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ABSTRACT

The PHM North America 2023 Data Challenge tasked par-
ticipants to diagnose the pitting fault severity of a gearbox
from a three-channel vibration signal. This work summa-
rizes the authors’ proposed diagnostics solution which con-
sists of a convolutional neural network with an ordinal loss
criterion, trained on the power spectral density of the sig-
nal. This method is selected based on a rigorous evaluation
using three dedicated validation sets, designed to evaluate
the model’s ability to generalize to unseen operation condi-
tions and fault severities. Ultimately, the proposed approach
achieved a competition validation score of 282.2 and a test
score of 213.3.

1. INTERNAL VALIDATION SETS TO EVALUATE MODEL
GENERALISATION ON UNSEEN DATA

Three internal validation sets are split from the available
training data. Each validation set is used to mimic a part of the
true test condition where the model is required to generalize
to unseen inputs. Validation set I is a conventional validation
set used to evaluate the model on unseen, in-distribution data.
This involves setting 20% of the training data aside for val-
idation through random selection. Validation set II contains
two unseen speed conditions. Finally, validation set III evalu-
ates the model on two previously unseen fault severity levels.
All further modelling decisions in this work were then based
on model performance on these internal validation sets.
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2. DATA PRE-PROCESSING AND AUGMENTATION

Welch’s estimate for the Power Spectral Density
(PSD) (Welch, 1967) proved to be superior to other
pre-processing candidates including cyclo-stationary
analysis (Antoni, 2009), time-synchronous averaging
(Mcfadden & Toozhy, 2000) and frequency whitening
methods (Borghesani, Pennacchi, Randall, Sawalhi, & Ricci,
2013). Interestingly, methods that did not rely on angular
re-sampling (Fyfe & Munck, 1997) performed best on in
distribution data.

Before pre-processing, a rudimentary data augmentation was
performed. This involved using signal segments with differ-
ent time offsets, thereby introducing variations in the tempo-
ral alignment of the data for the purpose of improved model
generalization. After data augmentation, the PSD was esti-
mated from a signal with 40960 data points using an FFT
window length of 8000. This ensured that at least one full rev-
olution (and corresponding fault event) was present in each
sample for any of the rotation speeds tested. Finally, the PSD
data was re-scaled before model training, with a log transform
performing best amongst the implemented scaling methods
(Box-Cox (Box & Cox, 1964), z-normalization over samples
or frequencies). Interestingly, we found that the model’s gen-
eralisation capability on unseen speeds was especially sensi-
tive to the re-scaling scheme used.

3. A CONVOLUTIONAL NEURAL NETWORK (CNN) FOR
ORDINAL REGRESSION

The pre-processed data is used to train a three-layer CNN
with an ordinal regression loss function (Rosenthal & Ratna,

1



Annual Conference of the Prognostics and Health Management Society 2023

2022). In this way, the relative relationship between the or-
dinal health states is modelled instead of treating each health
state as a distinct class, thereby improving model generaliz-
ability. CNN convolutions are performed over the frequency
axis of the PSD, with the convolutional weights identical for
each channel. This ensures that the model captures infor-
mative features in each frequency channel while using fewer
weights for a more parsimonious model. Further measures
for improving model generalizability and combating the risk
of over-fitting include dropout, weight decay, and batch nor-
malization.

4. OUT OF DISTRIBUTION DETECTION FOR PREDIC-
TION CONFIDENCE ESTIMATES

Although internal validation tests indicated good generalisa-
tion of the pitting severity model to unseen operating con-
ditions, generalisation to unseen health states was challeng-
ing. Therefore, an out-of-distribution detection model was
added, which detects unseen health states based on the fi-
nal latent layers of the trained CNN. Two anomaly detection
schemes were tested for out-of-distribution detection, with
the One-Class SVM model (Alam, Sonbhadra, Agarwal, &
Nagabhushan, 2020) generally outperforming the Local Out-
lier Factor model (Breunig, Kriegel, Ng, & Sander, 2000) in
identifying data from unseen states. Samples flagged by this
model are assigned pitting level predictions with low con-
fidence since predictions on out-of-distribution data are ex-
pected to be inaccurate. Validation tests further indicated
that the out-of-distribution detection model could detect un-
seen health states well under known operating conditions but
was less successful under unseen operating conditions. Thus,
the out-of-distribution model was used only under previously
seen operating conditions.

5. RESULTS ON TEST AND VALIDATION SETS

The data competition made use of a scoring system where
predictions close to the true fault severity are rewarded and
predictions far away from the true fault severity are heav-
ily penalized. Ultimately, the proposed approach achieved
a competition validation score of 282.2 and a testing score of
213.3 out of a possible maximum score of 800.

6. CONCLUSIONS AND FUTURE WORK

The machine learning solution proposed here incorpo-
rates careful validation set design, data augmentation, pre-
processing, a sophisticated CNN architecture, and uncertainty
quantification through the detection of out-of-distribution
samples. Ultimately, the proposed pipeline yields a robust
predictive model for detecting pitting faults in gears using vi-
bration data.

In future work, the unexpectedly superior performance of ba-
sic signal processing input features as opposed to more so-

phisticated approaches that rely on angular re-sampling can
be investigated. Furthermore, generalization to unseen health
states could be improved with improved input features that
are sensitive only to fault severity. Finally, the outlier detec-
tion model could be improved to perform better on unseen
operating conditions.
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