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ABSTRACT 
The trend in diagnostics and prognostics for PHM is shifting 
toward explainable data-driven models. However, complex 
engineered systems are typically challenging to develop 
entirely explainable models for, whether they are grounded 
in physics or data-driven techniques. Consequently, the 
development of machine learning models, including hybrid 
variants capable of both interpolation and extrapolation, 
holds significant promise for enhancing the practicality of 
system simulation, analysis, modeling, and control in 
industry. The primary objective of this data challenge is to 
encourage contributions that expand the scope of model 
generalization beyond the training domain. The second aim 
of this data challenge is to quantify model uncertainty and 
methods to incorporate it into predictions. For most PHM 
tasks, clear guidance of the required action is ideal. To issue 
a definitive guidance to end users, it is useful to quantify 
uncertainty for the whole model. This data challenge 
addresses both estimation and uncertainty. 

1. OBJECTIVE 

This year’s data challenge focuses on estimating gearbox 
degradation levels in a gearbox operated under a variety of 
conditions. Participants are scored based on both accuracy 

and confidence derived from estimated uncertainties in 
estimation. 

2. DATA CHALLENGE TASK 

Although a challenging task for many data-driven 
approaches, to be practical for real-world applications, a 
model should generalize to previously unseen operational 
conditions and fault levels. Participants are also required to 
express measures of confidence in model predictions. Such 
confidence measures might be used to determine whether 
these predictions can be trusted or not before taking any 
downstream actions. 

The overall data challenge task is to develop a fault severity 
estimate using the data provided. The training dataset 
includes measurements under varied operating conditions 
from a healthy state as well as six known fault levels. The 
testing and validation datasets contain data from eleven 
health levels, which include a healthy state and 10 
degradation/fault levels. Data from some fault levels and 
operating conditions are excluded from the training datasets 
to mirror real-world conditions where data may only be 
available from a subset of the operating envelope. The 
training data are collected from a range of different operating 
conditions under 15 different rotational speeds and six 
different torque levels, while the test and validation      
operating conditions span 18 different rotational speeds and      
six different torque levels.  

     The data challenge requires fault level estimation for three 
regimes of the operational envelope: 
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1. Samples from conditions seen in the training dataset. 

2. Samples from conditions not seen in the training 
dataset, but within the range of operational conditions 
and fault levels seen in the training set, i.e., interpolation.  

3. Fault level estimation from conditions not seen in the 
training dataset and outside the training range for fault 
levels, i.e., extrapolation. 

Both a fault level estimate and a corresponding confidence 
level are required from the model. Such confidence may be 
used in deciding whether a prediction should lead to an action 
reconfiguration, (inspection, repair, etc.) or no action if the 
confidence was below pre-decided acceptable threshold. In 
real settings such thresholds would be determined based on 
operational risks and business models, however, this 
challenge requires participants to focus on developing 
methods to assess confidence in their models and implicitly 
learn thresholds such that overall accuracy can be maximized. 
Accuracy calculation with incorporating confidence is 
explained in Section 4. 

3. PROBLEM AND DATA DESCRIPTION 

3.1. Experimental setup 

A brief overview of the data collection process is provided 
here. Full details are provided in the papers referenced (Li, 
Qu, and Nichifor, et al., 2018-2022).       

The gear pitting experiments were performed on a one-stage 
gearbox installed in an electronically closed transmission test 
rig.  The gearbox test rig includes two 45 kW Siemens servo 
motors.  One of the motors can act as the driving motor while 
the other can be configured as the load motor.  Motor 1 is the 
driving motor in this experiment. The overall gearbox test rig, 
excluding the control system, is shown in Fig. 1. The testing 
gearbox is a one stage gearbox with spur gears.  The gearbox 
has a speed reduction rate of 1.8:1.  The input driving gear 
has 40 teeth, and the driven gear has 72 teeth.  Detailed gear 
parameters are provided in Table 1. 

A tri-axial accelerometer was attached on the gearbox case 
close to the bearing house on the output end as shown in 
Figure 3. X, Y, Z are horizontal, axial and vertical, separately. 

 
Figure 1. Experiment test rig for gearbox dynamic meshing 
stiffness analysis 

 
Figure 2. Vibration measurement with Tri-axial 
accelerometer 

Table 1. List of gear parameters for the tested gearbox 
Gear parameter Driving gear Driven gear 

Tooth number 40 72 

Module 3 mm 3 mm 

Base circle diameter 112.763 mm 202.974 mm 

Pitch diameter 120 mm 216 mm 

Pressure angle 20° 20° 

Addendum coefficient 1 1 

Coefficient of top 
clearance 0.25 0.25 

Diametral pitch 8.4667 8.4667 

Engaged angle 19.7828° 19.7828° 

Circular pitch 9.42478 mm 9.42478 mm 

Addendum 4.5 mm 3.588 mm 

Dedendum 2.25 mm 3.162 mm 

Addendum modification 
coefficient 0.5 0.196 

Addendum modification 1.5 mm 0.588 mm 

Fillet radius 0.9 mm 0.9 mm 

Tooth thickness 5.8043 mm 5.1404 mm 

Tooth width 85 mm 85 mm 

Theoretical center distance 168 mm 168 mm 

Actual center distance 170.002 mm 170.002 mm 

 

Both healthy and gradually pitted gear under various 
operating conditions were tested and the vibration signals 
collected. Five sets of data were collected. Symbol ‘●’ 
indicates that the data samples for this setting are provided 
for training while ‘∘’ indicates the data are hidden from 
training but will appear in testing and validation.  

One or more gear teeth are manually degraded using a drill 
bit through the lube oil cover without any disassembly and 
assembly of the gearbox or test rig.  Degradation severity 
increases in levels from 0 to 10.       
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To sample enough data points in terms of revolutions, longer 
time series data are collected for lower rotational speed 
conditions.      For 100-200 rpm, the sampling time is about 
12s; for 300-1000 rpm, the sampling time is about 6s; for 
1200 rpm and above, the sampling time is about 3s. 

All data are sampled with a sampling rate of 20,480 Hz. 
horizontal, axial, and vertical accelerometers were sampled 
separately, along with a tachometer signal. All signals were 
time synchronized. 

The tachometer (laser reflective tachometer) outputs one 
pulse per revolution. This is measured on the output shaft, 
which is 5/9 of the input shaft speed. For example, for input 
shaft speed at 35Hz and output shaft speed will be 19.44 Hz.      

3.2. Data Description 

Out of all data marked as black (78 operating conditions 
throughout 7 health levels), on average, 3.69 repetitions for 
each operating condition of each fault level are included in 
the training data set. A total of 2016 data files      were 
included in the training. Pitting degradation levels 5, 7, 9, 10 
are omitted from the training data set. 

Table 2. Operation conditions of the experiments (low speed) 
Speed  
    & 
Torque  

100 200 300 400 500 600 700 800 900 1000 

50 ● ● ● ● ● ● ● ● ● ● 

100 ● ● ● ● ● ● ● ● ● ● 

200 ● ● ● ● ● ● ● ● ● ● 

300 ● ● ● ● ● ● ● ● ● ● 

400 ● ● ● ● ● ● ● ● ● ● 

500 ● ● ● ● ● ● ● ● ● ● 

 

Table 3. Operation conditions of the experiments (median to 
high speed) 

Speed 
   & 
Torque 

1200 1500 1800 2100 2400 2700 3000 3600 

50 ● ∘ ∘ ● ∘ ● ● ● 
100 ● ∘ ∘ ● ∘ ● ● ● 
200 ● ∘ ∘ ● ∘ ● ●  
300 ● ∘ ∘ ● ∘    
400 ● ∘ ∘      
500 ● ∘       

4. EVALUATION METRICS 

For the submission of data challenge results, a probability 
based prediction is required for each predicted label. The 
probability can be distributed across multiple labels, with a 
sum of probability equal to or less than one. A binary 
confidence level is required to be included for the label 

classification & prediction for each sample, with 0 and 1 
mean low and high confidence, respectively. The exact 
rewards or penalty also depends on the how far the predicted 
label is from the underlying true label as specified in the 
following:  

𝑆𝑆!"!#$ =$
%

&'(

𝑤&𝑆& 	

where, 𝑆𝑆!"!#$ is the total score, n is total number of 
testing/validation samples, 𝑤& = 1 for confidence level of 1, 
𝑤& = 0.2 for confidence level of 0,  𝑆& =	∑()*') 𝑄&,*	𝑃&,* , 
with 𝑄&,*	equals to the score for prediction of sample 𝑖 at 
distance 𝑘, while 𝑃!,#, is the reported probability the label at 
the distance 𝑘 as shown in Table 4. For example, the ideal 
prediction 𝑆& 	will have a 𝑃&,* =100% at distance 0, which 
means 𝑃&,) = 1 for 𝑘 = 0, 𝑃&,* = 0 for 𝑘 ≠ 0. In this case, we 
have 𝑆& = 1, otherwise, 𝑆& < 1.  Accordingly, the highest 
total score will be n depending on the testing and validation 
data size. In this data challenge, the highest possible testing 
score is 800, and highest validation score is 812.  
 
Table 4. Prediction score for each sample based on the 
distance from the true labels. 

Distance from true 
label (𝑘) 

Points (𝑄) 
Reported prediction 

Probability (𝑃) 
0 (correct prediction) 1.0 𝑃$	

1 0.5 𝑃%	
2 0 𝑃&	
3 -0.5 𝑃'	
4 -1.0 𝑃(	
5 -1.5 𝑃)	
6 -2.0 𝑃*	
7 -2.5 𝑃+	
8 -3.0 𝑃,	
9 -3.5 𝑃-	
10 -4.0 𝑃%$	

 

     A high confidence level will be scored with a higher 
weight for the final sum of score, while a low confidence 
level will be scored with a lower weight.  Similarly, a wrong 
prediction with a high confidence level will also be graded 
with a higher penalty.  

5. SUMMARY 

A total of 52 teams registered and 20 teams completed the 
data challenge. The final scores of all twenty are summarized 
in Table 5. Top ten teams were invited to submit a brief 
description of the technical approach taken. A panel of 
experts evaluated the summaries independently on criteria of 
data-preprocessing steps, algorithmic novelty, treatment of 
uncertainty, and creativity. A final score incorporating test set 
performance and method scores was used to identify top five 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023 

4 

finalists. Winners will be chosen from finalists based on 
conference presentations on their detailed approach and 
discussions.  

For readers’ reference, the following list indicates different 
approaches adopted by five teams out of the top ten finalists. 
They are the ones who registered for the conference for 
presentation and submitted their summary to the conference 
proceedings. Further details of the methodologies can be 
found in data challenge summary papers included in the PHM 
2023 conference proceedings:  

1. nivic: Gear Pitting Fault Diagnosis using Domain 
Generalizations and Specialization Techniques (Chu et al., 
2023) 

2. Thumper: Interpolate and Extrapolate Machine Learning 
Models using An Unsupervised Method (Liu, 2023) 

3. KUL: Predicting pitting severity in gearboxes under unseen 
operating conditions and fault severities using convolutional 
neural networks with power spectral density inputs. 
(Vaerenberg et al., 2023) 

4. Amitory: Anomaly Detection and Fault Classification in 
Multivariate Time Series Using Multimodal Deep Models. 
(Ryu et al., 2023)  

5. zwang1916: Gearbox Degradation Prediction through 
Deep CNN and Bayesian Optimization.(Shen et al., 2023)  

At the time when the data challenge was closed, the highest 
testing score was 463.5, and the highest validation score was 
472. A further analysis on the validation score of 472/812 
reveals that this score corresponds following performance: 
for machine learning metric precision at k, precision at 1 = 
66.38%, precision at 2 = 86.70%, and precision at 3 = 
98.15%. That means the top performing team has correctly 
predicted 98.15% of the sample with a label within the error 
distance of 2, which is a very impressive result.  

Table 5. PHM 2023 Conference Data Challenge Final Scores 

Teams Validation Score Test Score 
nivic 472.0 463.5 

CUMTIIPT 418.5 404.5 
KUL 282.2 213.3 

thumper 227.5 249.0 
SDML 192.0 191.9 

Aimtory 187.5 200.5 
TJ 178.0 186.5 
JSEG 158.9 212.0 

FlyTogether 143.0 232.0 
zwang1916 130.1 67.43 
jbarriga 125.5 190.8 
fjamil 122.5 150.6 

ILIKEPHM 115.4 121.0 
TeamSSS 94.44 145.8 
beking 38.0 195.5 
polimeca 24.5 160.2 
neaolei1 -10.5 213.0 
wk_team -168.8 -197.3 

S5 -265.0 -177.5 
teamoslo -2.495e+03 -2.378e+03 
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