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ABSTRACT 

One of the main challenges for structural health monitoring 

(SHM) is a lack of failure data to make accurate health 

predictions. Obtaining desirable failure data is generally very 

expensive, given the required testing needed to measure all 

types of system failures, which may be unfeasible in many 

health monitoring applications. Machine learning has helped 

to improve health monitoring performance but is still limited 

by the availability, relevance, and quality of the training data. 

This data dependence impedes data-driven models from 

generalizing to unseen data, which is problematic for datasets 

lacking failure data. Physics-driven models, like finite-

element models, are powerful tools for predicting structural 

responses when the governing physics are not clearly defined. 

These models can generate simulated fault data to address the 

data limitation without having to physically damage a 

structure, but are computationally expensive and susceptible 

to modeling errors that can prevent the data from being 

statistically comparable to experimental data.  

A new trend has been to develop physics-guided machine 

learning models (PGML), a hybridization of the two 

aforementioned models that have been shown to improve 

generalization of, and even outperform, pure data-driven 

models while using less training data. These PGML models 

can take many forms, but generally embed some form of 

physics into a data-driven model as physically relevant 

constraints. Our research plan is to utilize PGML to improve 

neural network capabilities to predict structural damage. The 

proposed PGML model will follow a neural network 

architecture found in related literature consisting of feature 

extraction, physics-informed, and label prediction layers. The 

physics-informed layer will consist of an aggregate of sub-

networks trained from simplified structure models which 

have known governing equations and can be used to generate 

simulated training data. The full PGML model will use 

transfer learning to bridge the connections between the 

untrained layers to the physics-informed layer using 

experimental data from more complex structures. We will 

verify our model using publically available SHM datasets 

used in a variety of past literature experiments.  

1. PROBLEM STATEMENT 

One of the main problems in any sort of prognostics-based 

study is having enough failure data [Bull, Worden, Manson, 

and Dervilis (2018); Gardner, Lord, and Barthorpe (2018); 

Fuentes, Cross, Gardner, Bull, Rogers, et al (2020)]. The 

large imbalance between “healthy” and “failure” data 

increases the difficulty for models to classify and/or localize 

damage, as well as the severity of damage. Desired damage 

states often have to be manually added to the host structure 

in order to accelerate the failure testing, since some structures 

require significant wear and tear before actual damage may 

occur “naturally”. Testing using induced damage may not be 

feasible if the structure is still intended for use.  

Structural health monitoring (SHM) is “any automated 

monitoring practice that seeks to assess the condition or 

health of a structure” [Fuentes et al. (2020)]. Structural health 

monitoring differs from other non-destructive 

testing/evaluation (NDT/NDE) techniques in that the sensors 

are permanently installed and the monitoring system is on-

line performing continuous analysis [Fuentes et al. (2020)]. 

The primary questions an SHM system attempts to answer 

concern the existence, location, type, extent, and prognosis of 

damage in the system [Rytter (1993); Farrar & Worden 

(2012)]. Machine learning (ML) has become a popular 

method for answer these questions given its great ability of 

finding patterns within a large amount of data. 

Two main types of SHM techniques include data-driven and 

physics-driven methods. Data-driven methods, such as ML, 

generally require a large amount of data in order to learn the 

statistically relevant relationship between input features and 

the structural health state. Generally speaking, the greater the 

representation of health states to structural responses within 

the data, the greater the reliability of the model. This is 
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because a data-driven method can only make predictions 

from what it has seen from training data, making these 

models difficult to generalize to structures that do not respond 

the same as the training data, which can occur even for 

nominally identical structures [Fuentes et al (2020)]. 

Labeling the data is also difficult and/or costly to perform 

[Bull et al (2018)] and the existence of labels (or lack thereof) 

will determine whether the ML algorithm uses a supervised, 

unsupervised, or semi-supervised learning approach. These 

data-driven models are considered “black-box” models due 

to the decision-making process being relatively unintelligible 

to humans [Bull et al (2018); Cross, Gibson, Jones, 

Pitchforth, Zhang, and Rogers (2022)] and as such can hinder 

the confidence operators have with the model’s predictions.  

Physics-driven methods for SHM usually rely upon finite- 

element (FE) modeling and analysis to provide constrained 

data that is relevant to the observed structure. Two different 

analysis techniques using FE models include inverse model-

driven methods and forward model-driven methods. Inverse 

model-driven methods update the FE model by comparing 

expected results to the actual measured results. However, this 

model updating may be ill conditioned since unique, stable 

solutions are not always feasible, and an adequate 

interpretation of these updated parameters may not be 

feasible when making a decision about the state of the 

structure [Fuentes et al (2020)]. An additional challenge to 

physics-driven methods is that fault mechanisms must be 

included in the FE model to obtain predicted fault response 

data, which fault mechanisms may not always be clearly 

defined and/or could result in predicted fault response data 

that does not match measured data. 

Forward model-driven SHM techniques use the FE model to 

generate a training dataset from operational conditions that 

are used in a supervised learning approach in an attempt to 

build machine-learning models and address the problem of 

not having sufficient fault data [Fuentes et al (2020); Gardner 

et al (2018); and Balthorpe (2010)]. However, these methods 

require that the generated dataset give statistically significant 

results that are consistent with measurements obtained from 

the actual structure, and require calibration and verification 

from real world data, which may not be feasible [Fuentes et 

al (2020)]. 

Additional challenges with FE models include inherent 

modeling discrepancies due to structural complexity or lack 

of knowledge about certain material properties that may be 

simplified to perform the desired analysis [Farrar & Worden 

(2012); Ozdagli & Koutsoukos (2021)]. Another challenge is 

computational expense [Gardner et al (2018)] as well as 

efficiency from high fidelity models due to having a large 

number of parameters required to build the model [Fuentes et 

al (2020)]. 

A new on-going research strategy is developing hybrid-based 

models that use both data-driven and physics-driven methods 

to overcome their respective challenges. Physics-informed 

machine learning (PIML), or physics-guided machine 

learning (PGML), is a hybrid modeling approach that has 

become increasingly popular since its initial online 

publication dating back to 2016 (see Figure 1). Karniadakis, 

Kevrekidis, Lu, Perdikaris, Wang, and Yang (2021) define 

PIML as a method that “integrates seamlessly data and 

mathematical physics models, even in partially understood, 

uncertain and high-dimensional contexts.” The purpose for 

using a physics-informed model is to better constrain how a 

data-driven model learns from the data by teaching it known 

information about the system being analyzed [Zhang, Liu, 

and Sun (2020a)]. Known advantages for using PIML include 

a lower training cost [Yu, Yao, and Liu (2020)], requires less 

training data, [Zhang et al (2020a), Zhang, Liu, and Sun 

(2020b)], has improved generalizability [Zhang et al (2020a); 

Yu et al  (2020)], and generally outperforms data-driven 

models [Yu et al (2020); Zhang et al (2020b)]. The added 

physics to data-driven models makes them gray-box models, 

which improves the human interpretability and confidence in 

the model’s predictions.  

2. NOVEL CONTRIBUTIONS 

Many of the PGML methods within SHM make use of FE 

models to either generate simulated data for different damage 

states or perform model updating to compare predicted 

results with measured results for anomaly detection. 

However, FE models are generally computationally 

expensive that increases with the complexity of the model. 

Additionally, FE models can have intrinsic modeling 

discrepancies (say from not knowing the exact material 

properties for the model) which can similarly result in 

differences between the simulated and experimental data 

[Ozdagli & Koutsoukos (2021)]. While PGML has been 

shown to improve generalization even when a FE model has 

known modeling errors [see Ozdagli & Koutsoukos (2021)], 

 

Figure 1. Number of publications (title and abstract) on 

“physics informed machine learning” or “physics 

informed neural networks” from 2016 to 2022 (Source: 

app.dimensions.ai) 
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the question remains can you still get comparable results 

without the need for a computationally expensive FE model? 

The reason complex FE models are used in SHM is because 

the physics for a complex structure may not be well-defined 

or intrinsically deterministic (i.e., an ODE/PDE is not 

defined). However, the individual components that make up 

the structure have more defined physics that when put 

together may form a closer approximation to the ground truth. 

We hope to use PGML models to act as surrogate FE models 

at the individual structural component level, where the 

physics are more clearly defined. The model would initially 

consist of neural network layers trained for simple structural 

components using PGML. Then, through the principle of 

transfer learning, we can model a more complex structure by 

building a neural networked that aggregates these physics-

trained layers. We expect this will improve the 

generalizability of SHM models while using less training data 

and without a complex FE model. This trained PGML is not 

expected to take the place of a FE model, but should ideally 

be compatible with complex FE models for determining the 

health of a structure. 

3. PROPOSED RESEARCH PLAN 

Our proposed research plan is to iteratively build a physics-

informed neural network (see Figure 2) that can model 

increasingly complex structures by: 

a) individually training a collection of independent 

physics-informed networks using simplified 

physics-based models to generate their respective 

training data, 

b) aggregating the trained physics-informed sub-

networks to form a single, physic-informed layer as 

part of a larger neural network, and  

c) using transfer learning to train and connect neural 

network layers around the physics-informed layer 

using data from the complex physical structure.  

The physics-informed sub-networks can be trained 

individually using simulated data derived from their 

respective physics-based model(s) and can be verified using 

appropriate experimental data (when available). The 

individual performance of the sub-networks will be evaluated 

using both physics-guided neural networks and physics-

agnostic (i.e., purely data-driven, or vanilla) neural networks 

to test the validity of using PGML methods with their 

expected benefits. Additionally, we will evaluate how much 

simulated data is required for accurate performance for each 

sub-network, and gauge how that performance scales when 

linked to more complex networks, where the physics is not so 

clearly defined. It is expected that the physics-informed layer 

(i.e., the aggregated trained physics-informed sub-networks) 

is sufficient to evaluate simple structures with clearly defined 

physics (e.g., ODEs/PDEs, equations of motion, etc.).  

To model more complicated structures where the physics are 

not so clearly defined, we will add neural network layers 

around this physics-informed layer, where the layers 

preceding the physics-informed layer act as feature extractors 

and the layers following act as health label predictors (see 

Figure 2b). This model architecture was implemented by 

Ozdagli & Koutsoukos (2021) and showed promising results, 

with the difference being their implementation used outputs 

from a FE model to act as the physics-informed layer instead 

of our proposed collection of sub-networks. The new model 

will be trained using data collected from the complex 

structure in the form of transfer learning to bridge the 

connections between the added layers and the physics-

informed layer. The term “transfer learning” within the 

context of this study means the process of connecting new, 

untrained model layers to pre-trained model layers (i.e., 

connecting the known with the unknown).  

Freezing the pre-trained layers’ parameters during the 

training process reduces the model’s overall number of 

parameters that need to be trained for the complex structure. 

This process provides the added benefit of reducing the total 

number of trainable parameters for a potentially deep 

network, preventing the need to train a blank network of 

equal size and depth. This model type also allows for models 

to be built incrementally for increasing complex structures, 

starting from an elemental level, to a structural sub-element 

level, to then a full structural element. These tiers of models 

may then serve as physics-informed building blocks for other 

structures that may contain similar structural components. 

To get relevant experimental data, a number of datasets 

related to SHM are available online, each ranging in different 

structural complexity and measurements. Some examples 

include datasets from the Los Alamos National Laboratory 

 

Figure 2. Proposed physics-guided machine learning model 

architecture for a) training and aggregating physics-informed 

neural networks from simplified physical systems and b) 

performing transfer learning with the pre-trained physics-

informed layer to train a model for a more complex physical 

structure.  

 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

4 

SHM Data Sets and Software website containing vibration 

data for vibration-based SHM approaches. We plan to also 

make extended measurements for a more complex structure 

(e.g., hydro-turbine blade) starting with a coupon test, then 

graduating to a substructure testing, and eventually a full-

scale structure test. 

For future work, a FE model could additionally be used to 

generate training data from increasingly complex structures 

as part of the transfer learning process. This would allow for 

a FE model to still be used with this neural network 

architecture that may potentially improve the transfer 

learning training process. Additional benefits would need to 

be explored. 
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