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ABSTRACT 

Data-driven modeling has been considered as an attractive 

approach for fault detection in chemical processes.   Of 

special interest to industry are methods that represent 

nonlinear phenomena and detect complex faults. In this 

paper, a semi-supervised deep learning method - deep 

autoencoder for fault detection in Tennessee Eastman 

Process (TEP) is proposed. The TEP process is a simulated 

benchmark for evaluating process control and monitoring 

methods. The performance of the proposed method is 

evaluated and compared to Principal Component Analysis 

(PCA). The experimental results demonstrate that the 

proposed optimized five-layers DAE model for fault 

detection outperforms the standard PCA. Of special 

importance to real-world applications is its capability for 

automatic variable selection. In comparison to PCA it 

demonstrated higher prediction accuracy for most of the 

generated faults. Deep autoencoder has the potential to 

become an excellent approach for process monitoring and 

fault detection in chemical processes.  

 

1. INTRODUCTION 

Chemical processes have become more and more 

automated after deployment of advanced process control 

systems during the last three decades. Despite their 

benefits during production, there are still many tragic 

chemical process accidents, resulting in assets loss and 

environmental damages. Due to highly dynamic process 

and high-frequency records in these industrial systems, 

fault detection is far from being the default state in large-

scale application. Data-driven process monitoring and fault 

detection is  becoming one of the most active field in 

chemical process control (Chiang, Russell, & Braatz, 

2000a; Qin & Chiang, 2019; Venkatasubramanian, 

Rengaswamy, Kavuri, & Yin, 2003). Among them, 

multivariate statistical methods, such as Principal 

Component Analysis (PCA) (Kresta, Macgregor, & 

Marlin, 1991; Wise, Ricker, Veltkamp, & Kowalski, 

1990), Partial Least Squares (PLS) (Khan, Moyne, & 

Tilbury, 2008; Kresta et al., 1991; Kruger & Dimitriadis, 

2008; MacGregor, Jaeckle, Kiparissides, & Koutoudi, 

1994),  

Fisher Discriminant Analysis (FDA) (Chiang, Kotanchek, 

& Kordon, 2004; Chiang, Russell, & Braatz, 2000b; He, 

Qin, & Wang, 2005; Zhu & Song, 2011) have been 

extensively studied during last decades (Yin, Ding, 

Haghani, Hao, & Zhang, 2012). These statistical methods 

provide promising ways to detect faults at early stages of 

abnormality. Most of these methods, however, are limited 

by the assumption that fault data could be distinguished 

with linear transformations. Therefore, some non-linear 

relationships between variables and outcome cannot be 

well captured by these linear methods. 

 

For statistical process monitoring, including fault 

detection, PCA is a widely used method in the chemical 

and petrochemical industry due to its simplicity, popularity 

and effectiveness (He & Wang, 2011; Joe Qin, 2003; Yin 

et al., 2012). PCA can be viewed as the linear projection of 

a data set to maximize the variance in the projected space. 

It can handle high dimensional, noisy, and highly 

correlated data generated from chemical processes and 

reduce dimensionality to a small number of principal 

components. In addition, PCA only requires the historical 

data of normal operation to build the fault detection model.  

 

Although the PCA-based monitoring methods have been 

successfully applied in many applications, they have their 

limitations. For instance, PCA does not consider the 

probability density of the observed data. Also, the PCA-

based process monitoring scheme assumes that the process 

behaves linearly, which limits its applicability for 

monitoring nonlinear processes. Although a special 

version of PCA - kernel PCA (KPCA) can deal with 
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nonlinearity, it is difficult or even impossible for KPCA to 

find an inverse mapping function from the feature space to 

the original space (Lee, Yoo, Choi, Vanrolleghem, & Lee, 

2004). 

 

PLS is another popular multivariate statistical method and 

extensively used for model building, fault detection, and 

diagnosis. It uses an off-line trained correlation model and 

online process measurements to predict online key 

performance indicators of an industrial process. For the 

purpose of process monitoring, PLS can detect the faults 

which occurred in the process input by the use of the 

information contained in the input–output correlation. PLS 

extracts the correlation model from the process inputs and 

outputs for further prediction and fault diagnosis purposes. 

Unlike PCA, PLS inclines to discover the faults that 

occurred in process inputs, which might influence the key 

performance indicators. Recently, the applicability of PLS 

and its variants for process monitoring and fault detection 

have been comprehensively studied (Yin et al., 2012). 

 

FDA is a linear dimensionality reduction technique, which 

is optimal in terms of maximizing the separation between 

several classes.  It determines a set of projection vectors, 

ordered in terms of maximizing the scatter between the 

classes while minimizing the scatter within each class.  

When an additional class of data represents the normal 

operating conditions, FDA can also be applied on 

industrial processes for fault detection (Chiang et al., 

2004). 

 

An inherent limitation of traditional approaches is the 

assumption of Gaussian distribution of process data. 

Additional basic limitation of these methods is that the 

developed statistical models are based on a single layer of 

features and may not achieve the best monitoring and fault 

detection performance. Another class of fault detection 

method is based on non-linearity of features in data. For 

instance, Support Vector Machine (SVM) was applied to 

fault detection in industrial systems (Chiang et al., 2004; 

Kulkarni, Jayaraman, & Kulkarni, 2005; Mahadevan & 

Shah, 2009; Yélamos, Escudero, Graells, & Puigjaner, 

2009). It can capture nonlinear features embedded in the 

data and detect complex faults which are similar to normal 

data, even though there are subtle nuances between the 

two classes. 

 

Artificial neural network-based approach is another option 

for fault detection of nonlinear features, and different 

architectures of ANN have been explored. Recently, a 

classical neural net for classification has been successfully 

used for fault detection (Heo & Lee, 2018).  A nonlinear 

autoregressive with exogenous input (NARX) neural 

network has been implemented for the detection of both 

internal and external faults in the distillation column for 

dynamic system monitoring and to predict the probability 

of failure (Taqvi, Tufa, Zabiri, Maulud, & Uddin, 2018). A 

different architecture, auto-associative neural network 

which is trained in an unsupervised fashion, is used in 

(Heo & Lee, 2019).  It overcomes one of the key 

limitations in fault detection applications; that the neural 

networks are trained in a supervised manner assuming that 

the normal/fault labels were available. 

 

Recently, deep learning has shown significant progress in 

its capabilities and has been utilized in diverse application 

areas such as, image and natural language processing 

(Goodfellow, Bengio, & Courville, 2016). Deep learning is 

an algorithm containing stacked neural network layers 

with linear transformation and non-linear activation, 

including restricted Boltzmann machines (RBM), 

convolutional, recursive, and pooling layers. In deep 

learning method, low level features such as edges are 

emphasized and transformed to a higher and more abstract 

level features (Goodfellow et al., 2016). With sufficient 

transformation and activation, giant functions aiming at 

specific tasks are learned and optimized based on 

backpropagation. The key advantage of this method is that 

it automatically discovers features with gradually 

increased complexity. With the rapid development of 

powerful graphics cards and deep learning frameworks, 

deep learning has become a viable alternative for potential 

industrial applications. Recently, there is a growing 

interest in exploring deep learning for fault detection and 

diagnosis of chemical processes. A hierarchical deep 

neural network (HDNN) (Xie & Bai, 2016), a deep belief 

network (DBN) (Zhang & Zhao, 2017), a Deep 

convolutional neural network (CNN) model were proposed 

for diagnosing the faults on the TE process (Cheng, He, & 

Zhao, 2019; Wu & Zhao, 2018). However, these methods 

still require tedious variable selection and models with 

complex architecture, which will constrain their 

application in real-time process monitoring.  

 

 
Fig. 1: Structure of a Deep Autoencoder 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023 

3 

 

Despite the progress of the above two categories of data-

driven methods, fault detection is still far from widely 

used in practical applications due to three major issues. 

First, these methods require large amount of labelled data 

to train a well-performed model. Second, these methods 

often require significant amount of domain expertise for 

variable selection and model validation. Third, the 

imbalance between normal and fault data makes model 

development process a real challenge. 

 

This paper proposes a deep learning neural network 

structure, called Deep Autoencoder (DAE) algorithm, to 

detect faults without tedious feature selection. The 

proposed DAE framework is trained based on time series 

data in normal process condition without manual variable 

selection. The article demonstrates the model performance 

of the DAE through testing it for detecting different types 

of faults in Tennessee Eastman Process (TEP). To 

compare DAE with traditional statistical models, PCA 

method is used as a benchmark method.  

 

2. DEEP AUTOENCODER 

Autoencoder is a type of neural network which is adopted 

to copy significant information of its input to its output 

(Fig.1). The idea of autoencoders has been a vital part of 

neural networks for decades (Kramer, 1991). Historically, 

autoencoders have been used to  de-noise signals, extract 

features and reduce dimensionality (Goodfellow et al., 

2016; Hinton & Salakhutdinov, 2006). DAE has been 

deployed as anomaly detection method, such as 

monitoring vibration data (Qi et al., 2017; Qu, He, 

Deutsch, & He, 2017; Reddy, Sarkar, Venugopalan, & 

Giering, 2016) and telemetry data (Sakurada & Yairi, 

2014; Zhao, Meng, Zeng, & Qi, 2017). There are several 

autoencoder applications to classify faults in chemical 

process as well (Cheng et al., 2019; Jiang, Ge, & Song, 

2017). As an unsupervised learning method, DAE consists 

of three components: an input layer, single or multiple 

hidden layers, and an output layer. At the middle of the 

structure is a bottleneck layer where the information of 

data is most concentrated and represented. Each layer can 

have different number of neurons. In DAE, the input 

vector  is mapped into a hidden layer h, by a linear 

transformation ,  followed by a nonlinear 

activation . W is the weight matrix and b is the 

bias,  is the activation function. Some of the common 

activation functions include sigmoid function, tanh 

function, Rectified Linear Units (ReLU) and their 

derivatives. The encoder is mapped reversely to 

reconstruct the input vector x by another process, with 

, where  stand for transposed 

matrix of respectively. We use the same weight 

to encode the input vector and decode the hidden 

representation. The learning process is to minimize the 

loss function  

 
The parameters  are optimized via backpropagation to 

minimize the loss function. Gradient descent optimization 

algorithms are the most common ways to optimize neural 

networks. In this paper, Adaptive Moment Estimation 

 
Fig. 2. The Tennessee Eastman process diagram 
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(Adam) gradient descent optimization algorithm - is used 

to optimize the deep neural network. 

In complex industrial systems, the relationships between 

predicting variables and outcome are intended to be 

nonlinear. The statistical methods, such as PCA, PLS, etc., 

can only transform raw signals linearly but cannot capture 

nonlinear relationships. In this case, nonlinear features 

must be approximated by linear methods, which could 

result in inaccurate feature selections, especially in 

difficult fault detection scenario, such as, Fault 5 in TEP. 

However, nonlinear neural networks can overcome these 

difficulties. In DAE, there are two steps of transformation 

between two layers. The first step is linear multiplication, 

which is very similar to PCA and PLS methods. The 

second step is nonlinear activation, with sigmoid function, 

PReLU or ReLU, to generate nonlinear features in deeper 

layer, which are optimized by back-propagation.  

 

3. TENNESSEE EASTMAN PROCESS 

TEP model is a realistic simulation program of a chemical 

plant which is recognized as a benchmark for process 

control and fault detection studies. The process is 

described in (Downs & Vogel, 1993) and the MATLAB 

code for process simulation is available over the website 

(https://depts.washington.edu/control/LARRY/TE/downlo

ad.html). The system, shown in Fig. 2, consists of five 

major units, i.e., reactor, condenser, compressor, separator 

and stripper.  The process generates two products from 

four reactants. In addition, an inert and a by-product are 

also present making a total of 8 components denoted as A, 

B, C, D, E, F, G and H. The gaseous reactants A, C, D, and 

E and the inert B are fed to the reactor where the liquid 

products G and H are formed.  The reactions in the reactor 

are irreversible, exothermic, and approximately first-order 

with respect to the reactant concentrations.  The reactor 

product stream is cooled through a condenser and then fed 

to a vapor-liquid separator.  The vapor exiting the 

separator is recycled to the reactor feed through a 

compressor.  A portion of the recycle stream is purged to 

keep the inert and by-products from accumulating in the 

process.  The condensed components from the separator 

(Stream 10) are pumped to the stripper.  Stream 4 is used 

to strip the remaining reactants in Stream 10 and is 

combined with the recycle stream.  The products G and H 

exiting the base of the stripper are sent to a downstream 

process which is not included in this process.   

 

To investigate the ability of DAE for fault detection in this 

chemical process, the TEP simulator was used to generate 

21 classes of faulty data, which correspond to Faults 1-21 

specified by the TEP (Table 1). For each faulty case, two 

sets of data were generated. The training data containing 

only normal operation data were used to build the models 

and the test data containing both normal and faulty 

operations data were used for model validation. Both 

training and test data contain 960 observations. In test 

data, the first 160 observations were based on normal 

operation and the corresponding faults occurred after the 

161st observation. Each dataset contains 52 process 

variables. 

 

Table 1. Process faults for the Tennessee Eastman process 

Fault Number Description Type

1 A/C feed ratio, B composition constant Step

2 B composition, A/C ration constant Step

3 D feed temperature Step

4 Reactor cooling water inlet temperature Step

5 Condenser cooling water inlet temperature Step

6 A feed loss Step

7 C header pressure loss-reduced availability Step

8 A, B, and C feed composition Random variation

9 D feed temperature Random variation

10 C feed temperature Random variation

11 Reactor cooling water inlet temperature Random variation

12 Condenser cooling water inlet temperature Random variation

13 Reaction kinetics Slow drift

14 Reactor cooling water valve Sticking

15 Condenser cooling water valve Sticking

16 Unknown Unknown

17 Unknown Unknown

18 Unknown Unknown

19 Unknown Unknown

20 Unknown Unknown

21 The valve fixed at steady state position Constant position  
 

 

4. RESULTS AND DISCUSSION 

4.1 DAE Model Architectures  
It is a real challenge to find an optimal architecture for the 

deep autoencoder. Most architecture is problem-dependent 

and based on the data structure. To find a proper 

architecture, we have tuned several models with various 

number of layers, neurons, and different activation 

functions. Several activation functions were tested in this 

study with the best performance of Parametric Rectified 

Linear Units (PReLU). On top of the selected activation 

functions, a series of architectures with the most 

outstanding fault detection performance are displayed in 

Fig. 4. 

 

In process data streaming, the sampled data point is highly 

correlated with nearby data point, therefore, the temporal 

relationship and variations should not be neglected. 

Considering time relationship between the data points of 

 
Fig. 3. Data Preprocessing  

 

https://depts.washington.edu/control/LARRY/TE/download.html
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process data, dynamic deep autoencoder model was 

introduced by using dynamic time-variable matrix with 

t*m dimensions (t is time span, m is the number of 

variables). After concatenating time span from all sensors, 

the length of a single input vector is t*m. The total training 

dataset contains 960 data points. Dynamic deep 

autoencoder is a great way to extract the features of 

process data from both spatial and temporal domains. (Fig. 

3)  

 

Several architectures were explored and evaluated with the 

prepared dataset. With PReLU as activation function and 

MSE as loss function, model performance was evaluated 

by changing number of layers and number of moving 

windows. For small-sized dataset, complex neural 

networks with very deep layers and large number of 

neurons will cause severe over-fitting issue. The validation 

error is significantly higher than training error. The best 

way to narrow the gap is to reduce number of layers and 

neurons in each layers. The optimized architecture has 5 

neural layers and slide window with 3 data points, 

resulting in 156 neurons at the input layer. This 

architecture generated an excellent model with very low 

training and test errors, which shows a low bias and 

variance. Therefore, this DAE structure was selected to 

train and test the explored datasets.  

 

4.2 Automatic Variable Selection 

Unlike other machine learning methods, the explored deep 

autoencoder does not need additional variable selection 

based on domain knowledge or statistical methods, such as 

stepwise regression, ridge regression, and mutual 

information. For regression, some of the popular variable 

selection methods include, forward selection, backward 

selection, PLS, mutual information, etc. All of them 

require tedious work and detailed statistical knowledge to 

select a set of good predictors.  

 

However, deep autoencoder was trained by normal 

operation scenarios, the output is trying to preserve the 

information of the input, by minimizing the reconstruction 

error during model training. Individual-variable 

reconstruction errors at the output layer are also minimized 

in normal operation scenarios. In a faulty process, 

variables leading to or affected by faults would show huge 

differences compared with normal scenarios. When trained 

DAE model was mapped into data with faulty scenarios, 

these highly related variables would show large 

reconstruction errors relative to the other unrelated 

variables. 

        
Fig. 4. Automatic Variable Selection of Fault 11. (a) 

Important Variable Selection; (b) Comparison of actual 

data and predicted data for Variable 51 

 

An example of automatic variable selection for Fault 11, 

based on the reconstruction errors of all input variables for 

Fault 11 is shown in Fig. 4(a). Clearly, two spikes of high 

reconstruction errors are displayed for Variable 9 and 51, 

while the other variables have relatively small 

reconstruction errors. The signal of these two variables 

 
Fig 5. Reconstruction Errors of 52 variables for 5 Faults: (a) Fault 1; (b) Fault 4; (c) Fault 5; (d) Fault 7; (e) Fault 

11; (f) most relevant variable for each fault 
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demonstrated significant changes after Fault 11 has 

occurred. Trained DAE could not capture enough features 

from Variable 51, therefore, the predicted values (grey 

line) have large differences with actual values (green line) 

after Fault 11 was injected, resulting in a large 

reconstruction error for Variable 51 (Fig. 4(b)). Fig. 5 

shows important variables for Fault 1, 4, 5, 7 and 11 

selected by DAE, which is consistent with published 

literatures (Chiang et al., 2004, 2000a; Downs & Vogel, 

1993). Automatic variable selection, based on 

reconstruction errors, is a major advantage of DAE 

compared with the other methods for fault detection. First, 

all variables can be used in the training and test stages to 

generate a robust model. Hand-crafting variable selection 

process is not needed. Second, selected important variables 

with DAE model provide very useful information for root-

cause analysis of the faults, especially in real-time process 

analytics. 

 

4.3 Higher Prediction Accuracy 

Another advantage of DAE is the non-linear relationships 

between predictors and outcome represented by this 

method, which is aligned with the reality in complex 

industrial systems. As a result, it is assumed that the DAE 

can detect differences between normal and fault scenarios 

with much higher accuracy as compared to corresponding 

linear approaches. The results from a performance 

comparison between DAE and PCA for all 21 faults are 

given in this section. Two generally used metrics, fault 

detection rate (FDR) and false alarm rate (FAR), are 

evaluated here for fault detection performance. High FDR 

and low FAR are two pre-requisites for fault detection 

methods. For PCA, 9 PCs were selected. Based on PCA, 

loading matrix of normal scenarios was obtained. 

Applying loading matrix to test dataset, Hotelling’s T2 and 

Squared Prediction Error (SPE) were calculated as 

benchmarks for fault detection.  

 

With the same training and test dataset, the accuracy of 

fault detection of the DAE with the optimized architecture 

Table 2. Fault Detection Rates of The Three Methods (%) 

Type

Faults 3 9 15 4 5 7 1 2 6 8 10 11 12 13 14 16 17 18 19 20 21

DAE 3.6 3.5 7.9 100 100 100 100 99 100 98 78 79 99 96 100 77 98 91 76 68 43

T
2 5.9 5.6 5.8 18 29 45 99 99 99 97 42 33 98 94 85 24 78 90 3.8 39 38

SPE 7.6 5.6 5.9 100 31 100 100 99 100 98 37 77 98 96 100 32 94 91 35 53 50

Controllable 

Faults

Back to 

control Faults Uncontrollable Faults

 
 

Table 3. False Alarm Rates of The Three Methods (%) 

Type

Faults 3 9 15 4 5 7 1 2 6 8 10 11 12 13 14 16 17 18 19 20 21

DAE 1.3 5 1.9 3.1 3.1 1.3 2.5 3.8 0.6 0.6 1.9 5 6.9 0.6 0.6 7.5 1.3 0.6 0.6 1.9 2.5

T
2 2.5 7.5 0.6 1.9 1.9 0.6 3.1 1.3 1.3 1.9 1.9 3.8 3.1 0 1.3 14 1.9 3.1 1.3 0 1.3

SPE 5 5.6 1.9 5 6.3 3.1 6.9 5.6 0.6 3.8 1.9 5.6 5.6 5.6 5 6.9 3.8 7.5 4.4 6.9 8.1

Controllable 

Faults

Back to 

control faults
Uncontrollable faults

 
 

                Table 4. Fault Detection Delays of The Three Methods (min) 

Type

Faults 3 9 15 4 5 7 1 2 6 8 10 11 12 13 14 16 17 18 19 20 21

DAE 159 15 213 0 0 0 0 12 0 24 51 15 6 27 0 27 51 69 0 216 819

T
2 42 6 279 0 0 0 21 33 24 27 15 18 6 138 3 3 0 42 30 21 63

SPE 60 0 231 0 0 0 6 36 0 51 54 15 6 108 0 33 72 0 30 33 36

Controllable 

Faults

Back to 

control faults
Uncontrollable faults
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is evaluated. Table 2 shows the Fault Detection Rate 

(FDR) of the three different methods. Table 3 shows the 

False Alarm Rate (FAR) of the three different methods. 

Apparently, DAE based method generated better results 

with much higher FDR and lower FAR for most faults. For 

controllable faults which are hard-to-detect (i.e. Fault 3, 9 

and 15), none of these three methods can produce 

satisfactory results.  For back-to-control faults (i.e. Fault 4, 

5 and 7), DAE based method can generate 100% FDR 

along with low FARs, which performs obviously better 

than T2 and SPE. For the rest of the uncontrollable faults, 

DAE generates higher FDRs and lower FARs than 

traditional linear methods. Among them, DAE based 

methods to detect Fault 1, 2, 6, 8, 12, 13, 14, 17 and 18 

produce 90% or higher FDR with 3% or lower FAR, 

which overwhelmingly outperforms T2 and SPE. For Fault 

10, 11, 16, 19, 20 and 21, none of the methods can produce 

good results, even though DAE based method has 

significant improvement of FDR and FAR, compared with 

T2 and SPE. 

 

In industrial practice, fault detection delay is an important 

issue that we need to consider. Fewer delay means faster 

fault detection once the fault has happened, which could 

save significant time to proactively fix the faults and 

therefore, prevent system failure. Table 4 listed the 

corresponding Fault Detection Delays (FDD) of these 

three methods. For controllable faults (Fault 3, 9, 15), 

DAE has longer FDD compared with T2 and SPE. It is 

likely that DAE is insensitive towards signals of 

controllable faults and cannot detect faults at initial stage. 

For back to control faults (Fault 4, 5 ,7), all the three 

methods can detect fault signal immediately when fault 

occurs and have no fault detection delay issue. For most of 

uncontrollable faults, DAE has much shorter FDD time 

than T2 and SPE.  

 
 

 
 

In Fig. 6, three methods were utilized to monitor the 

process of Fault 5 which was injected at sample 161. Both 

Hotelling’s T2 and SPE could only detect errors at early 

stages and their statistics became similar with normal 

scenarios at later stages after sample 350-400. Their FDRs 

are 26.6% and 31.0%, respectively. Most important 

variables behaved similarly to those of normal scenarios-

they returned to their set-points at latter stage of the fault. 

With DAE, however, we can conduct much more accurate 

process monitoring for Fault 5. Due to non-linear 

transformation of deep neural network, DAE can preserve 

more detailed features from data and detect deviations 

from trained data with higher sensitivity when fault occurs. 

For Fault 5, the misclassification rate is 0. Area under 

curve of receiver operating characteristic (ROC) test is 

very close to 1, indicating very strong robustness of the 

fault detection.  

 
Fig. 6. Process Monitoring with Hotelling’s T2, SPE and 

DAE in case of Fault 5 

 

5. CONCLUSIONS 

       An important branch of deep learning neural networks 

- deep autoencoder has been studied for fault detection in 

Tennessee Eastman Process benchmark. The performance 

of an optimized five-layers DAE model for fault detection 

of all TEP-generated faults is compared with an 

established linear method, PCA. A big advantage of the 

proposed DAE is the automatic variable selection it 

provides, based on reconstruction errors. The method 

provides superior results with automatic variable selection 

and higher fault detection rate. Without tedious variable 

selection before training process, DAE simplified the 

modeling procedures by detecting all the variables, which 

is suitable for monitoring large industrial systems. 

Furthermore, important variables, selected by DAE 

algorithm, is a vital information for root-cause analysis of 

the faults by engineers and data analysts.  Compared with 

linear PCA method, nonlinear transformation of features 

embedded in the dataset by DAE can capture more useful 

information when fault occurs, resulting in a higher fault 

detection rate. The higher rates have been demonstrated 

for most of the explored faults. Despite the advantages of 

our proposed method, DAE can only be applied to steady 

processes. To adopt DAE into dynamic industrial systems 

with thousands of variables is a formidable challenge. The 

next step will be focusing on designing a proper DAE 

architecture for a real-world application.  
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