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ABSTRACT 

Performance analysis of a low power rating and partially 

loaded industrial gas turbine engine (GTE) was carried out by 

using a model-free data analytic approach.  By adopting an 

efficient input selection method, several performance indices 

(PI) are proposed to quantify the performance of the GTE. 

These indices are extracted using engine operating data 

related to power output and parameters related to fuel 

consumption, and validated with engine performance 

monitoring measurements for a three year period 

corresponding to one time between overhaul intervals. The 

dependency of the PIs on ambient temperature has been 

studied by using linear and polynomial fitting curves. Then 

novel methods are introduced for analysis of short-term and 

long-term performance deterioration arising from 

compressor fouling and structural degradation respectively. 

The results have clearly shown the ability of the proposed PIs 

to detect short-term compressor fouling as well as long-term 

performance deterioration, which is directly relevant to the 

Prognostics and Health Management of gas turbine engine. 

1. INTRODUCTION 

Gas turbine engines (GTE) play key roles in the fields of 

power generation, transportation, and aerospace. Gas 

turbines are popular due to their attractive properties such as 

high power to weight ratio, compactness, ease of installation 

and environmental friendliness (low pollution products).  

The performance of GTE gradually deteriorates during the 

operation even under normal engine operating conditions. 

There are two major mechanisms contributing to the 

performance deterioration (Diahunchak, 1991; Hanachi, 

2015). One is the rapid (short-term) deterioration due to 

fouling and congestions of the particles in the air and in the 

combustion gases on the rotating and stationary blades. The 

‘fouling’ of the surfaces of upstream sections results in 

varying degrees of performance deterioration of the GTE.  

This type of performance deterioration is recoverable with 

cleaning/washing (Meher-Homji, 2009). Another type of 

deterioration is slower and non-recoverable with washing. It 

occurs due to structural degradation of the GTE parts such as 

flow path damage, surface erosion and corrosion, distortion, 

etc.  The resulting performance deterioration is irrecoverable 

by cleaning and washing, but will get worse with usage, 

unless the degraded parts are repaired or replaced (Kurz and 

Brun, 2009).  

In the application of gas turbines, the main concerns of gas 

turbine users are availability, reliability and maintenance 

costs. In order to have high levels of availability and 

reliability of gas turbines, effective maintenance is essential, 

and the strategies for maintenance are very important.  In 

conventional and preventative GTE maintenance strategies, 

pre-scheduled overhauls and maintenance services are 

carried out regardless of the health condition of the gas 

turbine engines. A GTE may be sent for unnecessary 

maintenance when it is still in good health condition or it may 

fail before a scheduled overhaul. As a consequence, the 

availability of the GTEs decrease and the costs of the 

maintenance may increase. Condition-based maintenance 

(CBM) is an effective way to improve engine availability and 

reduce maintenance costs by adopting gas turbine health 

information obtained from diagnostic and prognostic 

analyses (Li and Nilkitsaranont, 2009). 
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The prediction of GTE performance deterioration and future 

structural health state is highly complicated and challenging 

due to the structural complexity, non-stationary operating 

conditions and great uncertainty associated with gas turbine 

design, manufacturing, ambient and environment condition, 

etc. Different prognostic techniques have been investigated 

by many researchers and the types of the techniques can be 

summarized into two groups: model-based prognostics 

(Kacprzynski et al., 2001; Carter, 2005; Li and Lee, 2005; 
Sun et al., 2012; Coble and Hines, 2013; Feng et al., 2013) 

and data-driven approaches (Hanachi, et al., 2012; Rai and 

Kohli, 2012). 

GTE fault and diagnostics is an essential step to perform 

effective prognostic analysis.  Many automatic diagnostic 

techniques have been developed in the past, which can be 

categorized into three main types (Li, 2002): Model-based 

methods (Feldman et al., 2013), Data-driven methods 

(Namburu et al., 2006) and Hybrid approach, which are a 

combination of both model-based and data-driven models 

(Yu et al., 2007; Luo et al., 2010). 

Each of the reported diagnostic techniques, however, has its 

own benefits and limitations. Also, almost no analysis and 

research has been reported by other researchers before for gas 

turbine performance. There is still a need to study the effect 

of ambient temperature and fuel consumption on short-term 

fouling as well as long-term performance deterioration. 

Existing Model-free methods for diagnostics and prognostics 

of gas turbine degradation state are based on artificial 

Intelligence (AI) and statistical methods. These methods 

usually require enormous amount of computing time, highly 

significant data and often very expensive. Simple yet 

insightful data-analytics based model-free approaches are 

also desirable for easy implementation in an industrial setting 

and real-time application. 

A simple, direct and thermodynamic model-free analysis 

methodology for Gas turbine engine (GTE) performance 

evaluation had been reported in our preliminary work (Yuan 

et al., 2017).  A performance index (ratio of power generation 

to fuel consumption) was proposed as the metric for 

monitoring the engine performance. The motivation behind 

this work is to extend the study to propose more performance 

indices by taking into account more parameter combinations 

and apply them to the investigation of short-term and long-

term performance deterioration patterns. These analyses and 

results are crucial for assessing both the prediction of engine 

performance with the output power, efficiency, exit gas 

temperature (EGT) and its reliability.   

The aims of this research work include: 

• Study the feasibility of introducing additional 

performance measurement indices derived based on 

model-free data analysis.  

• Investigate the effect of ambient temperature on the 

performance indices. 

• Identify the rapid and short-term performance 

deterioration patterns, i.e., compressor fouling-washing 

effects using the proposed performance indices. 

• Identify the subtle and long-term performance 

deterioration patterns (in terms of decrease of the 

efficiency) of the GTE during the operating time, using 

the proposed performance indices. 

2. DATA  ANALYTICS APPROACH 

All the input engine parameters have individual and 

combined effects on the GTE performance and output engine 

parameters. Attempts are made here to isolate the effects of 

individual input parameters or phenomenon for a meaningful 

analysis and functional relationships of the selected 

significant input parameters to the performance related 

output parameters. Engine operating and output data 

measured from a 4MW power generation turbine was 

collected over a three year period corresponding to one time 

between overhaul. The data collected from the beginning of 

this period corresponds to a freshly built engine, while the 

data collected near the end of this period corresponds to a 

degraded engine that needs overhauling. A data analytics 

approach is proposed that consists of the following steps. 

Step 1:  Collect and clean data 

 In this step, the measured data is collected from the 

gas turbine and the data is cleaned by filtering any 

measurement noise. The data is arranged in an 

hourly, daily and monthly basis to make 

observations over different time periods. 

Step 2:  Define the performance indices 

 In this step, several performance indices are 

proposed and are supported by input selection 

analysis methods. Proposed performance indices are 

based on physics and indicate the amount of fuel 

consumed to generate unit power and are 

proportional to the efficiency of the gas turbine.  

Step 3:  Study the effect of ambient temperature 

 The effect of the ambient temperature is studied on 

the performance indices to understand and eliminate 

the effect of the ambient conditions on the 

performance.  

Step 4:  Study the short-term performance deterioration 

 The identification of the loss of power due to short-

term performance deterioration caused by 

compressor fouling is studied with the proposed 

performance indices by taking data samples before 

and after washing the compressor. 

Step 5:  Study the long-term performance deterioration  

 In this step, the identification of the long-term 

performance deterioration is studied with the 

proposed performance indices. This slow-moving 

and irrecoverable performance deterioration occurs 
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due to structural degradation of the parts such as 

erosion and corrosion processes. 

3. DATA COLLECTION AND TRENDS 

3.1. Ambient Data 

Ambient data were collected from Environment Canada and 

the three ambient parameters of interest include ambient 

temperature (Tamb), relative humidity (Hrel) and ambient 

pressure (Pamb), as shown in Figure 1. The compressor of the 

power plant is located outside, thus Tamb is assumed to be the 

temperature of air into the compressor. It can be seen that 

Tamb shows clear seasonal variation within the range of 240K 

to 310K while variations in Pamb over three years are found to 

be less than 5% and so are considered to be insignificant for 

any meaningful dependency analysis. The Hrel values may be 

seen to be distributed incoherently with the seasons or month 

of the year, unlike the distributions for Tamb. Pamb and Hrel are 

not considered in our present analysis because of the lack in 

any definite trend and variations. 

 

Figure 1. Important ambient parameters for three years 

3.2. Gas Turbine Engine Data 

The data analyzed in this work is based on the field data as 

obtained from a low power gas turbine engine from a power 

generation turbine located in Ottawa, Canada. The data was 

collected and monitored at a frequency of every 2 hours. 

Performance analysis is carried out using three years of 

operation-maintenance cycle data. Analysis of the continuous 

data stream (time series) provides significant clues in 

advance about any developing faults or deviation in the 

operating parameters like pressure, temperature, power 

output that may be correlated to any physical damage (e.g. 

cracks, wear) in the hot gas path components.  

The generated power is usually a function of the mass flow 

of air, the temperature difference and the specific heat of air. 

On the other hand, the thermal health condition in a GTE is 

measured by the EGT, which is a measure of the engine’s 

efficiency in producing its design level of power. The EGT 

gives an indication of performance deterioration and its 

prediction in advance estimates the remaining Time-

between-overhauls (TBO).  

Power generation in GTE depends on the quantity, quality 

and type of fuel used and so the performance and efficiency 

strongly depends on fuel consumption. The supply and day-

to-day demand of power can be met with the control of fuel 

(Gas) consumption. The fuel consumption (Gas) is adjusted 

at the end of the day for the GT (Gas Turbine) system and is 

maintained constant for a day (24 hrs), which is recorded as 

Gas and used in present work.  Also, the other two important 

parameters related to the fuel consumption. 

3.3. Trends of Data 

An average of 12 GTE measurements and ambient 

parameters are calculated to obtain daily values of the 

parameters in the present analysis. Figure 2 displays the trend 

and distribution of Tamb data and several important GTE data 

in normalized scale, including Power, EGT, Fuel Angle (FA), 

Fuel Pressure (FP) and Fuel consumption (Gas).  Means of 

the respective data for each day are determined to display as 

shown for a three year period corresponding to a complete 

TBO. The Tamb data is most symmetrically and uniformly 

distributed with peak during the summer months and lowest 

during the winter months; while the EGT shows the opposite 

trend with some degree of irregularities and disturbance. 

Power appears to shows similar fluctuations in terms of peaks 

and valleys over a year, though these do not match precisely 

with those observed for Tamb on the time scale (x-axis). Also, 

Gas seems to closely follow the trend of Power while the 

variation of the Power is less than that of Gas.  

 
Figure 2. Daily trend of Tamb and important GTE parameters 

for three years 

4. PERFORMANCE INDICES 

4.1. Proposed Performance Indices 

In this work, performance indices (PI) are parameters that are 

candidates to quantify the performance of the GTE. These 

can be directly the engine measurements, their normalized 

values or combinations of different measurements. The intent 

is to preserve some physical insight such that causes for 

change in the performance observed through the PIs can be 

better understood and explained.  Besides the PI01, which has 

been proposed in our previous research (Yuan et. al, 2017), 
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five new PIs are proposed in this analysis by using 

combination of input data. The proposed PIs are defined in 

Table 1. PI10 and PI11 are using a combination of fuel angle 

and fuel pressure to represent the gas consumption.  For PI12 

to PI14, the density of fuel gas is taken into account. 

Assuming the fuel gas behaves as an ideal gas, then there is 

the ideal gas law as shown in equation 1: 

                                  (1) 

where P is the pressure, v is the volume, n is the amount of 

substance of the gas (in moles), R is the universal gas constant 

(8.314 J K-1 mol-1) and T is the absolute temperature (in K). 

Thus, the density of the fuel gas is: 

                                 (2) 

Since both n and R are constants for an ideal gas, the density 

of the fuel gas can be expressed as: 

                                       (3) 

Thus, the three new performance indices including the effect 

of density of fuel gas are proposed as shown in the second 

group of Table 1. 

Table 1 List of proposed Performance Indices. 

PI Definition 

PI01 𝑃𝑜𝑤𝑒𝑟/𝐺𝑎𝑠 

PI02 𝑃𝑜𝑤𝑒𝑟/𝐹𝐴 

PI05 𝐸𝐺𝑇/𝐹𝐴 

PI10 𝑃𝑜𝑤𝑒𝑟/(𝐹𝐴 × 𝐹𝑃) 

PI11 𝐸𝐺𝑇/(𝐹𝐴 × 𝐹𝑃) 

PI12 𝑃𝑜𝑤𝑒𝑟/(𝐺𝐴𝑆 × 𝐹𝑃/𝑇) 

PI13 𝑃𝑜𝑤𝑒𝑟/(𝐹𝐴 × 𝐹𝑃2/𝑇) 

PI14 𝐸𝐺𝑇/(𝐹𝐴 × 𝐹𝑃2/𝑇) 

4.2. Input Selection Analysis 

All the input parameters have individual and combined 

effects on the performance and output parameters of the GTE. 

Attempts are made here to isolate effects of individual input 

parameters for a meaningful analysis and functional 

relationships of the desired input and output parameters. 

In order to support the choices for the new performance 

indices as proposed in Table 1, input selection analysis is 

performed here using correlation analysis to determine the 

influence of each set of input parameters on two output 

parameters, namely the Power and EGT. The objective of this 

input selection analysis is to determine the most influential 

individual input parameters on the desired performance and 

output parameters such as Power and EGT. 

It is well known that correlation analysis plays a major role 

in input ranking based input selection analysis (Guyon and 

Elisseeff, 2003). The correlation criteria based input ranking 

method uses the sample correlation coefficient (r – also 

known as the Pearson correlation coefficient when applied to 

a sample) as the measure of relevancy between the individual 

input and the output (Guyon and Elisseeff, 2003). Using this 

correlation coefficient as an input ranking criterion will in 

effect implement a ranking according to the goodness of 

linear fit of the output parameter with individual input 

parameters. In order to compute the sample correlation 

coefficient (r), the Matlab function corrcoef can be used to 

calculate a matrix of correlation coefficients for a given input 

data matrix X and a target (output) vector y as follows: R = 

corrcoef([y X]), where the input data is represented by the 

matrix X, in which each row is an observation and each 

column is an input parameter, and the output data is 

represented by the vector y. Any off-diagonal element of R 

provides the sample correlation coefficient between the 

corresponding two column vectors. 

A data set with 120 data samples from the GTE washout 

operation is considered here for the correlation analysis. The 

following set of input parameters, namely, Gas, FA, FP, 

Gas×FA, Gas×FP, FA×FP, Gas×FP/T, and FA×FP^2/T  

along with output parameters Power and EGT are considered 

for this correlation analysis. The correlation coefficients 

between the above inputs and the Power and EGT outputs are 

given in Table 2. Scatter plots of these outputs versus the 

abovementioned inputs are shown in Figure 3 to Figure 5. 

Table 2 Correlations between input and output parameters. 

 Power EGT 

𝐺𝐴𝑆 0.9160 0.7713 

𝐹𝐴 0.9574 0.9261 

𝐹𝑃 0.9155 0.7568 

𝐺𝐴𝑆 × 𝐹𝐴 0.9453 0.8129 

𝐺𝐴𝑆 × 𝐹𝑃 0.9163 0.7592 

𝐹𝐴 × 𝐹𝑃 0.9913 0.9126 

𝐺𝐴𝑆 × 𝐹𝑃/𝑇 0.9090 0.7428 

𝐹𝐴 × 𝐹𝑃2/𝑇 0.9831 0.8561 

 

High correlations values between the Power and EGT outputs 

and the selected inputs as shown in Table 2 support the choice 

of the proposed new performance indices as given in Table 1. 

Scatter plots shown in Figures 3 – 5 also illustrate these high 

correlations between the outputs of interest and the selected 

inputs, notably Power and FA, FA×FP, and FA×FP2/T. One 

can also observe the flattening of EGT curves against the 

selected inputs in the above figures that indicate the influence 

of the control system that regulates the EGT at certain 

constant values. This artifact in the trend of EGT curves due 

to the controller effect decreases the effectiveness of PIs 

involving EGT for performance monitoring. 

 

𝜌 =  
𝑃

𝑛𝑅𝑇
 

𝜌 ∝  
𝑃

𝑇
 

𝑃𝑣 = 𝑛𝑅𝑇 
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Figure 3. Scatter plots between power and EGT outputs and 

Gas (ft3) & FA (degree) inputs. 

 
Figure 4. Scatter plots between Power & EGT outputs and 

Gas×FA (ft3×degree) & FA×FP (degree×Pa) inputs. 

 
Figure 5. Scatter plots between power & EGT outputs and 

Gas×FP/T (ft3×Pa/K) & FA×FP2/T (degree×Pa2/K) inputs. 

5. EFFECT OF AMBIENT TEMPERATURE ON PI 

As reported in our previous research, Tamb has a noticeable 

influence on GTE operating parameters. This arises from the 

seasonal variations in the ambient temperature from 240 to 

310K. So it becomes important to study and eliminate the 

effect of the ambient temperature on the PIs before using 

them to quantify performance deterioration. Figure 6 presents 

the dependency of the PIs on Tamb. It can be seen that the three 

PIs are related to Power except for PI02 and PI10 increase 

with increasing Tamb until 288K. The PIs related to Power 

reach a peak when Tamb is around 288K, which matches the 

fact that for this turbine, the value of Tamb at the design point 

is 288.15K. As discussed in the previous section, both PWout 

and Gas decrease with increasing Tamb. And the variation of 

PWout is less than that of the Gas when Tamb is below 288K. 

Thus the gas turbine power plant reaches its highest 

efficiency and then begins to decrease. One of the possible 

reasons for it is the specific fuel consumption increases with 

the increase of Tamb due to the fuel gases losses. Also, when 

less than full power is required from a gas turbine, the output 

is reduced by lowering the turbine inlet temperature. In 

addition to reducing power, this change in operating 

conditions also reduces efficiency. 

After the gas has passed through the turbine, it is discharged 

through the exhaust. Though most of the chemical energy is 

converted to mechanical energy by the turbine, a significant 

amount of power remains in the exhaust gas. Higher EGT 

indicate that more energy from the fuel is being wasted rather 

than being converted to the power (or mechanical energy sent 

to the propeller). So the PIs related to the EGT, should be 

considered to inversely relate to efficiency of the GTE, which 

can be seen from the inverse trends of PI11 and PI14 

illustrated in Figure 6. 

Polynomial models are among the most frequently used 

empirical models for curve fitting, and it is adopted in the 

present research. A polynomial function is one that has the 

form: 

𝒚 = 𝜶𝒏𝒙𝒏 + 𝜶𝒏−𝟏𝒙𝒏−𝟏 + ⋯ + 𝜶𝟐𝒙𝟐 + 𝜶𝟏𝒙 + 𝜶𝟎      (4) 

The linear functional relationships between GTE parameters 

and Tamb can be represented as: 

𝑷𝑰 = 𝜶𝟏 × 𝑻𝒂𝒎𝒃 + 𝜶𝟎        (5) 

The 2nd degree polynomial functional (quadratic) 

relationships between GTE parameters and Tamb can be 

represented as: 

𝑷𝑰 = 𝜶𝟐 × 𝑻𝒂𝒎𝒃
𝟐 + 𝜶𝟏 × 𝑻𝒂𝒎𝒃 + 𝜶𝟎               (6) 

The coefficients and R2 value for first and 2nd degree 

Polynomial Empirical relationships of PIs with Tamb are listed 

in Table 3 and Table 4, respectively. For all PIs, the R2 values 

of less than 0.1 indicate that when Tamb is higher than 288K, 

the linear regression model is not fitting the data points very 

https://en.wikipedia.org/wiki/Curve_fitting


ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

6 

well for this ambient temperature range. From the figures and 

tables, it can be seen that the 2nd degree polynomial 

(quadratic) method provides better fitting results whose R2 

values are higher than those of linear fitting curves. The 

variation of the PIs with the ambient temperature shall be 

systematically eliminated while using them for estimating the 

performance in the subsequent sections. 

 

Figure 6. Dependency of new PIs on Tamb

Table 3 Coefficients and R2 for linear relationship of PIs 

with Tamb 

PI Tamb<288K Tamb>288K 

𝜶𝟏 𝜶𝟎 R2 𝜶𝟏 𝜶𝟎 R2 

PI01 0.0180 -3.5138 0.7180 -0.0056 3.2235 0.0314 

PI02 -0.0062 2.6471 0.7030 -0.0093 3.4989 0.1227 

PI05 0.0040 0.0064 0.4363 0.0102 -1.7464 0.1621 

PI10 -0.0029 1.8379 0.4250 -0.0071 2.9952 0.1006 

PI11 0.0089 -1.2156 0.6930 0.0183 -3.9017 0.2231 

PI12 0.0279 -6.2254 0.8386 0.0075 -0.3660 0.0597 

PI13 0.0045 -0.2183 0.6683 -0.0002 1.0855 9.47E-05 

PI14 0.0175 -3.5919 0.8340 0.0342 -8.3151 0.3115 

Table 4 Coefficients and R2 for 2nd degree polynomial 

relationship of PIs with Tamb 

PI 𝜶𝟐 𝜶𝟏 𝜶𝟎 R2 

PI01 -3.35E-04 0.1988 -27.9075 0.6649 

PI02 -1.61E-04 0.0813 -9.2100 0.777 

PI05 1.22E-04 -0.0621 8.9800 0.609 

PI10 -1.75E-04 0.0919 -11.0136 0.6762 

PI11 2.15E-04 -0.1077 14.6037 0.7733 

PI12 -1.82E-04 0.1256 -19.3141 0.859 

PI13 -1.61E-04 0.0919 -12.0608 0.4701 

PI14 3.86E-04 -0.1924 24.9037 0.862 

6. SHORT-TERM PERFORMANCE DETERIORATION  

The fouling of axial flow compressors causes a major loss of 

performance during the engine operation. It however results 

in a short-term deterioration in the performance that can be 

usually recovered though compressor washes but leads to 

additional downtime. Hence optimal scheduling of 

compressor wash becomes important for gas turbine 

operators especially in a highly competitive power market. It 

is also significant in the oil and gas generation market where 

a loss in gas turbine output directly affects the production.   

The fouling (operational) cycle between two subsequent 

washes shows changes in the GTE measurement. Hence a 

data set for just 5 days (i.e. 120 hrs.) at the beginning as well 

as at the end of a cycle were selected and combined to create 

a separate group for analyzing fouling. It is assumed that the 

data set collected from the beginning of the cycle corresponds 

to a fouling free condition of the compressor. The data from 

the last few days of the cycle corresponds to an adequately 

fouled condition of the rotor. This approach facilitates the 

meaningful comparison of fully fouled and clean or no 

fouling conditions. For each wash time, the after-wash value 

is compared with before-wash value, and the absolute value 

and the percentage of difference between them is calculated.  

∆𝑖= 𝑃𝐼𝐴𝑓𝑡𝑒𝑟,𝑖 − 𝑃𝐼𝐵𝑒𝑓𝑜𝑟𝑒,𝑖         (j = 2, 3, 4, … , 12)                (7) 

∆𝑖% =
∆𝑖

𝑃𝐼𝐴𝑓𝑡𝑒𝑟,𝑖
        (j = 2, 3, 4, … , 12)               (8) 

in which, i is the number of the wash. 

Figure 7 shows the short-term difference for each PI. It can 

be seen that for PIs related to Power (PI01, PI10, PI12, and 

PI13), almost all the ∆𝑖  values are positive, which indicates 

that after-wash values are higher than the before-wash values 

for each wash time.  All PIs related to Power show very good 

wash effect and short-term trends when this approach is 

adopted, except for PI13. The possible reason may be due to 
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the fuel density that we assumed for an idea gas. In future, 

more work will be performed to investigate the density of the 

real fuel gas.  

Also, for PIs related to EGT (PI05, PI11 and PI14), all the ∆𝒊 

values are negative, which indicates that after-wash values 

are lower than before-wash values for each wash time.  As 

discussed in the previous section, higher EGT indicate that 

more energy from the fuel is being wasted rather than being 

converted to power. Hence the short-term trends for the two 

PIs related to EGT (PI11 and PI14), this method also provide 

negative difference. It is also notable that curves of the short-

term difference of PI05, PI11 and PI14 show monotonically 

increasing trends, indicating the decrease in the effect of 

washing to recover the performance losses. There is a sharp 

drop of the short-term difference at the tenth wash, which 

indicates a dramatic rise of performance after the tenth wash. 

One possible reason for it is that some servicing of the turbine 

was performed along with the compressor wash. 

 

 

Figure 7. Short-term patterns for PIs  

7. LONG-TERM PERFORMANCE DETERIORATION 

The long-term performance deterioration is estimated by 

eliminating the short-term performance deteriorations from 

the GTE measurements. This deterioration corresponds to the 

non-recoverable usage-dependent structural degradations 

cumulated with usage especially in the hot gas path 

components. In this work, a direct approach is developed and 

adopted for estimating long-term performance deterioration 

patterns, in which, the difference between PI after each wash 

with the PI after the first wash is calculated and accumulated, 

as shown in following equations: 

∆𝑗= 𝑃𝐼𝐴𝑓𝑡𝑒𝑟,𝑗 − 𝑃𝐼𝐴𝑓𝑡𝑒𝑟,1          (j = 2, 3, 4, … , 12)       (9)               

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ∆𝑗% = ∑
∆𝑗

𝑃𝐼𝐴𝑓𝑡𝑒𝑟,𝑗
       (j = 2, 3, 4, … , 12)   𝑛

𝑗=2 (10) 

in which j is the number of the wash. 

This method directly compares the after wash values of the 

PI for each wash time, eliminating the effect of the short-term 

deterioration and the influence of the ambient temperature. 

 

 

Figure 8. Long-term trends for new PIs  

 

The accumulated differences between the PIs after every 

wash and after the first wash are plotted in Figure 8. It can be 

seen that for PIs related to Power, the accumulations are 

mostly negative, irrespective of the density of fuel gas. This 

suggests that the efficiency of the GTE decreases throughout 

the operating time. It reflects the GTE performance 

deterioration because of different failure mechanisms in the 

GTE parts and sub-system related to irreversible structural 

degradation. For PIs related to EGT, the majority of the 

values of the difference between PIj and PI1 are also negative, 
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and indicates good long-term trends. From the plotted 

accumulated difference shown in Figure 8, it can be seen that 

throughout the operating period, even though overall 

decrease is observable for PIs related to Power, the change 

rates of them are not constant. More work can be performed 

to study the long-term performance deterioration patterns and 

develop prediction models to estimate impending failures. 

8. CONCLUSION 

Performance analysis for a low power rating and partially 

loaded gas turbine engine, is carried out by a proposed model-

free data analytics approach using available data. Several 

performance indices (PI) are proposed considering the ratio 

of Power and EGT output to combination of parameters 

related to fuel consumption. The effects of ambient 

temperature on PIs and the efficacy of using these PIs for 

identifying the short-term performance and long-term 

performance deterioration arising from compressor fouling 

and structural degradation respectively.  Conclusions that 

emerge from the analysis of the obtained result are as follows： 

 PIs using single as well as combined engine parameters 

show overall consistent dependence on the ambient 

temperature. The PIs related to Power increases along 

with ambient temperature up to around 288K, indicating 

the engine gets relatively better performance and high 

efficiency in this temperature range. The PI decreases for 

Tamb higher than 288K. This is due to the effect of 

parasitic losses in the pre-cooler used for power 

augmentation observed during summer months. 

 Correlation analysis based input selection supports the 

choices of PIs proposed in this paper. Also, based on this 

correlation analysis, one can conclude the PIs based on 

Power are more effective than those based on EGT for 

performance monitoring of gas turbine engines. 

 A new analysis approach for short-term performance 

deterioration patterns is adopted by directly comparing 

the after-wash and before-wash values of PIs for every 

wash. The selected PIs especially related to Power shows 

good estimation of short-term deterioration throughout 

the operating period.  

 A new method for long-term performance deterioration 

patterns is presented by directly comparing the after wash 

values of the PI for each wash time, eliminating the effect 

of the short-term deterioration and the influence of the 

ambient temperature. The results confirm that both new 

and old PIs related to Power consistently captures the 

trend of the long-term deterioration. While for the PIs 

related to EGT, only new PIs are able to capture such 

deterioration. This suggests the need of adopting the 

combination of parameters to define the new PIs. 

 Comparing to other prognostic methods, this novel 

approach provides a simpler, cheaper way to analyze 

system performance, especially in real-time. The result 

demonstrates the feasibility of deployment of model-free 

data analytics using a systematic data manipulation 

methodology and confirms the applicability of the 

proposed performance indices for performance 

monitoring. The work can be continued with introduction 

of additional PIs for more comprehensive analysis and 

prediction for short-term and long-term performance 

deterioration, towards a holistic Prognostics and 

Health Management (PHM) system for gas turbine 

engine. 
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