

1

Interpolate and Extrapolate Machine Learning Models using An

Unsupervised Method – An Approach for 2023 PHM North America

Data Challenge

Peng Liu

JMP Statistical Discovery LLC, Cary, NC, 27513, USA

Peng.Liu@jmp.com

ABSTRACT

The 2023 PHM North America Data Challenge is intriguing

because it requires one to predict outcomes and use data

patterns that training models do not see. Modern machine

learning models based on gradient boosting and neural

networks are not designed to address such issues in usually

circumstances. Our final approach to address the challenge

consists of five steps. In our approach, we use an

unsupervised method besides machine learning models to

address the challenge.

1. DETERMINE THE TYPE OF THE PROBLEM

The training data consists of multi-dimensional vibration

time series of 2016 samples from gear pitting experiments.

The testing data set has 800 samples, and the validation data

set has 813 samples.

The testing subjects have the same gear parameters, but are

under different pitting conditions, and tested under different

settings. Pitting condition, also known as state in the data, is

an ordinal response variable, which describes the degradation

level of individual testing subjects. Testing settings consist of

various levels of speed and torque combinations. The values

are discrete numeric. The training data consists of seven

pitting conditions and 78 testing settings. The testing and

validation data consist of additional four pitting conditions

and additional 15 testing settings. The task is to predict pitting

conditions of samples in the testing and validation data.

We consider the problem as a classification modeling

problem in general, but with additional requirement to predict

unseen labels. Normally, classification modeling treats

response as a categorical variable. For such models,

interpolation and extrapolation are undefined.

The decision on the type of the problem is determined by the

final methodology that we decide to use. Our choices of

methodologies are two modern machine learning techniques:

tree-based gradient boosting and neural networks. Both

techniques are high performers in predictive modeling, given

sufficient training data. But they are known to be unsuitable

for interpolation and extrapolation in regular use cases.

Our final strategy is to use training data to fit a typical

classification model, using either methodology, then use the

fitted model to predict outcomes of new data. The predictions

are then used to interpolate and extrapolate to unseen labels.

2. DETERMINE A CROSS-VALIDATION METHOD

First, we need to clarify some terminologies for the remaining

discussion. Cross-validation is a framework to train modern

machine learning models. It requires one to partition existing

data for modeling in two pieces. In some literature, the two

pieces are called training and validation sets respectively. The

names, however, are confounded with three data sets in the

competition. In the competition, we have three data sets:

“training”, “test”, and “validation”. The data that we use for

modeling is the “training”. For cross-validation, we need to

partition the “training” in two pieces. To avoid confusion, we

use “training-partition” and “validation-partition” for the

partitions during cross-validation. Next, we describe how we

apply a cross-validation strategy to model this data.

We notice the data set is huge, but the number of independent

samples is small. Eventually, we decide to split long time

series into shorter ones. But by such, we do not create more

samples, and we need to avoid leaks. Therefore, when we

train our model, we create cross-validation set based on the

original sample identifications, not based on the shorter time

series.

Such cross-validation faces a challenge in the current task

because there are not enough data in the training data. To

properly creating cross-validation sets, we need to consider

the distinct level combinations of state, speed, and torque. In

the end, there are not enough data for every combination to

Peng Liu. This is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

2

be split into training-partition and validation-partition. There

are less than four samples on average for each testing setting.

For example, a five-fold cross-validation split does not have

enough data, because a five-fold cross-validation needs to put

four fifth of samples in the training-partition, and one fifth of

samples in the validation-partition. The partitions are iterated

to have even opportunity to be either training-partition or

validation-partition. But we still don’t feel that one five-fold

cross-validation set is sufficient. To address the problem, we

use the repeated five-fold cross-validation, which creates

multiple cross-validation sets. By such, each combination

will have even opportunities to appear among all training-

partitions and validation-partitions. A repeated five-fold

cross-validation is an extension to simple five-fold cross-

validation. Instead of creating one five-fold cross-validation

split, the repeated version creates multiple random splits. We

use a patented method which provides a rigorous approach to

create such partitions that have the optimal properties such as

independence, randomness, and balance. The method

(Lekivetz, et.al. 2020) is implemented in the proprietary

software JMP.

3. CREATE A DATA AND FIT A MODEL

We define our classification model as follows. The response

variable is the state, which is the degradation condition. The

predictors are features from time series. We only use the first

three time series in each sample. From each sample, we split

the long time series of each sample into shorter time series

segment with length 1000, discarding irregular or redundant

beginnings of the long series. A segment is still a multivariate

time series. Time series in each segment are then normalized

by centering by mean and scaling by standard deviation.

From the processed segment, we extract features, which

include univariate summary statistics of univariate time

series, univariate time series features such as autocorrelation

functions, multivariate summary statistics such as

correlation, and multivariate time series features such as

cross-correlation. We use extracted features and testing

settings as predictors, together with the response state, we

form a data for model fitting. The testing settings are treated

as continuous variables. The data has about a quarter million

rows and over five hundred columns.

We experimented two types of models: gradient boosting and

multilayer perceptron neural networks. Their performances

are similar. Our best performing model on the test data is a

gradient boosting model. Gradient boosting is a general

technique developed by Friedman (2001). The specific

implementation that we use is known as the XGBoost

developed by Chen (2016). XGBoost is usually used through

either R or Python. We use XGBoost through a software

developed by Wolfinger (2020).

To use XGBoost, one usually needs to tune hyperparameters

to achieve the best performance. For this task, we did not do

so but accept all default settings, except increasing the

number of iterations. The reason is, given the default settings,

the fitted model performs very well on the validation-

partitions, which is independent of training-partitions for

independent assessment of the model performance. The other

reason that we did not put effort in tuning is the nature of this

competition which requires predicting unseen labels. We

anticipate that the uncertainty due to that nature will outpace

improvement by hyperparameter tuning within the

framework of our approach.

Our final model on the validation data is a multilayer

perceptron neural networks model. We use the software

PyTorch by Paszke et. al. (2019) through a developing

interface in JMP (2023). Similarly, we did not spend effort

on tuning hyperparameters, but choose an epoch value so the

performance of the model on the validation-partition appears

to converge and does not deteriorate. The main reason to use

this method is because the speed of model fitting is much

faster than fitting XGBoost models, while cross-validation

performances are similar.

4. PRODUCE PREDICTIONS

The prediction outputs of our cross-validated classification

models are probabilities of observed seven states, from

individual short time series. Recall the short time series are

segments of length 1000 from longer series, so we calculate

the average of the probabilities by the original sample

identifications. The results are averaged probabilities of

seven possible states. For example, there are 800 independent

samples in the testing data. The predictions on the testing data

consist of 800 vectors of length 7, each entry of a vector is an

averaged probability of being in the corresponding state

Meanwhile, we have 816 vectors for the validation data.

5. PREDICTIONS TO UNSEEN LABELS

There are four states that are unseen in the training set and we

need to predict them in the testing and validation sets. During

our research, we use the training data to mimic the situation

by intentionally excluding samples of a couple states and

predict their outcomes by pretending they haven’t been seen.

And we used the learned knowledge to decide our

extrapolation strategy.

We use the nearest neighbor clustering method, which is an

unsupervised learning approach, to predict unseen labels. For

example, the training data has 7 states. We exclude samples

whose state is 3 from model fitting process. The fitted model

is trained to predict just 6 states. The prediction is a vector of

6 entries, as we described in the previous section. We then

apply the nearest neighbor clustering to cluster all predicted

vectors into 7 clusters, which is the true number of levels of

states. We use this approach to learn how the clustering result

behaves to seen and unseen labels.

Figure 1 illustrates the result from such an experiment. The

model was training by excluding samples whose state is 3.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

3

The training process does not see samples whose state is 3.

The predictions are done on the validation-partitions and the

excluded samples whose state is 3. The predictions are

clustered into 7 clusters. The plot in Figure 1 is known as the

parallel coordinate plot. There are 7 sub-plots for 7 clusters.

Each sub-plot has a cluster ID beneath it. In each sub-plot, a

connected line draws the prediction vector of 6 entries. For

example, in cluster 1, a red connect line connects 6 estimated

probabilities values of predicting which state the

corresponding sample is at. In cluster 1, the probability of

state=0 remain highest for all samples in that cluster.

Figure 1. Clustering result with state=3 excluded.

Similarly, we can observe that samples in cluster 2 have

highest probability prediction at state=1. And cluster 4, 5, 6,

7 have their clear highest probability prediction,

corresponding to states 4, 8, 6, 2, respectively. Samples in

cluster 3 appear to have multiple peaks. It is tempting to

assign state = 3 to that cluster. If so, it seems that the

prediction of the unseen label state = 3 spreads probabilities

in the neighborhood of state = 3, such as 1, 2, 4, and 6. There

is very little probability on state = 0 or 8, which are further

away from state 3.

If we predict that samples in clusters 1, 2, 4, 5, 6, 7 are from

state 0, 1, 4, 8, 6, 2, respectively, and samples in cluster 3 are

from state 3, the accuracy can be seen from Table 1. The table

tabulates the actual states of individual samples and their

predicted states by clustering. The row labels are the actual

states. The column titles are predicted states. The values in

individual cells are the counts that are associated with

corresponding row label and column title. For example, the

value 287 in the upper left corner of the table represents the

number of samples from state 0 and also correctly predicted.

Another example, the cell with value 4 on the row of state =

3, under the column title where “state by cluster = 0”, is the

count of misclassification of 4 samples of state = 3 to state =

0.

Table 1. Accuracy of interpolation.

 state by cluster

state 0 1 2 3 4 6 8

0 287 0 0 0 0 0 0

1 0 294 1 0 0 0 0

2 0 0 291 0 0 0 0

3 4 114 5 59 85 0 0

4 0 0 0 4 300 0 0

6 0 0 0 0 0 276 0

8 0 0 1 1 0 0 294

From Table 1, we learned that assigning clusters with clear

peaks to the corresponding states is a reasonable way to make

prediction of seen labels. But probably due to unseen labels,

there are misclassifications. For example, in the second

column in Table 1, under the column title “state by

cluster=1”, there are 114 misclassified samples from “state =

3”. The samples under “state by cluster = 4” include 85

misclassified samples from “state = 3”.

Figure 2. Clustering result with state=8 excluded.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

4

Similarly, we studied the approach by excluding state = 8.

And Figure 2 is the parallel coordinate plot of such a study.

In this study, we assign predictions to individual clusters as

follows. Assign cluster 1 to state = 0, cluster 2 to state = 1,

cluster 4 to state = 4, cluster 5 to state = 2, cluster 6 to state =

6, and cluster 7 to state = 3. The assignment is based on the

peak probabilities in individual sub-plots. The samples in

cluster 3 are not assigned. Because we do not know how to

handle the pattern in the study. We assign state = -1 to

indicate that we are unable to assign a valid prediction. Table

2 is the tabulated misclassification table.

Table 2. Accuracy of extrapolation.

 state by cluster

state -1 0 1 2 3 4 6

0 2 285 0 0 0 0 0

1 2 4 288 1 0 0 0

2 4 0 0 287 0 0 0

3 0 0 1 0 265 1 0

4 0 0 0 0 2 302 0

6 3 0 0 0 0 1 272

8 89 1 0 58 0 0 148

From Table 2, the unseen label state = 8 is misclassified into

the state = -1, 2, and 6. But many congregate at state = 6.

From what we learned, we can conclude that our approach to

make prediction perform well on seen labels, but there are

uncertainties on unseen labels. For unseen labels that require

interpolation, the predicted probabilities appear to be around

the truth. For the unseen labels that require extrapolation, a

large number of samples congregate at the highest observed

state.

Based on what we learned in the experiments, we tested

different decision rules to assign clusters to predicted states.

The main strategy is to decide threshold probabilities in

individual clusters, such that the samples with predictions

above the thresholds are assigned to corresponding predicted

states. The ones under the thresholds are undetermined. The

cluster that has the peak probabilities at state = 6 has two

thresholds. The samples above the upper threshold are

assigned to state = 6. The samples below the lower threshold

are undetermined. The ones in the middle are assigned to state

= 9. All the undetermined samples are assigned zero

probabilities to all prediction entries and zero confidence.

The process of finding the thresholds is a trial-and-error

process by monitoring our scores on the leader board. We

choose the result that had the highest score as our final result.

6. CONCLUSION AND FUTURE WORK

The data challenge is intriguing because it requires predicting

unseen labels. Modern and power machine learning models

are not designed for such tasks. Our approach combines

modern machine learning models and an unsupervised

method to address the challenge. The result is promising, but

we also see a lot of room for improvement. We can think of

at least following two directions to study further. The first

one is how to make short time series segment from the longer

time series based on the individual testing conditions. We use

an arbitrary length of 1000 in our modeling process, but we

think that different segmentation rules may result different

results. The second direction is how to conduct the

unsupervised learning more objectively. Maybe, there is a

less arbitrary way.

REFERENCES

Lekivetz, R.A., Morgan, J.A., Jones, B.A. and Wolfinger,

R.D. (2020). Validation Sets for Machine Learning

Algorithms. U.S. Patent 10,754,764. SAS Institute Inc.

Friedman, J. H. (2001). Greedy function approximation: A

gradient boosting machine. The Annals of Statistics,

29(5) 1189-1232

Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree

Boosting System. arXiv: Learning, 785-794. Retrieved 3

27, 2023, from https://arxiv.org/abs/1603.02754

Wolfinger, R. D. (2020). XGBoost Add-In for JMP Pro.

https://community.jmp.com/t5/JMP-Add-Ins/XGBoost-

Add-In-for-JMP-Pro/ta-p/319383

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Chintala, S. (2019). PyTorch: An Imperative

Style, High-Performance Deep Learning Library. In

Advances in Neural Information Processing Systems 32.

JMP (2023), Version 18. SAS Institute Inc., Cary, NC, 1989–

2023.

BIOGRAPHY

Peng Liu is a Principal Research Statistician Developer at

JMP Statistical Discovery LLC. He holds a PhD in statistics

from North Carolina State University. He is responsible for

maintaining and developing products related to reliability

data analysis, reliability engineering, time series, and time

series forecasting. His work includes research in algorithm

development, data analysis, graphical user interface design

and implementation, and software architecting.

https://community.jmp.com/t5/JMP-Add-Ins/XGBoost-Add-In-for-JMP-Pro/ta-p/319383
https://community.jmp.com/t5/JMP-Add-Ins/XGBoost-Add-In-for-JMP-Pro/ta-p/319383

	1. Determine the type of the problem
	2. Determine a cross-validation method
	3. Create a data and fit a model
	4. Produce predictions
	5. predictions to unseen labels
	6. Conclusion and future work

