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ABSTRACT 

Demand for energy is increasing every year and hydrogen is 

being seen as a good alternative to conventional natural gas. 

The current focus is on the use of existing pipeline 

infrastructure for the transport of hydrogen gas, and it is 

necessary for us to ensure the safe and efficient operation of 

the pipeline infrastructure given the risks posed by hydrogen. 

Pipeline integrity management is critical for hydrogen 

transport and there are knowledge gaps for the impact of 

hydrogen on the pipeline integrity and operational 

considerations, thus hindering the pipeline operators from 

adopting hydrogen into their networks. To realize the concept 

of transporting hydrogen through existing pipeline systems, 

it is necessary to have reliable risk assessment and 

maintenance optimization frameworks in place. A Bayesian 

network methodology is proposed to fuse information from 

multiple sources obtained by multimodality diagnosis of pipe 

materials and Bayesian updating will be incorporated to 

reduce the uncertainty arising from different random 

variables. Risk assessment of the pipeline systems will be 

carried out based on the posterior distributions of the random 

variables. Given the predicted risk level, we then propose a 

risk-based maintenance optimization framework to minimize 

the maintenance costs while ensuring the safe operation of 

the pipeline systems.  

1. PROBLEM STATEMENT 

Transporting hydrogen through existing pipeline 

infrastructure is a promising method for solving many energy 

and environmental challenges worldwide. The integrity and 

reliability of the existing gas pipeline network for hydrogen 

transport are of critical concern for operators and regulators 

due to the degradation of pipeline steels under hydrogen, a 

mechanism known as hydrogen embrittlement. The objective 

of this research is to develop a risk-based maintenance 

optimization framework that includes a Bayesian Causal 

Network (BCN) for real-time pipeline risk assessment under 

uncertainty and a dynamic maintenance planning framework. 

Considering transport of hydrogen through existing pipeline 

infrastructure, it is necessary to consider the existing 

corrosion as well as material inhomogeneity caused by strain 

ageing due to long term operation of pipelines (Amend, 

2013). It was previously shown that the chemical 

composition data from surface-only measurements using 

NDE techniques can be used to predict the mechanical 

properties such as yield/ultimate strength of pipelines 

(Zhang, Xu, Ersoy, & Liu, 2022; Dahire, Tahir, Jiao, & Liu, 

2018). In this study focusing on hydrogen transport, we 

consider data from pipelines exposed to hydrogen and a 

complete dataset from six such pipes is obtained from open 

literature. It consists of chemical composition, yield/ultimate 
strength as well as a parameter known as hydrogen sensitivity 

factor (detailed in section 3.1). Information from various 

sources will be fused together and statistical inference 

through Bayesian network will be achieved in this research 

work, ultimately guiding the risk-based maintenance 

optimization framework. 

2. EXPECTED CONTRIBUTIONS 

This research develops a Bayesian causal network using 

existing risk models for conventional gas transport and fuses 

information from various sources such as NDE diagnosis data 

(crack size, chemical composition, hardness etc.), pipeline 

anomalies/defects, pipeline operating pressure etc. The 

factors influencing pipeline safety and their relationships will 

be identified and encoded into the BCN, and new nodes 

accounting for hydrogen transport will be augmented to the 

network. Finally, a risk-based maintenance optimization 

framework for pipeline integrity management (PIM) will be 

developed. The expected contributions are: 

1. Development of a Bayesian causal network for 

hydrogen-transporting pipelines using transfer learning 

approach as mentioned above and augmenting it with 

hydrogen-related information that is known to affect the 

pipeline operation and integrity.  
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2. Proposing a reinforcement learning-based maintenance 

scheduling framework that is solved as an optimization 

problem to reduce maintenance costs.  

3. RESEARCH PLAN 

To implement risk-based maintenance optimization 

framework for hydrogen transporting gas pipelines, this 

research is divided into two stages. First, a Bayesian causal 

network will be developed based on previous knowledge, 

NDE diagnosis data, and new knowledge from hydrogen 

impact augmented to the network. Information fusion of 

multimodality data is performed and the causal relationships 

among the different nodes in the directed acyclic graph 

structure is learned to improve the quality of inference 

process. This is followed by Bayesian updating to obtain 

posterior distributions for the random variables by leveraging 

NDE diagnosis data. Doing so, the system uncertainty and 

prognosis accuracy are improved.  

3.1. Work Performed 

We have performed a preliminary reliability analysis and the 

demonstration of Bayesian updating for a system of hydrogen 

transporting gas pipeline. Considering a range of pipeline 

steels (X52, X70 and X100) along with literature data on their 

fatigue crack growth behavior under hydrogen (Slifka, 

Drexler, Nanninga, Levy, McColskey, Amaro, & Stevenson, 

2014; Drexler, Slifka, Amaro, Barbosa, Lauria, Hayden, & 

Stalheim, 2014), we first developed an empirical model to 

capture the hydrogen effect. This is entirely premised upon 

the Paris’ constant ‘C’ in the commonly used Paris law (Eq. 

1) as follows: 

 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚                      (1) 

 

𝐶ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 = 𝐶𝑎𝑖𝑟 × [1 + ({4.6 − 4.6 𝑒𝑥𝑝−0.05𝑃} ×

32(1+𝑅) × 𝑓−0.08 × 𝑞)]                                                  (2) 

 

This includes the effect of hydrogen gas pressure, stress ratio 

and loading frequency. The variable ‘q’ is a hydrogen 
sensitivity factor that quantifies how susceptible a particular 

grade of steel is to hydrogen embrittlement. 

We obtained a relationship between the chemical 

composition, yield strength and the sensitivity factor ‘q’ by 

simple multivariable regression: 

 

𝑞 = 1.072 + 0.00011(𝑌𝑆) − 0.5161(𝑀𝑛)        (3) 

 

Later, we performed the reliability analysis by direct Monte 

Carlo simulation technique, where failure condition(s) is 

usually expressed in terms of a limit state function (LSF). We 

formulated the LSF as the difference between the total 

damage the material can accumulate before failure and the 

total accumulated damage up to a certain number of loading 

cycles. When the 𝐿𝑆𝐹 ≤ 0, it is considered as failure. From 

this, the probability of failure is calculated as: 

 

𝑃𝑜𝐹 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 𝑤ℎ𝑒𝑛 𝐿𝑆𝐹 ≤0

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑛𝑠
                  (4) 

 

The obtained results are tabulated in Table 1, and it should be 

noted that these are just preliminary results based on several 

simplifications made due to lack of sufficient data under 

hydrogen.  

 

Table 1. Probability of failure estimates for various steels. 

Steel  Probability of Failure 

X52 0.06507 

X70 0.00763 

X100 0.01485 

 

Identifying several sources of uncertainty that affect the 

overall prediction accuracy and system level risk assessment, 

it is necessary to reduce them, and we achieve this by 

Bayesian updating where the priors for the random variables 

can be updated with new information from NDE diagnosis 

data (such as crack length) to obtain the posteriors. The 

updated posteriors can be used in the prognosis step to 

estimate the remaining useful life and the corresponding 

probability of failure for risk assessment of the pipeline 

systems.   

We also demonstrated Bayesian updating based on Bayes’ 

theorem for an X52 pipeline steel by assuming a hydrogen 

gas pressure of 5 MPa. Suppose 𝑝(𝜃, 𝑀)  is the prior 

distribution for a vector of parameters ′𝜃′ in a model ‘M’, 

then the posterior is given as: 

 

𝑞(𝜃, 𝑀) =  
𝑝(𝑥′|𝜃,𝑀) 𝑝(𝜃,𝑀)

∫ 𝑝(𝑥′|𝜃,𝑀) 𝑝(𝜃,𝑀)
                   (5) 

 

Here 𝑝(𝑥′|𝜃, 𝑀) is the likelihood function which refers to the 

probability of observing 𝑥′ given the vector of parameters 𝜃 

and the model M. The denominator is just a normalizing 

constant and is difficult to calculate when the vector of 

parameters is large, which leads to obtaining the posterior 

distribution only up to the proportionality limit. Markov 

Chain Monte Carlo (MCMC) sampling is used to obtain the 

complete posterior distributions. By incorporating Paris’ law 
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and assuming its constants (C, m) as random variables, we 

updated the priors with NDE inspection data (synthesized) 

for crack length and obtained the corresponding posterior 

distributions. Following this is the prognostics step where the 

total life until critical crack size is calculated, and the 

corresponding crack size vs cycles (a-N) plots are obtained 

(Figure 1). The green and blue curves in the plots correspond 

to experimental data and model predictions, respectively, and 

the red squares are the NDE inspection data points used for 

Bayesian updating. After the third update, the model 

predictions converge with the experimental data reflecting a 

reduction in uncertainty.  

 

 

a) 

 

b)  

Figure 1. a-N curves after a) update – 1, b) update – 3.  

 

3.2. Remaining Work 

The following are the remaining tasks in this research study: 

1. Until now we worked with the physics-based model 

parameters as random variables and limited material 

property data. Next, we shall extend the information 

fusion framework by including data on surface 

roughness, NDE diagnosis data such as crack size and 

defect geometry, and hydrogen operational data as 

shown in Figure 2. Following this will be learning the 

causal relationships among the various nodes in the 

Bayesian network.  

2. After the extensive development of the BCN, data from 

prior knowledge will be used to update the posterior 

distributions of all the random variables and use in the 

limit state function for risk level quantification. 

3. Perform sensitivity analysis to identify the sources that 

affect the pipeline integrity the most and obtain a precise 

risk level assessment.  

4. The maintenance framework is proposed to be solved as 

an optimization problem that aims to minimize the 

maintenance costs subject to certain constraints such as 

a threshold of the failure probability. We plan to 

incorporate a reinforcement learning method (Hu, Wang, 

Pang, & Liu, 2022) for maintenance scheduling.  

Initially assuming a condition vector D, after a time ∆𝑡 

with maintenance activity, the new condition vector can 

be calculated as: 

 

𝑫𝒏𝒆𝒘 =  ∑ 𝑫.× 𝑿(𝑚, : ) × 𝑴𝒎  × 𝑷𝒎              (6) 

 

where X is the maintenance decision matrix, Mm is the 

maintenance transition matrix, and P is the transitional 

probability matrix. The elements of the maintenance 

decision matrix X(i,j) denote the percentage of pipes that 

are in condition j have maintenance method i done. The 

cost for a maintenance decision X can be evaluated as: 

 

𝑪𝒐𝒔𝒕 =  ∑ 𝑸 × 𝑫.× 𝑿(𝑚, : ) × 𝑪(𝑚, : )𝑚                    (7) 

 

where the elements of the cost matrix C(i,j) denote the 

expense of applying a maintenance method i for a pipe 

that is in condition j. 

4. CONCLUSION 

This research aims to develop a risk assessment model to 

quantify the risk levels of pipeline systems transporting 

hydrogen gas and propose a risk-based maintenance 

optimization framework. We propose to achieve this 

objective by building a Bayesian causal network based on 

existing risk models and augmenting it with new knowledge 

on hydrogen impact on pipeline operation and safety. So far, 

we have demonstrated estimating failure probabilities with 

random model parameters and updating the priors of random 

variables to obtain the posteriors with reduced uncertainty. 

The remaining work is to consider several other sources of 

information and incorporate them into the Bayesian network.  
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Figure 2. BCN for pipeline risk assessment.

 

The causal relationships among the different variables will be 

learned and the risk levels for the pipeline systems will be 

quantified. Following this will be the development of a risk-

based maintenance optimization framework by incorporating 

reinforcement learning technique. With this work, pipeline 

operators will have a tool to perform risk-based maintenance 

scheduling for pipelines transporting hydrogen and make 

appropriate decisions assuring safety and pipeline integrity, 

thus promoting the incorporation of hydrogen gas into their 

networks on a large scale.   

REFERENCES 

Amend, B. (2013). In-situ analyses to characterize the 

properties and metallurgical attributes of in-service 

piping. NACE International C2013-0002417. 

Dahire, S., Tahir, F., Jiao, Y., & Liu, Y. (2018). Bayesian 

network inference for probabilistic strength estimation 

of aging pipeline systems. International Journal of 

Pressure Vessels and Piping, 162, 30-39. 

 

 

 

 

Drexler, E. S., Slifka, A. J., Amaro, R. L., Barbosa, N., 

Lauria, D. S., Hayden, L. E., & Stalheim, D. G. (2014). 

Fatigue crack growth rates of API X70 pipeline steel in 

a pressurized hydrogen gas environment. Fatigue and 

Fracture of Engineering Materials and Structures, 37, 

517-525. 

Hu, J., Wang, Y., Pang, Y., & Liu, Y. (2022). Optimal 

maintenance scheduling under uncertainties using linear 

programming-enhanced reinforcement learning. 

Engineering Applications of Artificial Intelligence, 109, 

104655. 

Slifka, A. J., Drexler, E. S., Nanninga, N. E., Levy, Y. S., 

McColskey, J. D., Amaro, R. L., & Stevenson, A. E. 

(2014). Fatigue crack growth of two pipeline steels in a 

pressurized hydrogen environment. Corrosion Science, 

78, 313-321. 

Zhang, Q., Xu, N., Ersoy, D., & Liu, Y. (2022). Manifold-

based conditional Bayesian network for aging pipe yield 

strength estimation with non-destructive measurements. 

Reliability Engineering and System Safety, 223, 108447. 

 

 

 

 

 

 

 


	1. PROBLEM STATEMENT
	2. EXPECTED CONTRIBUTIONS
	3. RESEARCH PLAN
	3.1. Work Performed
	3.2. Remaining Work

	4. Conclusion

