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hai-canh.vu@utc.fr

4 Energy Designer and IT, EODev, 92160, Antony, France
pierre-yves.liegeois@eo.dev

ABSTRACT

Proton Exchange Membrane Fuel Cells (PEMFCs) are in-
creasingly deployed in clean energy systems, such as GEH2
hydrogen generators, where they operate under highly dy-
namic and unpredictable load conditions. Accurate predic-
tion of their Remaining Useful Life (RUL) is essential for
ensuring reliable, cost-effective, and proactive maintenance
strategies. However, conventional voltage-based Health Indi-
cators (HIs) are highly sensitive to power fluctuations and fail
to provide consistent degradation trends in real-world indus-
trial scenarios, particularly when system usage varies signif-
icantly across different clients, as in the GEH2 case. In this
paper, we propose a scalable two-stage framework for RUL
prediction of PEMFCs operating under such conditions. First,
we introduce a machine learning-based method to extract a
degradation-specific Health Indicator directly from voltage
measurements, effectively filtering out transient operational
effects. Second, we develop a hybrid deep learning archi-
tecture that combines Transformer networks and Gated Re-
current Units (GRUs) to model temporal dependencies and
provide accurate RUL predictions under dynamic conditions.
The proposed approach is validated on a real-world indus-
trial dataset collected from three PEMFC stacks deployed in
GEH2 systems operating under highly variable conditions.
Comparative results show that our method consistently out-
performs baseline machine learning and deep learning mod-
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els, achieving superior accuracy, robustness, and generaliza-
tion across diverse mission profiles.

1. INTRODUCTION

As a key technology in clean energy conversion, fuel cells
based on proton exchange membranes offer a compelling
combination of high efficiency, low environmental impact,
and flexibility across a wide range of applications, from mo-
bility solutions and portable electronics to stationary and
emergency power systems (Wee, 2007). Their role is espe-
cially critical in electro-hydrogen generators such as the zero
emission electro-hydrogen generator (GEH2) systems devel-
oped by EODev, where they produce electricity from hydro-
gen and oxygen, emitting only water as a byproduct. Despite
these advantages, their broader industrial adoption remains
challenged by issues related to long-term durability, frequent
maintenance requirements, and gradual performance degra-
dation.

To address these issues, accurate Remaining Useful Life
(RUL) prediction is essential. It enables condition-based
maintenance strategies that reduce operational costs, prevent
unexpected failures, and improve system reliability (Hua,
Zheng, Pahon, Péra, & Gao, 2021; J. Chen, Zhou, Lyu, & Lu,
2017). Yet, developing reliable prognostic models for PEM-
FCs remains challenging due to the complex and nonlinear
nature of their degradation processes, which are influenced
by interdependent factors such as current density, humidity,
temperature, and load cycling (K. Li et al., 2024).

These challenges are particularly pronounced in real-world
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industrial settings, such as GEH2 systems, where PEMFCs
operate under highly dynamic and user-dependent conditions.
In these environments, the power demand fluctuates continu-
ously, introducing transient effects that directly impact volt-
age measurements, the most commonly used signal for health
assessment. As a result, traditional Health Indicators (HIs)
based on voltage or power, though effective under static con-
ditions, become unreliable in dynamic regimes. Transient
load variations and changing environmental conditions can
obscure true degradation patterns, making it difficult to distin-
guish between reversible operational effects and irreversible
aging (Hua, Zheng, Pahon, & Péra, 2020; Yu et al., 2024;
Zhang, Hou, Li, Chen, & Wang, 2025).

In this study, we introduce a two-stage, data-driven frame-
work designed to overcome the limitations of traditional ap-
proaches by extracting a reliable, degradation-specific HI di-
rectly from voltage measurements. This HI is then used
to accurately predict the Remaining Useful Life (RUL) of
PEMFCs operating under dynamic and variable conditions.
The effectiveness of the proposed method is demonstrated
through validation on real-world industrial data collected
from PEMFC stacks integrated into GEH2 systems, where
it consistently captures degradation trends and outperforms
existing prognostic models in highly dynamic environments.

The remainder of this paper is structured as follows: Section
2 provides an overview of related work on RUL prediction
and Health Indicator extraction for PEMFCs, and highlights
the specific contributions of this study. Section 3 presents the
proposed methodology, covering both the HI extraction strat-
egy and the hybrid deep learning model. Section 4 discusses
the experimental results and comparative analysis. Finally,
Section 5 concludes the paper.

2. BACKGROUND AND CONTRIBUTIONS

2.1. Related work and scientific contributions

In recent years, data-driven approaches have become in-
creasingly popular for predicting the Remaining Useful Life
(RUL) of PEMFCs, as they can model complex degradation
behaviors without requiring detailed physical knowledge of
the system.

Early research primarily employed conventional machine
learning techniques, such as multi-kernel relevance vector
machines (MK-RVM) optimized through Bayesian meth-
ods, demonstrating strong results under controlled conditions
(Tian et al., 2023). Recurrent neural networks (RNNs), espe-
cially Long Short-Term Memory (LSTM) models, have been
extensively utilized to capture temporal patterns in degrada-
tion data. For example, (Liu et al., 2019) implemented LSTM
with Locally Weighted Scatterplot Smoothing (LOESS) and
interval sampling to enhance prediction accuracy, while (Ma,
Xu, Li, Yao, & Yang, 2021) combined adaptive LOWESS

with bidirectional LSTM for real-time onboard RUL estima-
tion in fuel cell vehicles.

More recently, Transformer-based models have attracted at-
tention due to their capability to model long-range depen-
dencies and handle non-stationary time series. (Zhou, Zeng,
Zheng, Wang, & Zhou, 2025) proposed a Crossformer model
with adaptive normalization, achieving significantly better
performance than standard Transformers. Likewise, (Fu,
Zhang, Xiao, & Zheng, 2024) employed a non-stationary
Transformer coupled with discrete wavelet transform (DWT)
for denoising, outperforming LSTM and Echo State Net-
works.

However, many of these approaches remain constrained to
laboratory or simulated scenarios, which fail to reflect the
complexities of real-world systems such as GEH2. In these
environments, PEMFCs experience highly dynamic and user-
driven power demands, causing transient fluctuations that di-
rectly impact voltage readings. Since voltage is the most
commonly used Health Indicator (HI) for PEMFC prognos-
tics, its sensitivity to operational variations makes it unreli-
able without proper compensation or filtering.

Several works have explored more robust HI formulations.
(Z. Li, Zheng, & Outbib, 2019) proposed a data-driven strat-
egy using sliding Linear Parameter-Varying (LPV) models to
derive a virtual steady-state voltage, followed by RUL predic-
tion using ensemble Echo State Networks. (Hua, Zheng, Pa-
hon, Péra, & Gao, 2021) Introduced the Relative Power Loss
Rate (RPLR), a dynamic HI better suited for varying mission
profiles, coupled with a double-input Echo State Network for
RUL prediction.

Building on RPLR, (Yang et al., 2025) used seasonal trend
analysis and hybrid modeling on real-world fuel cell bus data.
Similarly, (L. Chen et al., 2025) addressed voltage recov-
ery effects using improved signal decomposition techniques
and a hybrid deep learning model combining BiLSTM, CNN-
attention mechanisms, and Kalman filtering for accurate RUL
estimation.

Other approaches have focused on learning HIs directly from
raw signals. (Wang, Li, Outbib, Dou, & Zhao, 2022) used
symbolic regression and LSTM networks to extract robust
HIs under dynamic conditions. (He, Liu, Sun, Mao, & Lu,
2022) developed a framework using autoencoders to learn la-
tent degradation features from voltage data, which were then
used in LSTM networks for RUL prediction.

Despite advances in data-driven prognostics, reliably extract-
ing HIs for PEMFCs under real-world dynamic conditions
remains a major challenge. Most existing methods are devel-
oped in controlled lab settings, which do not capture the com-
plexity of industrial environments like GEH2 systems where
power demand and operating conditions vary continuously.
These fluctuations introduce significant variability into volt-
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age signals, making it difficult to separate reversible opera-
tional effects from true degradation.

Additionally, many HI extraction approaches rely on complex
multi-step processing or model-based compensation, which
often lack generalizability and require extensive domain-
specific tuning, limiting their practical applicability in indus-
trial contexts. Furthermore, the joint integration of robust HI
extraction with advanced deep learning architectures for Re-
maining Useful Life (RUL) prediction is still underexplored.

To address these gaps, this work contributes:

• A machine learning method to extract a degradation-
specific HI directly from voltage data, effectively fil-
tering out transient power demand fluctuations without
complex preprocessing.

• A hybrid deep learning model combining Transformer
networks and Gated Recurrent Units (GRUs) to capture
temporal dependencies for accurate, robust RUL predic-
tion under highly dynamic conditions.

• Validation on a real industrial dataset from PEMFC
stacks in GEH2 systems, demonstrating practical appli-
cability beyond simplified laboratory scenarios.

• Comprehensive benchmarking against state-of-the-art
methods, showing superior accuracy, robustness, and
generalization across variable operating profiles.

2.2. Data description and problem statement

Each GEH2 unit is equipped with an IoT-enabled data acqui-
sition system that continuously collects a wide range of sig-
nals from distributed sensors and control units throughout the
generator. These signals capture critical aspects of both the
operating environment and system control, offering rich in-
sights into the electrochemical behavior and degradation dy-
namics of the embedded PEMFC stacks.

Table 1 summarizes the key parameters used in this study.
These include essential physical quantities such as stack cur-
rent, air and hydrogen pressures, coolant temperatures, air-
flow, and stack voltage. Collectively, these variables repre-
sent the principal drivers of fuel cell performance and aging,
and serve as the input features for health assessment and prog-
nostics.

Table 1. Operating ranges of key PEMFC parameters.

Parameter Description Range
IFC Stack current (A) 0 – 290
PHL Hydrogen pressure (kPa) 50 – 282
FCO TEMP Outlet coolant temperature (°C) 15 – 69
FCI TEMP Inlet coolant temperature (°C) 16 – 61
PAFIC Inlet air pressure (kPa) 80 – 206
QAF Air flow rate (NL/min) 0 – 3600
VFC Stack voltage (V) 0 – 400

Among these variables, stack voltage (VFC) is the most

commonly monitored and widely used indicator of fuel cell
health. However, in real-world industrial usage, it is heav-
ily influenced by rapid fluctuations in power demand. As
the current density changes instantaneously with varying
load profiles, corresponding voltage responses exhibit high-
frequency, irregular transients. As illustrated in Figure 1, the
raw voltage signal of a typical PEMFC stack presents high
variability, making it difficult to extract a clear long-term ag-
ing trajectory.

Figure 1. Evolution of overall stack voltage throughout the
operating period.

Under static conditions, voltage decay is typically attributed
to degradation alone. However, in dynamic environments,
such as those encountered in GEH2 systems, voltage is also
significantly shaped by mission profiles and load transients.
Consequently, it becomes unsuitable to directly use voltage as
a HI without accounting for these external effects. This chal-
lenge has only been partially addressed in the literature, with
a limited number of studies proposing methods for robust HI
extraction under such conditions (Hua, Zheng, Pahon, Péra,
& Gao, 2021).

Given these complexities, there is a clear need for a more gen-
eralizable and practical method to derive degradation-specific
HIs under real-world, dynamic operating conditions. This re-
search addresses this gap through a twofold objective: (1)
To develop a machine learning-based approach that extracts a
robust Health Indicator from raw voltage signals, effectively
separating true degradation effects from transient operational
influences; (2) To design a deep learning framework that
leverages this HI to accurately predict the Remaining Use-
ful Life (RUL) of PEMFCs, even under non-stationary and
highly dynamic operating profiles.
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The next section introduces the proposed framework in detail.

3. PROPOSED METHODOLOGY

This section presents the complete methodology developed to
perform robust Health Indicator (HI) extraction from voltage
signals and RUL prediction under dynamic operating condi-
tions. The proposed two-stage framework is illustrated in Fig-
ure 2, and detailed in the following subsections.

Figure 2. Overview of the proposed framework.

Health Indicator extraction via XGBRegressor

To isolate a voltage-based HI that tracks PEMFC degradation
independently of load fluctuations, we fix the power output to
a nominal value Pout(t) = Pnom. We then train an XGBRe-

gressor to predict the true stack voltage VFC(t) whenever the
PEMFC operates at this nominal power:

V̂ FCnom(t) = fXGB

(
Pout(t), C(t)

)
, (1)

where Pout(t) is the output power, Pnom is the nominal output
power, and C(t) is the vector of auxiliary operating condi-
tions at time t:

C(t) =
[
IFC(t), FCI TEMP(t), FCO TEMP(t),

PAFIC(t), PHL(t), QAF(t)
] (2)

with IFC(t) the stack current, FCI TEMP(t) the inlet
coolant temperature, FCO TEMP(t) the outlet coolant tem-
perature, PAFIC(t) the air pressure at the fuel cell inlet,
PHL(t) the hydrogen pressure, and QAF(t) the fuel cell air
flow.

During training, we restrict the dataset to those timestamps T
at which Pout(t) = Pnom. The XGBRegressor model fXGB

is trained to minimize a regularized squared-error objective
over the set T :

min
f

∑
t∈T

(
V FC(t)− fk(Pout(t), C(t))

)2
+ Ω[fk], (3)

where fk is the prediction function of tree k and Ω is a reg-
ularization that penalizes the regression tree functions and is
defined as follows:

Ω(f) = γT +
1

2
λ∥w∥2, (4)

where T is the total number of leaves in the tree, w is the leaf
weights, and γ and λ are hyperparameters that control the
regularization strength. Hyperparameters such as learning
rate, maximum tree depth, number of estimators, and subsam-
ple ratio were tuned using GridSearchCV for each PEMFC to
achieve a better balance between bias and variance. The esti-
mated hyperparameter values are presented in Table 2.

PEMFC ID Learning Rate Max Depth # Estimators Subsample

PEMFC62 0.01 6 500 0.8
PEMFC63 0.10 3 100 1.0
PEFMC52 0.05 3 500 0.8

Table 2. Estimated hyperparameters for the XGBRegressor
per PEMFC.

To extract a robust voltage-based Health HI, the XGBRe-
gressor is trained to predict the stack voltage under nomi-
nal power conditions. The model takes as input the output
power and a set of auxiliary operating variables (stack cur-
rent, inlet/outlet coolant temperatures, air and hydrogen pres-
sures, and air flow) and is trained only on timestamps where
the output power equals the nominal value. The objective
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function minimizes a regularized squared error across these
samples, while hyperparameters, including learning rate, tree
depth, number of estimators, and subsampling ratio, are op-
timized via GridSearchCV to balance bias and variance. The
trained model is then used to estimate the HI at all operating
points, providing a degradation signal that is largely indepen-
dent of transient load fluctuations and suitable as input for the
Transformer-GRU RUL predictor.

After training, the voltage-based HI is given by the following:

HI(t) =

{
V FC(t), t ∈ T ,

fXGB

(
Pnom, C(t)

)
, otherwise.

The extracted HI serves as the primary input to the subse-
quent Transformer-GRU deep learning architecture for RUL
prediction, establishing a solid foundation for accurate prog-
nostics under dynamic operating conditions.

Hybrid Transformer-GRU architecture for RUL predic-
tion

To predict the RUL from the extracted HI, we design a hybrid
deep learning model that integrates Transformer encoders and
Gated Recurrent Units (GRUs). This combination leverages
the Transformer’s ability to capture long-range dependencies
and the GRU’s efficiency in modeling temporal dynamics.

The input consists of a normalized multivariate time series:

X(t) = [HI(t),C(t)]

rescaled to [0, 1] using min–max normalization:

X ′(t) =
X(t)−Xmin

Xmax −Xmin
.

We generate overlapping sliding windows of length L from
the normalized series. Each window is first processed by the
Transformer module, where each time step is projected into
query (Q), key (K), and value (V ) vectors. Attention scores
are computed as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V,

where dk is the dimension of the key vectors. Multi-head
attention layers with residual connections and layer normal-
ization capture contextual patterns across time.

The output sequence from the Transformer, xtrans
t , is then fed

into a GRU layer, which updates its hidden state via:

• Update gate: ut = σ(Wu · [ct−1, x
trans
t ])

• Reset gate: rt = σ(Wr · [ct−1, x
trans
t ])

• Candidate state: c̃t = tanh(W · [rt ⊙ ct−1, x
trans
t ])

• Final state: ct = (1− ut)⊙ ct−1 + ut ⊙ c̃t

This architecture captures both global and local temporal re-
lationships in the degradation signal, enabling accurate and
robust RUL predictions under dynamic operating conditions.
The key parameters of the Transformer-GRU model, along
with their corresponding values, are summarized in Table 3.
In our experiments, chronological split is adopted; 80% of
the data was used for training, while the remaining 20% was
reserved for testing.

Model Evaluation Metrics

To evaluate model performance, we use three standard error
metrics (Benaggoune, Yue, Jemei, & Zerhouni, 2022):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − pi)2 (5)

MAE =
1

N

N∑
i=1

|yi − pi| (6)

MAPE =
100

N

N∑
i=1

|yi − pi|
|yi|

(7)

where yi and pi are the true and predicted values of the HI,
and N is the number of test samples.

The next section presents the prediction results and compares
the proposed framework with established benchmark meth-
ods.

4. RESULTS AND DISCUSSIONS

This section presents the evaluation of the proposed frame-
work using real-world data from three PEMFC stacks em-
bedded in GEH2 systems, each operating under different
dynamic conditions. The performance of our method was
compared against several well-known models: LSTM (Long
Short-Term Memory) (Liu et al., 2019), TCN (Temporal Con-
volutional Network) (Zhang, Hou, Li, Chen, Wang, Lüddeke,
et al., 2025), MSTCN (Multi-Scale Temporal Convolutional
Network) (Deng, Bi, Liu, & Yang, 2022), and Transformer
(Fu et al., 2024).

Table 4 presents the numerical results and Figure 3 visu-
ally compares the performance of these models using RMSE,
MAE, and MAPE metrics across all three PEMFCs.

The proposed approach, which combines a learned Health
Indicator with a Transformer-GRU architecture, consis-
tently outperformed all benchmark methods across all
PEMFC units in terms of RMSE, MAE, and MAPE. No-
tably, for PEMFC62, our model achieved a substantial
reduction in RMSE, over 60% lower than the second-best
method, MSTCN. Similar improvements were observed for
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Parameter Description PEMFC62 PEMFC63 PEMFC52
Epochs Maximum number of training iterations 100 150 150
Number of heads Number of attention heads in Transformer 4 12 12
Number of layers Number of Transformer encoder layers 2 1 1
Model dimension Dimension of the embedding space 64 64 64
Sequence length Number of time steps in each input sequence 20 20 20
GRU units Number of units in the GRU layer 128 128 128
Batch size Number of samples processed per update 32 32 32
Dropout Dropout rate for regularization 0.2 0.1 0.1
Patience Epochs with no improvement before early stopping 10 10 10

Table 3. Transformer-GRU model hyperparameters for each PEMFC.

Method PEMFC62 PEMFC63 PEMFC52
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

LSTM 0.0524 0.0471 0.23% 0.0870 0.0625 0.31% 0.0700 0.0537 0.46%
TCN 0.0453 0.0421 0.21% 0.0963 0.0814 0.40% 0.1465 0.1317 1.13%
MSTCN 0.0385 0.0359 0.18% 0.0692 0.0576 0.28% 0.0966 0.0829 0.71%
Transformer 0.0579 0.0553 0.27% 0.0958 0.0865 0.42% 0.1044 0.0871 0.75%
Proposed Method 0.0151 0.0098 0.05% 0.0387 0.0312 0.15% 0.0517 0.0435 0.37%

Table 4. Comparison of prediction performance between the proposed method and benchmark models on three PEMFC datasets

PEMFC63, where it reduced RMSE by more than 44%.
Even in the more challenging case of PEMFC52, which ex-
hibits highly variable degradations, the proposed method still
achieved the best overall performance.

Among the benchmark methods, MSTCN performed well
on PEMFC62 and PEMFC63 due to its ability to capture
multi-scale temporal patterns, while LSTM was better suited
to PEMFC52, where its recurrent nature helped model less
structured degradation trends. Standard Transformer mod-
els, however, consistently underperformed, suggesting that
attention mechanisms alone may be insufficient for modeling
PEMFC degradation without additional temporal context.

All models, including the proposed one, show different lev-
els of prediction accuracy across the three PEMFC units,
highlighting the variability in their respective degradation be-
haviors. PEMFC62 yields the lowest prediction errors over-
all, followed by PEMFC63, whereas PEMFC52 consistently
records the highest errors, suggesting it undergoes more irreg-
ular or complex degradation. The advantage of the proposed
method is most apparent in PEMFC62, where it achieves sig-
nificantly better accuracy than the other approaches. In con-
trast, PEMFC52 proves more challenging for all models, as
indicated by higher MAPE values, pointing to more unstable
and difficult-to-predict degradation patterns in this unit.

In summary, the proposed approach achieved the most accu-
rate and robust predictions across all test cases. Its ability
to generalize across different degradation profiles and main-
tain low error rates under varying operating conditions makes
it highly suitable for real-world PEMFC applications. These

results highlight the effectiveness of the proposed method in
capturing true degradation trends from voltage data, despite
the masking effects of dynamic power demand, and demon-
strate its practical value for predictive maintenance and fuel
cell lifecycle optimization.

5. CONCLUSION

This work tackled the challenge of accurately predicting the
Remaining Useful Life (RUL) of PEMFCs operating under
the highly dynamic and variable conditions typical of GEH2
electro-hydrogen generators. Traditional HIs derived from
raw voltage or power signals often fail to perform reliably
in such environments due to their sensitivity to transient load
variations.

To address this, we proposed a simple yet effective HI ex-
traction method based on XGBRegressor, capable of isolating
degradation-specific trends from voltage data while remain-
ing robust to short-term operational fluctuations. This Health
Indicator serves as a stable foundation for long-term prognos-
tics under real-world conditions.

Building on this, we developed a hybrid deep learning model
combining Transformer and GRU layers, leveraging both at-
tention mechanisms and recurrent processing to effectively
model temporal degradation patterns. The proposed model
consistently outperformed state-of-the-art benchmarks across
multiple evaluation metrics and PEMFC units, demonstrating
strong predictive accuracy and generalization on a diverse in-
dustrial dataset.

Overall, the proposed framework offers a robust, inter-
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Figure 3. Comparison of RMSE, MAE, and MAPE be-
tween the proposed method and benchmark methods across
the three PEMFCs.

pretable, and scalable solution for PEMFC RUL prediction
in dynamic, real-world settings. Its adaptability to non-
stationary conditions and practical relevance to client-driven
usage patterns make it well-suited for deployment in indus-
trial hydrogen energy systems.
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