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ABSTRACT

Electric Unmanned Aerial Vehicles (UAVs) experience prob-
lems and risks associated with battery aging and abuse ef-
fects. Therefore, a Battery Health Management (BHM) sys-
tem is necessary to make the battery a safe, reliable, and
cost-efficient solution. BHM systems are essential to ensure
that the mission goal(s) can be achieved and to aid in online
decision-making activities such as fault mitigation and mis-
sion replanning. To accomplish these tasks, we have adopted
a model-based prognostics architecture for battery-powered
UAVs where a battery model is used as the basis of two se-
quential task, (i) the State of Charge (SOC) estimation, and
(ii) the End of Discharge (EOD) prediction. Small-size air-
craft usually have weight, size and cost constraints. There-
fore, there is a need to accurately (i) estimate the SOC, and
(ii) predict the EOD time of Li-Po batteries in small-size
UAVs that can operate in constrained environments. This
work proposes a modification to an electrochemistry-based
battery model that allows reducing computational resources
without losing accuracy in prognostic results. The resulting
hybrid battery model is validated and applied to prognostic
of the EOD time in discharge cycles of a Li-Po battery of a
small size quadcopter that performs delivery missions. Pre-
diction results using the proposed hybrid battery model are
shown to be very accurate while its estimation and predic-
tion processing times are significantly lower than processing
times using the electrochemistry-based battery model.

Gina Sierra et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have be-
come increasingly popular because they can perform com-
plex missions without human intervention. By its wing type,
UAVs can be categorised into the following types: fixed-
wing, rotary-wing and flapping-wing. Multicopters, a type
of rotary-wing aircraft with at least three independent rotors
and propellers, have recently emerged as the preferred plat-
form since they are mechanically simple, highly maneuver-
able and enable safe and low-cost experimentation and op-
eration in three dimensions. Unlike their fixed-wing coun-
terparts, they can also hover in place, and take off and land
vertically, (Valavanis & Vachtsevanos, 2015).

Power required is strongly determined by the total weight of
the aircraft. The greater the weight, the greater the power re-
quired by the craft. Consequently, flight endurance is shorter
when aircraft are heavier. Lithium Polymer (Li-Po) batteries
are commonly used in UAVs as the primary power source be-
cause of their high-density energy. However, battery-powered
UAVs experience problems and risks associated with the use
of batteries as the primary Energy Storage Devices (ESD),
namely, aging effects and operational abuse. The battery
capacity decreases over time and use. Factors such as the
room temperature of storage and usage, the State of Charge
(SOC) in which the battery is stored, the discharge rate, over-
charges or over-discharges affect its capacity (Mikolajczak,
Kahn, White, & Long, 2011). Also, battery performance is
strongly determined by characteristics such as the current dis-
charge rate, depth of discharge, or the internal temperature.

Therefore, Battery Health Management (BHM) systems have
emerged to make the battery a safe, reliable, and cost-efficient
solution. BHM systems are essential to verify if the mission
goal(s) can be achieved and to aid in online decision-making
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activities such as fault mitigation and mission replanning. To
accomplish these tasks, State of Charge (SOC) estimation and
End of Discharge (EOD) prognostic are fundamental. How-
ever, as in many other state estimation problems, the SOC
is not observable; namely, it can not be directly measured,
and it has to be inferred from indirect but statistically related
measurements (e.g., battery voltage, discharge current, and
temperature) (Pola et al., 2015).

BHM systems for battery-powered UAVs have adopted a
model-based prognostics architecture (Daigle & Goebel,
2013) where the battery is being monitored, and one develops
a battery model describing how the system evolves in time in
response to its inputs (Daigle, 2016a). Usually, the current is
considered as an input. That model is used as the basis of two
sequential problems, (i) the SOC estimation problem, and (ii)
the EOD prediction problem.

In (Saha, Quach, & Goebel, 2011, 2012; de Souza Candido,
Kawakami Harrop Galvao, & Yoneyama, 2014) authors have
carried out SOC estimation and EOD time prognosis based
on Particle Filter (PF). In contrast, (Cuong et al., 2013; Bole,
Daigle, & Gorospe, 2014; Hogge et al., 2015) used Unscented
Kalman Filter (UKF) for the same purpose. Both methods
gave satisfactory results; however, PF is emerging as the pre-
ferred method because it appears to exhibit somewhat better
performance than UKF (Walker, Rayman, & White, 2015).

Battery models with different levels of granularity have been
explored and evaluated regarding their performance for esti-
mation and prognosis. The results showed that higher granu-
larity and lower levels of abstraction typically give more ac-
curate predictions (Saha et al., 2011). Consequently, models
that provide high accuracy usually are complex and require
a large number of parameters, which is problematic for real-
time applications.

Besides that, small-size aircraft specifically have weight, size
and cost constraints. Consequently, as small-size UAVs be-
come more prevalent, the need for computationally efficient
software will increase. The improvement of efficiency in mo-
bile software for drones and mobile devices is arising as a new
research topic as companies explore the use of drones for de-
livering and other complex tasks (Banerjee & Roychoudhury,
2017). Therefore, there is a emerging need to accurately (i)
estimate the State of Charge (SOC), and (ii) predict the End
of Discharge (EOD) time of Li-Po batteries in small-size mul-
tirotors that can operate in constrained environments.

In order to decrease computational resources in battery
prognostic, this work proposes a slight modification to the
electrochemistry-based battery model by (Daigle & Kulka-
rni, 2013) to reduce its complexity without losing accuracy.
In particular, an empirical parameterization of the equilibrium
potential is proposed instead of the electrochemistry charac-
terization given in (Daigle & Kulkarni, 2013). Since the re-

sulting model is a compound of electrochemistry and empir-
ical characterizations, we consider the model herein as a hy-
brid model. Prognostics results using the hybrid model for
a Li-Po battery of a small-size quadcopter that performs de-
livery missions are evaluated in terms of EOD expectations,
the Just-In-Time Point value, and the α − λ metric. In ad-
dition, the estimation and prediction processing times when
the hybrid model is used are measured in order to evaluate
its efficiency concerning estimation and prediction process-
ing times when the original electrochemistry-based battery
model is used.

The paper is organized as follows. Section 2 describes the
electrochemistry-based battery model and the proposed mod-
ifications to reduce its complexity. Also, model validation
is provided in this Section. In Section 3, the hybrid model
is used to perform SOC estimations and EOD predictions on
discharge cycles of a Li-Po battery of a small-size quadcopter
that performs delivery missions. In addition, results are pre-
sented and discussed. Section 4 concludes the paper.

2. HYBRID BATTERY MODEL

This section introduces the battery model by (Daigle &
Kulkarni, 2013) which is derived from a simplified set of
electrochemical equations governing charge flow and volt-
age drops at the cathode, anode, and separator layers of a
Li-ion battery. Then, a modification to the characterization of
the equilibrium potential is described. Finally, the identified
model parameters are presented and a validation of the model
for a variable loading is made.

In the model by (Daigle & Kulkarni, 2013), the voltage terms
of the battery are expressed as functions of the amount of
charge in the electrodes (the states of the model). Each elec-
trode, positive (subscript p) and negative (subscript n), is split
into two volumes, a surface layer (subscript s) and a bulk
layer (subscript b). The differential equations for the bat-
tery describe how charge moves through these volumes. The
charge (q) variables are described using:

q̇s,p = iapp + q̇bs,p (1)
q̇b,p = −q̇bs,p + iapp − iapp (2)
q̇b,n = −q̇bs,n + iapp − iapp (3)
q̇s,n = −iapp + q̇bs,n, (4)

where iapp is the applied electric current. The term q̇bs,i de-
scribes diffusion from the bulk to surface layer for electrode
i, where i = n or i = p.

q̇bs,i =
1

D
(cb,i − cs,i) (5)

where D is the diffusion constant. The c terms are lithium ion
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Figure 1. Battery voltages.

concentrations:

cb,i =
qb,i
vb,i

(6)

cs,i =
qs,i
vs,i

(7)

Here, cv,i is the concentration of charge in electrode i, and
vv,i is the total volume of charge storage capability. It is de-
fined vi = vb,i + vs,i. Note now that the following relations
hold:

qp =qs,p + qb,p (8)
qn =qs,n + qb,n (9)

qmax =qs,p + qb,p + qs,n + qb,n (10)

It can also express mole fractions (x) based on the q variables:

xi =
qi

qmax
, (11)

xs,i =
qs,i
qmaxs,i

, (12)

where

qmaxs,i =qmax
vs,i
vi
, (13)

and qmax = qp + qn refers to the total amount of available
Li-ions. It follows that xp + xn = 1. For Li-ion batteries,
when fully charged, xp = 0.4 and xn = 0.6. When fully
discharged, xp = 1 and xn = 0.

The different potentials are summarized in Fig. 1 (originally
presented in (Daigle & Kulkarni, 2013)). The overall bat-
tery voltage V (t) is the difference between the potential at
the positive current collector, φs(0, t), and the negative cur-
rent collector, φs(L, t), minus resistance losses at the current
collectors (not shown in the diagram). At the positive current
collector is the equilibrium potential VU,p. This voltage is
then reduced by Vs,p, due to the solid-phase ohmic resistance,
and Vη,p, the surface overpotential. The electrolyte ohmic re-

sistance then causes another drop Ve. At the negative elec-
trode, there is a drop Vη,n due to the surface overpotential,
and a drop Vs,n due to the solid-phase resistance. The volt-
age drops again due to the equilibrium potential at the nega-
tive current collector VU,n. These voltages are described by
the following set of equations:

VU,i = Uo +
RT

nF
ln

(
1− xs,i
xs,i

)
+ VINT,i (14)

VINT,i =
1

nF

Ni∑
k=0

Ai,k

(
(2xs,i − 1)k+1 − 2xs,ik(1− xs,i)

(2xs,i − 1)1−k

)
(15)

Vo = iappRo (16)

Vη,i =
RT

Fα
arc sinh

(
Ji

2Ji0

)
(17)

Ji =
i

Si
(18)

Ji,0 = ki(1− xs,i)α(xs,i)
1−α (19)

V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n (20)

V̇ ′o =
Vo − V ′o
τo

(21)

V̇ ′η,p =
Vη,p − V ′η,p

τη,p
(22)

V̇ ′η,n =
Vη,n − V ′η,n

τη,n
(23)

Here, U0 is a reference potential, R is the universal gas con-
stant, T is the electrode temperature (in K), n is the number
of electrons transferred in the reaction (n = 1 for Li-ion), F
is Faraday’s constant, Ji is the current density, and Ji0 is the
exchange current density, ki is a lumped parameter of several
constants including a rate coefficient, electrolyte concentra-
tion, and maximum ion concentration. VINT,i is the activity
correction term (0 in the ideal condition). Vo is the voltage
drops due to the solid-phase ohmic resistances, the electrolyte
ohmic resistance, and the resistances at the current collectors.
The τ parameters are empirical time constants (used since the
voltages do not change instantaneously). This model contains
as states qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p, and V ′η,n. The single
model output is V .

By convention, the SOC of a battery is 1 when the battery is
fully charged and 0 when the battery is fully discharged. In
this model, it is analogous to the mole fraction xn, but scaled
from 0 to 1. The model distinguishes between nominal SOC
and apparent SOC. Nominal SOC is computed based on the
combination of the bulk and surface layer control volumes in
the negative electrode, whereas apparent SOC is be computed
based only on the surface layer. When a battery reaches the
voltage cutoff, apparent SOC is 0, and nominal SOC is greater
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than 0 (how much greater depends on the difference between
the diffusion rate and the current drawn). Once the concen-
tration gradient settles out, the surface layer will be partially
replenished and apparent SOC will rise while nominal SOC
remains the same. Nominal (SOCn) and apparent (SOCa)
SOC are given by

SOCn =
qn

qmaxn
, (24)

SOCa =
qs,n

qmaxs,n
, (25)

where qmaxn = 0.6qmax and qmaxs,n = qmaxn vs,n
vn

.

Since the output voltage is a function of the mole fraction
and the SOC is analogous to the mole fraction xn (but scaled
from 0 to 1), it can be said that the output voltage is actually
a function of the SOC.

In order to get a good fit with the measured equilibrium po-
tential, the number of terms in the expansion of VINT,p used
in (Daigle & Kulkarni, 2013) is Np = 12 and in the expan-
sion of VINT,n is Nn = 0, which results in 14 terms for VU,p
and 2 terms for VU,n. The parameters Ai,k are determined
by a fitting between the measured equilibrium potential and
the curve defined by VU,p − VU,n. The equilibrium potential
can be obtained by discharging the battery at a very slow rate,
such that a concentration gradient will not build up, temper-
ature is steady, and voltage drops due to internal resistances
and other overpotentials are negligible.

However, the large number of terms and the complexity of
the Eq. 14 and Eq. 15 result in a significant computational
cost, which is not suitable for constrained computing plat-
forms. Therefore, inspired by the equivalent circuit battery
model by (Sierra, Orchard, Goebel, & Kulkarni, 2018), this
work proposes an empirical parametrization of the curve that
describes the equilibrium potential (VU,p − VU,n) as

VU = vL + λ · eγ·(1−xs,p) − µ · e−β
√

(1−xs,p), (26)

where vL, λ, γ and µ and β are parameters to be estimated
based on data.

Hence, Eq. 20 that describes the output voltage is then rede-
fined as

V = VU − V ′o − V ′η,p − V ′η,n. (27)

Fig. 2 shows VU (Eq. 26) fitted to the measured equilibrium
potential for a 3S 5100mAh Li-Po battery as a function of
mole fraction. The identified parameters through the curve
fitting are given in Table 1. As aforementioned, the equilib-
rium potential can be obtained by discharging the battery at a
very slow rate. This discharge cycle data is used to identify
the parameters through a curve fitting between the measured
voltage and the output voltage given by the model. The es-
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Figure 2. Measured and predicted open circuit potential.

Table 1. Equilibrium Potential Parameters for a 3S
5100mAh Li-Po Battery.

Parameter Value
β 12.149
γ 4.240
λ 0.123
µ 2.822
vL 11.044

timated parameters represent those achieving a least-squares
(local) error minimum, which is satisfactory for our purposes.

Identified remaining model parameters are given in Table 2.
Some parameters are defined by the battery dimensions and
chemistry. The remaining parameters are estimated based on
data, as with the parameters in Table 1.

Model validation for a variable loading scenario is shown in
Fig. 3. Fig. 3b shows that the voltage predictions are reason-
ably accurate in response to changes in load. Some errors are
still present that might be attributed to the fact the tempera-
ture effects are not included in the model.

3. APPLICATION TO PROGNOSTICS

SOC estimation and EOD prediction were performed to eval-
uate the effectiveness and efficiency of the proposed hybrid
model. A Particle Filter (PF) with 100 particles is used as es-
timation algorithm and a Monte Carlo (MC) sampling-based
algorithm with 100 samples is used to propagate the particles
until reaching the failure threshold, that is, a voltage threshold
VEOD. We do not account for any uncertainty except for that
provided in the state estimate, as our focus is on determin-
ing how accurate the model can predict EOD given precise
information about the future and how efficient the model is
concerning the original Electrochemistry-based model.

The discharges cycle data used in this study (originally pre-
sented in (Sierra et al., 2018)) correspond to delivery mis-
sions performed by a 3DR IRIS+ quadcopter shown in Fig.
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Table 2. Remaining Battery Model Parameters for a 3S
5100mAh Li-Po Battery.

Parameter Value
qmax 33660 C
R 8.3144621 J/mol/K
T 297 K
F 96487 C/mol
n 1
D 6.8676 · 106 mol s/C/m3

τo 1.026 s
α 0.5
Ro 0.018 Ω

Sp 2.471 · 10−4 m2

kp 7.175 · 103 A/m2

vs,p 1.031 · 10−6 m3

vb,p 1.747 · 10−5 m3

τη,p 26.216 s

Sn 5.207 · 10−4 m2

kn 5.716 · 104 A/m2

vs,n 1.031 · 10−6 m3

vb,n 1.747 · 10−5 m3

τη,n 15.967 s
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Figure 3. Model validation for variable loading.

Figure 4. Multi-rotor platform used for validation. 3DR
IRIS+ Quadcopter.

Table 3. Flight Plan No. 1.

Translational
No. Maneuver Payload (kg) speed (m/s) Duration (s)
1 Take off & Climb (to 120 m) 0.3 1.5 80
2 Horizontal flight 0.3 6.0 210
3 Descent & land 0.3 0.5 240
4 Delivering payload 0.3 0.0 60
5 Take off & Climb (to 120 m) 0.0 1.5 80
6 Horizontal flight 0.0 6.0 210
7 Descent & land 0.0 0.5 240
8 Fully deplete battery – – Until reaching

the voltage threshold
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Figure 5. Power profile for flight plan No 1.

4 (from (3DR, 2013)) that uses a 3S 5100mAh Li-Po battery.
Two flight plans are utilized for the analysis developed in this
Section which are described in Table 3 and Table 4. Phase
8 in each flight corresponds to the discharge of the battery
at the average of the power measured during phase 6. This
discharge is made in order to safely obtain an approximate
measurement for the amount of flight time that would have
been supported by the battery if the multicopter had contin-
ued flying at approximately the same speed as it was going in
phase 6. This measurement allows to compare battery EOD
predictions made at various points over the mission, with the
EOD time observed experimentally. For a voltage threshold
(VEOD) equal to 10.3 volts, the observed EOD time is 1274
seconds for the flight plan No. 1 and 1173 seconds for the
flight plan No. 2.

To evaluate the effectiveness of the proposed hybrid model in
prognostic, the following metrics are used in this analysis:

• EOD expectations, which is the instant k when the ex-
pectation of the battery voltage reaches the threshold:
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Table 4. Flight Plan No. 2.

Translational
No. Maneuver Payload (kg) speed (m/s) Duration (s)
1 Take off & Climb (to 120 m) 0.3 2.5 48
2 Horizontal flight 0.3 12.0 360
3 Descent & land 0.3 1.5 80
4 Delivering payload – 0.0 60
5 Take off & Climb (to 120 m) 0.0 2.5 48
6 Horizontal flight 0.0 12.0 360
7 Descent & land 0.0 1.5 80
8 Fully deplete battery – – Until reaching

the voltage threshold
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Figure 6. Power profile for flight plan No 2.

ÊOD , E{k|E{V (k)} = VEOD}, (28)

• The Just-In-Time Point (JITPγ%) value which specifies
the cycle of operation where the probability of failure
reaches a specified threshold γ (Engel, Gilmartin, Bon-
gort, & Hess, 2000):

JITPγ% = arg min
eod

(Pr{EOD ≤ eod} ≥ γ%), (29)

• The α − λ performance with the β criterion (Saxena et
al., 2008; Saxena, Celaya, Saha, Saha, & Goebel, 2009):

π[r(k)]|α
+

α− =

α+∑
α−

φ(x), (30)

where r(k) is the probability distribution of the pre-
dicted Remaining Useful Life (RUL) at time index k,
φ is the non-parameterized probability distribution, and
π is the total probability mass within [α−, α+], being
α− = RUL∗(1−α), α+ = RUL∗(1+α) andRUL∗ the
ground truth RUL. RUL distribution satisfies β criterion
when π[r(k)]|α+

α− ≥ β.

The Prognostics Model Library (Daigle, 2016b) and the Prog-
nostics Algorithm Library (Daigle, 2016a) by NASA Ames
Research Center were used for the development of this study.
MATLAB R2015b running on a Intel Core i5-2467QM CPU
@ 1.60Ghz with 6GB of RAM was used to measure the pro-
cessing times, making sure no other application was running
at the same time.

Prognostic results for flight plan No. 1 and 2 using the hybrid
model (assuming the future inputs are known) are shown in

Fig. 7 and Fig. 9 correspondingly, and the average results of
50 realizations in terms of the above metrics are summarized
in Table 5 and Table 6. Prognostic results for flight plan No.
1 and 2 using the electrochemistry-based model (assuming
the future inputs are known) are shown in Fig. 8 and Fig.
10 correspondingly, and the average results of 50 realizations
in terms of the above metrics are summarized in Table 5 and
Table 6. The “True/False” labels in the α − λ performance
figures denote if the β criterion is satisfied and the 5 − 25%
and 75 − 95% bars correspond to ranges of the probability
distribution of the predicted RUL.

Results tend to slightly overestimate the EOD as reported by
(Daigle & Kulkarni, 2013) for variable loading discharges.
This is more evident for flight plan No. 2 because its power
profile is more variable. Nevertheless, results are within the
desired α − λ performance. It should be mentioned that the
variability of flight plan No. 2 is due to that the particular
quadcopter used in this study tends to be more unstable when
it carries its maximum payload at its maximum speed (pre-
sumably due to the configuration of its control system) which
causes power peaks during horizontal flight.

Using the hybrid model, the maximum error for flight plan
No. 1 in expected EOD time value is 21 seconds, that occurs
when the prediction horizon is 315 seconds. For flight plan
No. 2, the maximum error in expected EOD time value is 21
seconds when the prediction horizon is 264 seconds. Consid-
ering the length of the long-term prediction window, the max-
imum error between the ground truth and the expected EOD
correspond to 6.66% and 7.95% respectively. Regarding Just-
In-Time Point estimates, the values obtained for the JITP5%

are always smaller than the ground truth EOD, which pro-
vides a safe utilization of the asset when this metric is used to
make decisions about the flight. In terms of the α− λ perfor-
mance, the average of the probability mass, π, is 91.01% for
flight plan No. 1 and 87.77% for flight plan No. 2.

Using the electrochemistry-based model, the maximum er-
ror for flight plan No. 1 in expected EOD time value is 34
seconds, that occurs when the prediction horizon is 315 sec-
onds. For flight plan No. 2, the maximum error in expected
EOD time value is 35 seconds when the prediction horizon
is 264 seconds. Considering the length of the long-term pre-
diction window, the maximum error between the ground truth
and the expected EOD correspond to 10.79% and 13.25% re-
spectively. Regarding Just-In-Time Point estimates, the val-
ues obtained for the JITP5% are not always smaller than the
ground truth EOD, which does not provide a safe utilization
of the asset because the actual EOD might be before the end
of the mission. In terms of the α − λ performance, the aver-
age of the probability mass, π, is 79.81% for flight plan No.
1 and 75.37% for flight plan No. 2.

Prediction results for both models are shown to be very ac-
curate, but on average, the hybrid model performs slightly

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Time (s)
0 200 400 600 800 1000 1200

V
o
lt
a
g
e
(V

)

10

10.5

11

11.5

12

12.5 Measured

Mean Estimated

95% Confidence Interval

(a) Estimated Voltage

Time (s)
0 200 400 600 800 1000 1200

E
O
D

(s
)

1000

1100

1200

1300

1400

1500

True EOD
Predicted EOD Mean
95% Confidence Interval

(b) Predicted EOD

100.0%

True

100.0%

True

100.0%

True

100.0%

True

100.0%

True

100.0%

True

100.0%

True

100.0%

True

100.0%

True

95.0%

True

96.0%

True

87.0%

True

70.0%

True

38.0%

False

3.0%

False

α=0.1, β=0.5

Time (s)
0 200 400 600 800 1000 1200

R
U
L
(s
)

0

500

1000

1500 RUL∗

[(1− α)RUL∗, (1 + α)RUL∗]
Median RUL Prediction
5-25% and 75-95% Ranges

(c) α− λ performance

Figure 7. Prognostics results for flight plan No. 1 using the
hybrid model.
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Figure 8. Prognostics results for flight plan No. 1 using the
electrochemistry-based model.

Table 5. Average prediction results of 50 realizations for flight plan No. 1. True EOD at 1274 s

Hybrid Model Electrochemistry-based Model

SOC ÊOD JITP5% π[r(k)]|α+

α− ÊOD JITP5% π[r(k)]|α+

α−

75% (t = 267 s) 1294 s 1247 s 100.00% 1292 1246 100.00%
50% (t = 598 s) 1295 s 1254 s 100.00% 1296 1257 99.88%
25% (t = 959 s) 1295 s 1266 s 73.02% 1308 1282 39.56%
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Figure 9. Prognostics results for flight plan No. 2 using the
hybrid model.
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Figure 10. Prognostics results for flight plan No. 2 using the
electrochemistry-based model.

Table 6. Average prediction results of 50 realizations for flight plan No. 2. True EOD at 1173 s

Hybrid Model Electrochemistry-based Model

SOC ÊOD JITP5% π[r(k)]|α+

α− ÊOD JITP5% π[r(k)]|α+

α−

75% (t = 248 s) 1194 s 1150 s 100.00% 1195 1154 100.00%
50% (t = 563 s) 1193 s 1157 s 100.00% 1198 1165 99.48%
25% (t = 909 s) 1194 s 1167 s 66.32% 1208 1185 26.64%
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better than the electrochemistry model. From the above anal-
ysis and as can be seen from Table 5, in terms of the average
α − λ performance for flight plan No.1, the hybrid model is
11.2% more accurate than the electrochemistry-based model.
Similarly, as can be seen from Table 6, in terms of the av-
erage α − λ performance for flight plan No.2, the hybrid
model is 12.4% more accurate than the electrochemistry-
based model. This improvement might be associated with
the difficulty to find a good set of parameters that meet the
constraints imposed by the model when the number of pa-
rameters is high. In particular, the proposed hybrid model
requires off-line estimation of only 19 parameters, in con-
trast to the electrochemistry-based model that requires 30
parameters to be estimated off-line. In addition, the aver-
age estimation processing time per iteration (i.e. per time
step) was measured for the proposed hybrid model and the
electrochemistry-based model, using Unscented Kalman Fil-
ter (UKF) and Particle Filter (PF) as estimation algorithms.
Table 7 and Fig. 11 present the results.

The average estimation processing time per iteration using
the hybrid model is 69% of the time per iteration using the
electrochemistry-based model when UKF is used as estima-
tion algorithm, and it is 37% of the time per iteration using
the electrochemistry-based model when PF with 100 particles
is used as estimation algorithm. Also note that for the hy-
brid model, the estimation processing time when PF is used
is lower than when UKF is used. Since PF has shown more
accurate estimation results than UKF (Walker et al., 2015),
the use of PF without increasing the processing times con-
stitutes an advantage when one deals with constrained com-
puting platforms such as that might be encountered on small
UAVs.

Prediction processing time for a time window prediction of
1274 seconds using MC sampling-based prediction algorithm
was also measured for different number of samples. The re-
sults are summarized in Table 8 and Fig. 12.

Prediction processing times are also shown considerably
lower when the hybrid model is used, particularly when the
number of samples increases. Prediction processing times
with 102 and 105 samples using the hybrid model is 36%
and 14%, respectively, of the prediction processing time us-
ing the electrochemistry-based model. This is attributed to
the fact that Eq. 14 and Eq. 15 are computationally more
complex than Eq. 26. Eq. 14 and Eq. 15 contain several
summations and complex mathematical operations that re-
quire higher computational resources, while Eq. 26 that was
proposed here to replace Eq. 14 and Eq. 15, is significantly
less intense.

4. CONCLUSIONS

Considering the constrained processing power which may be
encountered on small UAVs, in this paper, a hybrid battery

Table 7. Average estimation processing time per iteration.

Electrochemistry-based
Algorithm Hybrid Model Model

UKF 4.128e− 3 s 5.905e− 3 s
PF (N = 100) 2.425e− 3 s 6.576e− 3 s

Figure 11. Estimation processing time per iteration.

Table 8. MC average processing time for a time windows of
1274 seconds.

Electrochemistry-based
Samples Hybrid Model Model

10 2.088 s 3.376 s
50 2.820 s 5.438 s
100 3.182 s 8.853 s
500 3.608 s 24.778 s
1000 6.103 s 77.942 s
5000 17.321 s 114.981 s
10000 34.414 s 270.493 s
50000 115.197 s 1002.464 s
100000 267.997 s 1959.886 s
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Figure 12. MC processing time for a time windows of 1274
second.

model for battery prognostics is presented, which simplifies
an electrochemistry-based battery model by substituting the
electrochemistry characterization of the equilibrium potential
by an empirical parameterization. The hybrid model was vali-
dated and applied to the prognosis of the EOD time of a Li-Po
battery of a small quadcopter that performs delivery missions.
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Prediction results were evaluated and compared with results
obtained when the electrochemistry-based battery model is
used. Both models perform very well, but on average, the hy-
brid model shows to perform slightly better than the electro-
chemistry model. Estimation and prediction processing times
were also shown to be significantly lower than those obtained
when the electrochemistry-based battery model is used. That
is, the model described herein provides an effective and ef-
ficient approach for battery prognostics. Future work should
include temperature effects on the discharge of the battery and
describe how age-related parameters change over time. Tem-
perature effects during discharge also should be tackled with
an efficient approach for constrained computing platforms.
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