section 3 presents our experimental study and its results, 

while Section 4 concludes the paper. 

2. PROPOSED CYBERATTACK DETECTION SCHEME 

As a physical-domain approach, our proposed behavior-

based machine learning attack detection scheme has a key 

capability of learning the dynamic behavior of the physical 

systems, more precisely the behavior difference between 

normal operations and adversary attacks, from the physical 

(sensors, actuators and controllers) measurements. With the 

increasing complexity of physical systems, the number of 

physical measurements can be overwhelmingly large, which 

makes learning from physical measurements very 

challenging. To address the challenge, as the key technical 

component of the proposed scheme we turn the raw physical 

measurements into more salient features and build our attack 

detection algorithms on the feature space, which results in 

more accurate detection performance. The overall structure 

of the proposed scheme is shown in Figure 1. Its two critical 

components, feature engineering and attack detection 

modeling, are described in detail in the following two 

subsections. 

2.1. Multi-Modal Feature Engineering 

The primary goal of our feature engineering is to derive a set 

of signatures or features from the raw physical 

measurements, which not only have more expressive power 

for capturing physical behavior, but also have more 

discriminant power distinguishing normal and malicious 

activities, thus improving the attack detection performance. 

Feature engineering is an important process in the pipeline of 

developing predictive analytical solutions. In literature, there 

are numerous feature extraction methods available, ranging 

from traditional statistics based to modern deep 

representation learning (Yan, 2015). In this paper, 

considering the unique properties associated with CPS 

security, we propose using statistics-based and physics-based 

features. To capture the temporal effects or dynamics of the 

underlying system, we use a sliding window sliding over time 

and all features are calculated over the sliding windows. 

Spatially, we calculate features on individual (univariate) and 

  
Figure 1. Overall block diagram of the proposed 

cyberattack detection scheme. 
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multiple (multivariate) measurements. Let’s assume we have 

n physical measurements, 𝑠(1), 𝑠(2), … 𝑠(𝑛), covering sensor, 

actuator, and control measurements, and the window width 

for sliding windows is w. 

2.1.1. Univariate-based features 

For each individual measurement, 𝑠(𝑖) , its windowed 

segment of measurements at time t is 𝑚𝑡
(𝑖)

=

𝑠𝑡−𝑤
(𝑖)

, 𝑠𝑡−𝑤+1
(𝑖)

, … , 𝑠𝑡
(𝑖)

 . Several statistical descriptors can be 

calculated for this segment of measurements, 𝑚𝑡
(𝑖)

, for 

example,  

𝑓1
(𝑖)

= 𝑚𝑒𝑑𝑖𝑎𝑛(𝑚𝑡
(𝑖)

)                          (1)  

𝑓2
(𝑖)

= 𝑠𝑡𝑑(𝑚𝑡
(𝑖)

)                                (2)  

𝑓3
(𝑖)

= 𝑚𝑎𝑥(𝑚𝑡
(𝑖)

)                               (3)  

𝑓4
(𝑖)

= 𝑚𝑎𝑥(𝑚𝑡
(𝑖)

) − min (𝑚𝑡
(𝑖)

)                 (4)  

𝑓5
(𝑖)

= 𝑠𝑡
(𝑖)

                                       (5)  

In addition, for each measurement we also calculate statistics 

that captures the rate-of-change of the measurements within 

the window concerned, for example, the maximum absolute 

rate-of-change, the average of absolute rate-of-change, etc. 

2.1.2. Multivariate-based features 

To capture the relationships among many variables, we 

calculate two groups of features using multiple variables. The 

first group of features are to capture the relations between 

pairs of measurements, which are either defined by domain 

experts or learned from the data. The relations can be, for 

example, the difference or the ratio of two measurements, and 

can also be covariance of two measurements. The number of 

features resulted in this group is equal to the number of 

relations defined. 

The second group of features are the residuals of some 

physical models, that is, the differences between the true 

measurements and the model predictions. The number of 

physical models as well as the input and output of each the 

physical models are application-dependent and determined 

based on domain knowledge. As a result, we often call this 

group of features as “physics-based”. The physical models 

can be the first principal models or data-driven models. 

Assume 𝑖𝑡ℎ  model has n inputs, 𝑥(𝑖) ∈ ℜ𝑛 , and m outputs, 

𝑦(𝑖) ∈ ℜ𝑚. At each time stamp (sample), this model will give 

us m residuals, 𝑅𝑗
(𝑖)

= |𝑦𝑗
(𝑖)

− �̅�𝑗
(𝑖)

|, 𝑗 = 1,2, … , 𝑚 . We can 

directly use these m residuals as the features. Alternatively, 

for each of the residuals, we can calculate statistics (e.g., 

mean, standard deviation) of the residuals over the sliding 

window, w, and use the calculated statistics as features. 

Concatenating all the calculated features described above, 

that is, the univariate-based and the multivariate-based 

features, gives us the final feature set, which is then used as 

the input to our attack detection model. 

2.2. Attack Detection Modeling 

Attack detection is a binary classification problem where 

inputs to the classifier are the features extracted from the 

physical measurements and output is either normal or attack 

status. In literature there are numerous types of classifiers 

available. In this paper we adopt the extreme learning 

machine (ELM) as the classifier, considering the unique 

characteristics associated with the ELM. ELM is a special 

type of feed-forward neural networks introduced by Huang, 

et al. (2006). ELM was originally developed for the single 

hidden layer feedforward neural networks (SLFNs) and was 

later extended to the generalized SLFNs where the hidden 

layer needs not be neuron alike (Huang, et al., 2012). Unlike 

in traditional feed-forward neural networks where training 

the network involves finding all connection weights and bias, 

in ELM, connections between input and hidden neurons are 

randomly generated and fixed, that is, they do not need to be 

trained. Thus, training an ELM becomes finding connections 

between hidden and output neurons only, which is simply a 

linear least squares problem whose solution can be directly 

generated by the generalized inverse of the hidden layer 

output matrix (Huang, et al., 2012). Because of such special 

design of the network, ELM training becomes very fast. 

Numerous empirical studies and recently some analytical 

studies as well have shown that ELM has better 

generalization performance than other machine learning 

algorithms including SVMs and is more efficient and 

effective for both classification and regression tasks (Huang, 

et al., 2012). 

3. EXPERIMENTS 

To validate the proposed scheme, in this section we conduct 

experimental study by using simulated data. 

3.1. Data 

In this paper, the high-fidelity hardware-in-the-loop (HWIL) 

threat simulator is used for generating multiple data sets, i.e., 

normal, attack and evaluation data sets, for developing our 

gas turbine AD algorithms. 

Normal operational data are simulated to cover a wide range 

of turbine operation conditions.  Specifically, ambient 

temperature, pressure and humidity are varied to capture 

environmental variations.  Fuel composition, compressor 

flow variation and turbine efficiency are varied to capture the 

expected operating conditions for the gas turbine.  A design 

of experiments was performed to blend these factors into a 

reduced set of simulation runs.  It was determined that steady 

state operating points were required as well as dynamic load 

conditions.  Load level and load rate of change were 

variations that factored into the DOE runs.  The DOE runs 

contained three different types of variations Plackett-Burman 
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(PB) full factorial; PB 11 factorial; & Pseudorandom binary 

signal (PRBS). Table 1 summarizes the DOE runs under 

normal operations. 

For attack data, we simulate 11 different attacks, each with 3 

attack levels. Table 2 shows the summary of the Plackett-

Burman DOE runs. 

Note that those simulation runs have different lengths in time. 

For DOE runs, the lengths vary from 200 seconds to 300 

seconds; for PRBS runs, the lengths vary from 2000 seconds 

to 25000 seconds. 

Table 1. Summary of Simulation Runs for Normal 

Operations. 

Descriptions 

# of 

simulation 

runs 

Full factorial DOE 

4 factors (ambient temp., ambient pressure, 

relative humidity, and compressor flow) at 3 

levels; and load at 8 levels (from 16.8MW to 

200MW) 

648 

Placket-Burman DOE 

11 factors at 2 levels; and load at 8 levels 

(from 16.8MW to 200 MW) 
96 

Pseudo-random binary signal (PRBS) runs 

Fixed ambient conditions, while varying load 

from 1MW to 200MW with ramp rate varying 

from 10 MW/min to 18MW/min 

7 

Total =  751 

 

Table 2. Summary of Simulation Runs for Attacks. 

Descriptions 

# of 

simulation 

runs 

Placket-Burman DOE 

11 factors Placket Burman DOE at 3 attack 

levels, 3 ambient temperatures, and 8 levels of 

load (from 16.8MW to 200 MW) 

936 

Total =  936 

 

3.2. AD Modeling and Performance Evaluation 

3.2.1. AD model details 

A typical gas turbine of power plants has a large number of 

physical measurements available. For AD modeling in this 

paper, we down-select a total of 24 measurements, out of 

which 15 are sensor measurements, 5 are actuator 

measurements, and 4 are control measurements. Out of the 24 

selected physical measurements, we take 20 measurements 

for univariate feature calculation and other 4 for multivariate 

feature calculation. 

For each of the 20 measurements, we calculate 5 statistical 

features, that is, median, variance, kurtosis, range, current 

value, of the signals within the sliding window. For the 4 

measurements, we form 2 pairs and for each pair, we 

calculate mean difference between the two measurements. 

 We identified 3 physics models. Model 1 has 7 inputs and 4 

outputs, model 2 has 3 inputs and 1 output, and model 3 has 

2 inputs and 1 output.  The three models are all data-driven 

models (ELMs) and are trained with normal data only. We 

calculate 5 residual statistics for each of the 6 model outputs, 

which gives us 30 physics-based features. 

So overall, we have 132 (100+2+30) features calculated for 

each sample or each sliding window. 

For ELM model design, we set the number of hidden neurons 

to be the default value of 1000, as suggested in Huang et al. 

(2012). The activation function for the hidden neurons is the 

sigmoid function, 𝐺(𝑤, 𝑏, 𝑥) = 1 (1 + exp (−(𝑊𝑇𝑥 + 𝑏))⁄ . 

The model parameter, C, is empirically determined via cross-

validation by trying 20 different values, i.e., 𝐶 =
[2−9, 2−8, … 210]. 

3.2.2. Performance evaluation method and metrics 

To assess the performance of the proposed attack detection 

scheme, we use the Receiver Operating Characteristic (ROC) 

curves and the area-under-curve (AUC) as the classification 

performance measures. We employ 10-fold cross-validation 

for model training and validation. To obtain more robust 

comparison we run the 10-fold cross-validation 10 times, 

each time with different randomly splitting of 10 folds of the 

data. All experiments conducted in this paper are performed 

in Matlab® environment. 

 

3.3.  Results 

 To help understand how well the 130 calculated features are 

in distinguishing normal and attack cases, we project the 
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features from original 130 dimensions to 2 dimensions using 

the t-distributed stochastic neighbor embedding (t-SNE) (van 

der Maaten and Hinton, 2008), as shown in Figure 2.  We 

clearly see a good separation between normal and attack 

cases, granted the decision boundary is highly nonlinear, 

which gives us a confidence that we should have a good 

detection performance. 

Figure 3 shows ROC curves for 10 different 10-fold cross-

validation runs. To quantify the ROCs, we calculate the true 

positive rate (sensitivity) for the false positive rate set to be 

1.0% and show them in a confusion matrix as shown in Table 

3 below. Note that the numbers in Table 3 are the averages of 

the results of the 10 runs. As one can see from the table, our 

proposed attack detection scheme can achieve a true positive 

rate of 99.04% at the false positive rate of 1%, which is an 

excellent detection performance. 

 

Table 3. The confusion matrix. 

 
Predicted 

Normal Attack 

T
ru

e Normal 99.00 1.00 

Attack 0.96 99.04 

  

4. CONCLUSIONS 

Securing CPS against cyberattacks is of great importance. 

Traditional intrusion detection systems (IDS) designed for IT 

systems are not effective in detecting CPS attacks. Detection 

methods that leverage physical properties of physical systems 

have proved to be more effective in CPS attack detection. 

In this paper we propose a strategy that maximally leverage 

physical properties into our attack detection. The core of our 

proposed strategy is to accurately capture the physical 

behavior difference of the physical system between normal 

operation and adversary activities (attacks). To better capture 

the physical behavior using the physical measurements 

(sensors, actuators, and controllers), we intelligently map the 

raw physical measurements to a salient feature set that 

signifies the difference between normal operation and attack. 

Using the salient feature set as the input, our attack detection 

algorithm, an ELM based binary classification model, 

achieves excellent detection performance based on simulated 

gas turbine data. 
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