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ABSTRACT 

Plastic bearings have a wide range of industrial applications 
due to their many desirable properties such as lightweight, 
low friction coefficient, chemical resistance, and ability to 
operate without lubrication. Timely bearing fault diagnosis 
can prevent equipment failure and costly downtime.  In recent 
years, developing machine learning based bearing fault 
diagnosis with few labelled data has attracted a lot of 
attention as datasets with fault labels are rare in many 
industrial applications.  One effective approach to meet the 
challenge is few-shot learning.  Among many approaches, 
utilizing a good pre-trained deep learning model to achieve 
few-shot learning is an effective and efficient alternative.  In 
this paper, a pre-trained deep learning model called CLIP that 
combines image processing and natural language processing 
(NLP) is adopted to few-shot learning for plastic bearing fault 
diagnosis.  We explore the feasibility of leveraging CLIP 
model in the realm of bearing fault diagnosis via few-shot 
learning. Specifically, we tackle the challenges posed by 
CLIP's creation of requisite text prompt embeddings for the 
diagnosis of mechanical faults, within a few-shot learning 
framework. Our investigation illuminates the remarkable 
capability of CLIP to adapt to new tasks with minimal 
examples, a feature we exploit to devise a solution for plastic 
bearing fault diagnosis. The effectiveness of the few-shot 
learning method with CLIP is demonstrated using vibration 
data collected from plastic bearing seeded fault tests in the 
laboratory.        

1. INTRODUCTION 

Bearings play a crucial role in the performance and reliability 
of various types of machinery. Plastic bearings have a wide 
range of industrial applications due to their many desirable 
properties, including their lightweight, low friction 
coefficient, chemical resistance, and ability to operate 
without lubrication. Here are some industrial applications 
where plastic bearings are commonly used: (1) Plastic 
bearings are commonly used in food processing equipment 
due to their ability to resist corrosion and chemicals. (2) 
Plastic bearings are used in various medical equipment such 
as X-ray machines, MRI scanners, and dental chairs. They 
offer excellent corrosion resistance and are non-magnetic, 
making them ideal for medical applications. (3) Plastic 
bearings are used in packaging machinery such as bottling 
and filling machines. They offer low friction and are capable 
of withstanding high-speed rotations, making them suitable 
for high-speed packaging lines. (4) Plastic bearings are used 
in various automotive applications such as power steering 
systems, suspension systems, and door hinges. They offer 
excellent wear resistance and reduce noise and vibration.  
Unlike their steel counterparts, limited research has been 
conducted in developing effective fault diagnosis methods 
for plastic bearings. 

Recent developments in machine learning and deep learning 
provide a great opportunity to develop effective fault 
diagnosis methods for plastic bearing fault diagnosis.  
However, machine learning and deep learning algorithms 
require a large amount of labeled data for training, which is 
time-consuming and expensive to collect. Few-shot learning, 
which aims to learn from a few labeled examples, has 
recently emerged as a promising solution to this problem.  
Among many approaches for implementing few-shot 
learning, transfer learning is becoming an attractive one for 
many industrial applications.  Transfer learning is a technique 
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that repurposes and fine-tunes a model pre-trained on a large 
dataset (often on a different but related task) with a smaller 
dataset for a specific task. The idea of transfer learning is to 
allow the model "transfer" knowledge learned from the larger 
dataset to the new task. 

In recent years, a surge in the development and success of 
deep learning models, pre-trained on expansive datasets, has 
been observed across a multitude of applications. Notable 
examples include GPT-3, excelling in natural language 
processing (NLP) tasks, and VGG16 and ResNet50, which 
have become staples in the field of image processing. The 
emergence of these sophisticated pre-trained models has 
propelled transfer learning to the forefront as an immensely 
promising approach for tackling few-shot learning problems. 
This enables the leveraging of insights gleaned from 
comprehensive training sets to effectively handle tasks where 
the availability of labeled data is scarce.  The recent success 
of OpenAI's CLIP model serves to underline the efficacy of 
this approach. CLIP represents an innovative blend of 
computer vision and natural language processing, trained on 
a vast corpus of internet text and images. This extensive 
training enables it to understand and link images and their 
textual descriptions in a versatile and flexible manner. When 
applied in a transfer learning context, the CLIP model, with 
its pre-existing knowledge of general visual and textual 
patterns, can be adapted to more specific tasks with limited 
data - the essence of few-shot learning. The model's ability to 
generate meaningful representations (embeddings) for both 
images and their corresponding textual prompts is key to its 
power in these applications. Thus, the use of models like 
CLIP further underscores the potential of transfer learning, 
particularly in scenarios where data availability is a 
challenge. 

In this paper, we propose to exploit the transfer learning 
capability of CLIP with few-shot learning for plastic bearing 
fault diagnosis.  We will investigate the issues and propose 
our approach to creating few-shot learning solutions for 
plastic bearing fault diagnosis.  To the best of our knowledge, 
this is the first attempt to apply the pre-trained CLIP deep 
learning structures to few-shot learning for plastic bearing 
fault diagnosis. 

 

2. RELATED WORK 

In this section, we first introduce some related work on few-
shot learning in the context of transfer learning.  We then 
explain the learning and classification mechanism of CLIP 
using a simple example.  At the end, a brief review of 
previous research on plastic bearing fault diagnosis is 
provided. 

2.1. Few-shot Learning for Fault Diagnosis 

The goal of few-shot learning for fault diagnosis is to 
diagnose faults in a system or machine with high accuracy 
using only a small amount of labelled data.  Typically, few-
shot learning for fault diagnosis involves using transfer 
learning, domain adaptation, and meta-learning.  Transfer 
learning can be used to transfer knowledge learned from one 
domain to another, while domain adaptation can be used to 
adapt a model trained on one domain to another. Meta-
learning can be used to learn how to learn, enabling a model 
to quickly adapt to new domains with few samples.   

One of the popular few-shot learning methods is K-way N-
shot learning, which is used to classify new samples based on 
a small set of labeled samples (N) taken from K different 
categories. 

Liu et al. (2021) conducted a survey on meta-learning for 
few-shot cross-domain fault diagnosis.  Their paper provides 
an overview of various algorithms, including model-agnostic 
meta-learning (MAML), Reptile, and Prototypical Networks, 
which have been shown to be effective in adapting to new 
fault diagnosis tasks with limited labeled data.  It suggests 
that meta-learning has great potential for few-shot cross-
domain fault diagnosis.  Feng et al. (2022) explored the use 
of meta-learning for fault diagnosis.  The paper reviews 
various meta-learning algorithms and their applications in 
fault diagnosis across different domains, such as 
manufacturing, aerospace, and automotive industries.  The 
authors also discussed the prospects of meta-learning for fault 
diagnosis and highlighted some of the challenges that need to 
be addressed to make this approach more practical and 
effective. For example, they pointed out that the lack of 
labeled data and the high cost of obtaining it are significant 
barriers to the adoption of meta-learning in industrial settings.  
Yan et al. (2021) proposed a few-shot learning framework for 
fault diagnosis in industrial machine.  The proposed 
framework is based on a transformer architecture with 
attention mechanisms and uses contrastive learning to learn a 
feature representation that can discriminate between normal 
and faulty conditions. It is trained on a small labeled dataset 
and can quickly adapt to new machines with few labeled 
samples.  Domain shift caused by changes in machine speed 
can be handled by the proposed framework.  Hu et al. (2019) 
explored the use of external data and fine-tuning for 
improving the performance of few-shot learning pipelines.  
They found that fine-tuning the image encoder on the target 
task can improve performance of few-shot learning.   

Even though few-shot learning doesn’t not always involve 
transfer learning, transfer learning often forms the basis for 
few-shot learning approaches. By leveraging a model that has 
been pre-trained on a large and diverse dataset, we can extract 
useful features or representations that can be used to quickly 
adapt to new tasks, even when only a few examples are 
available - thus enabling few-shot learning. 
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2.2. The CLIP Architecture and Its Learning and 
Classification Mechanism 

CLIP (Contrastive Language–Image Pretraining) was first 
introduced by OpenAI in a paper entitled "Learning 
transferable visual models from natural language 
supervision," in June 2021 (Radford et al, 2021).  It is a 
cutting-edge artificial intelligence model that integrates 
image processing and NLP in a meaningful way.   

CLIP uses a learning mechanism known as contrastive 
learning.   The idea is to train an image encoder and a text 
encoder to generate embeddings for a given image-text pair 
that are similar to each other. More formally, for a given pair 
(image, text) that are a match, the model is trained to make 
the image embedding (representation) and the text 
embedding (representation) close in the embedding space, 
while pushing apart the representations for pairs that do not 
match.   

Here we use a simple example to explain how CLIP works.  
Suppose we want to build a CLIP model to classify 3 types 
of objects: bottles, book, and cups.  It would start with 
generating training pairs (image, text prompt) as the 
examples shown in Figure 1.   

Image Text prompt 

 

 

“This is a bottle.” 

 

 

“This is a book.” 

 

 

“This is a cup.” 

 

Figure 1.  Image and text prompt pair examples 

 

The training process of a CLIP model is shown in Figure 2.  
As shown in Figure 2, for each pair in the training dataset, the 
image is passed through the image encoder to generate image 
embeddings: I1, I2, and I3 and the text prompt is passed 
through the text encoder to generate text embeddings: T1, T2, 
and T3.  Various image processing and NLP models can be 
used as the image encoder and text encoder, respectively.  
Currently, CLIP uses a transformer model as its text encoder 
and a vision transformer (ViT) or ResNet50 as its image 
encoder.     

The goal of the training process is to make the similarity high 
for matching image-text pairs, e.g., (I1, T1), (I2, T2), (I3, T3) 
and low for non-matching pairs, e.g., (I1, T2, (I1, T3), etc.  

Therefore, the model uses a contrastive loss function, which 
encourages the model to make the embeddings of matching 
pairs similar and the embeddings of non-matching pairs 
different.  Various metrics can be used to measure the 
similarity between the embeddings of an image-text pair.  For 
example, cosine similarity can be used.  Let I be the 
embedding of an image and T be the embedding of a text 
prompt.  Then the cosine similarity between the image and 
the text prompt can be computed as: 

𝐈𝐓

‖𝐈‖ ‖𝐓‖
                                                                (1) 

 

As the result of the training, the cosine similarity matrix in 
Figure 2 should have its highest values on the diagonal 
elements that are highlighted with blue color.  

After the training, the text embedding obtained will be used 
to classify the new unlabeled images.  The classification 
process is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The training process of CLIP 

For the simple example with the 3 objects, after the training, 
we obtained the following cosine similarity matrix: 

0.2791 0.2190 0.2125 

0.1891 0.2493 0.2137 

0.1892 0.2151 0.2603 

 

As shown in the similarity matrix, the diagonal elements in 
the matrix have the highest values.  This indicates that the 
training was successful, the text prompts of the corresponding 
images were appropriate, and the correct text embeddings 
were generated. 

 

“This is a bottle.” 
“This is a book.” 
“This is a cup.” 

Text  
Encoder 

Image  
Encoder 
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Figure 3.  The classification process of CLIP 

 

For the classification showcase, we chosen a book image as 
the new unlabeled image.  After the image was passed 
through the image encoder, the image embedding of the new 
image was generated and the cosine similarity was computed 
as following: 

 

0.1879 0.2437 0.2133 

 

From the above computed cosine similarity scores, we can 
see that since the new image has the highest similarity score 
with book, the new image was classified as a book. 

OpenAI's CLIP model was trained on a large dataset of 400 
million image-text pairs collected from the internet. This 
extensive dataset is essential for the model's ability to 
generalize from text to images and perform learning tasks, as 
it has been exposed to a wide variety of concepts and 
associations between texts and images during training.  The 
CLIP model pre-trained with huge dataset represents a great 
opportunity for transfer learning in the field of PHM.  Many 
successful applications of CLIP have been reported since its 
introduction in June 2021.  It has been leveraged for tasks 
such as zero-shot image classification, where it has 
demonstrated impressive results by using only textual 
descriptions of classes without requiring explicit examples of 
each class. Furthermore, when used with text generation 
models like GPT-3, CLIP can even produce image 
descriptions or generate images from textual descriptions.   

Despite its impressive capabilities and potential for transfer 
learning, CLIP is not without limitations, particularly in 
specialized domains such as mechanical fault diagnosis. The 

challenge arises from the difficulty in finding suitable image-
text pairs on the internet that adequately describe specific 
mechanical faults. The scarcity of these relevant pairs could 
potentially limit the model's ability to accurately understand 
and categorize images related to mechanical faults. Hence, 
while CLIP holds immense potential, its application in such 
specialized fields may require additional strategies to 
effectively capture domain-specific knowledge. 

In this paper, we explore the feasibility of leveraging 
OpenAI's CLIP model in the realm of mechanical fault 
diagnosis via transfer learning. Specifically, we tackle the 
challenges posed by CLIP's creation of requisite text prompt 
embeddings for the diagnosis of mechanical faults, within a 
few-shot learning framework. Our investigation illuminates 
the remarkable capability of CLIP to adapt to new tasks with 
minimal examples, a feature we exploit to devise a solution 
for plastic bearing fault diagnosis. Our work thereby 
underscores the potential of this innovative approach within 
the context of mechanical fault diagnosis.     

2.3. Previous Research on Plastic Bearing Fault 
Diagnosis 

Previous research on plastic bearing fault diagnosis using 
data mining method was conducted by He, Li, and Zhu 
(2013).  In their two-step data mining approach, frequency 
domain features were first extracted from vibration signals to 
classify the bearing faults into either outer race faults or non-
outer race faults.  Then the empirical mode decomposition 
(EMD) approach was applied to extract time domain features 
to further classify non-outer race faults into inner race fault, 
ball fault, and cage fault with K-nearest neighbor (KNN) 
approach.  Their method provided good classification 
accuracy as high as to 97.1%.  In their study, the fault 
diagnosis was done at each input speed separately and the 
training was not done with mixed speed data.  Therefore, their 
study doesn’t involve transfer learning. 

3. THE METHODOLOGY 

As discussed in Section 2.2, even though the CLIP model was 
pre-trained with 400 million image-text pairs collected from 
the internet, it is still difficult to associate effective text 
prompts for bearing fault images with those in the CLIP’s  
pre-training dataset.  Therefore, it will not be useful if we use 
any text prompt for our bearing fault diagnosis.  For example, 
for the plastic bearing fault diagnosis, we could have the 
following text prompts for each of the 5 bearing conditions: 

“It is a ball fault.”   text prompt for ball fault 

“It is a cage fault.”  text prompt for cage fault 

“It is a normal bearing.”  text prompt for normal bearing 

“It is an inner race fault.”  text prompt for inner race fault 

“It is an outer race fault.”  text prompt for outer race fault 

“This is a bottle.” 
“This is a book.” 
“This is a cup.” 

Text  
Encoder 

Image  
Encoder 

New unlabeled  
image 
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By using these text prompts, the following cosine similarity 
matrix is generated using CLIP model: 

 

0.2277 0.2323 0.2384 0.2266 0.2266 

0.2261 0.2319 0.2357 0.2252 0.2352 

0.2257 0.2318 0.2367 0.2251 0.2352 

0.2266 0.2335 0.2354 0.2255 0.2351 

0.2224 0.2274 0.2334 0.2208 0.2318 

 

As we can see from the above cosine similarity matrix that 
the highest similarity score doesn’t show on the diagonal 
elements of the matrix.  Instead, the 3rd column of the matrix 
contains the highest similarity scores.  This means that all the 
images of the bearing conditions are most likely associated 
with a normal bearing.  The reason for this could be that there 
are much more images in the 400 million pre-training dataset 
used for CLIP model associated with words “normal” and 
“bearing” than words like “inner race”, “outer race”, “cage 
fault” and “ball fault”.  

To overcome the limitation of using CLIP model for plastic 
bearing fault diagnosis with few-shot learning in creating 
propriate text prompts, our approach is to use the image 
embeddings as the text embeddings and adding wavelet 
coefficient statistics into the text embeddings.  The rationale 
behind this is that the image embeddings are the good 
representation of the faults in the embedding space.  In 
addition, by adding wavelet coefficient statistics into the text 
embedding, we enhance the representation of the faults in the 
embedding space. 

The proposed few-shot learning methodology with pre-
trained CLIP model is presented in Figure 4. 

As we can see from Figure 4, the vibration data is first 
processed using continuous wavelet transform (CWT) to 
extract CWT coefficients and convert the vibration data into 
corresponding scalogram images.  The images are then 
passed through CLIP to generate image embeddings.  The 
following statistics: mean, variance, skewness, kurtosis, and 
entropy, are then computed from CWT coefficients and 
added into the image embeddings to form the text 
embeddings.  The image embeddings and text embeddings 
are then used to compute the cosine similarity matrix.  Once 
the cosine similarity matrix is computed, any incoming 
unlabeled images will be classified by comparing their image 
embeddings with the cosine similarity matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The flowchart of the methodology 

Let 𝑥 𝑡  be the vibration signal value at time 𝑡, 𝑡 1, … ,𝑁.  
Then CWT coefficient  𝜔 𝑡, 𝑠  at time 𝑡 and scale 𝑠 can be 
computed as: 

𝜔 𝑡, 𝑠  
√

𝑥 𝑢 𝜓 𝑢 𝑡 /𝑠 𝑑𝑢                      (2) 

where: 𝜓 𝑢 𝑡  is the scaled and translated wavelet function 
evaluated at  𝑢 𝑡. 

 

The CWT coefficients then can be used to compute at scale 𝑠 
the following time-frequency features: mean, variance, 
skewness, kurtosis, and entropy, respectively: 

𝜔 𝑠  ∑ 𝜔 𝑡, 𝑠                                      (3) 

𝜔 𝑠  ∑ 𝜔 𝑡, 𝑠 𝜔 𝑠                 (4) 

𝜔 𝑠  ∑ ,
                       (5) 

𝜔 𝑠  ∑ ,
3            (6) 

𝜔 𝑠  ∑ 𝑝 𝑡, 𝑠 ∗ log 𝑝 𝑡, 𝑠               (7) 

 

Few Labelled  
Vibration Data 

Industrial  
System 

Continuous 
Wavelet 
Transform 
(CWT) 

Scalogram  
Images 

Pre‐trained CLIP Model 

Classified  
Bearing Faults 

Cosine Similarity 
 Matrix 

Unknown  
Vibration  
Data 

Text prompt and 
image embeddings 
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Note that in Eq. (7), 𝑝 𝑡, 𝑠  is defined as normalized 
probability and can be computed as follow: 

𝑝 𝑡, 𝑠  
| , |

∑ | , |
                                              (8) 

The normalization by Eq. (8) basically is to ensure that the 
sum of probabilities across all time points at a given scale 𝑠 
is equal to 1. 

The CWT coefficients are also used to convert the vibration 
signals into scalogram images as follow: 

𝑠𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚 𝑖𝑚𝑎𝑔𝑒 𝑡, 𝑠  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 |𝜔 𝑡, 𝑠 |     (9) 

Eq. (9) computes values to create a scalogram image where 
the x-axis represents the time or position and the y-axis 
represents the scale. Function normalize() is to scale the 
coefficients to a suitable range for visualization purposes.  
Eq. (9) basically assigns the normalized coefficients to the 
corresponding positions in the image, where the intensity or 
color value represents the magnitude or power of the 
coefficient. 

Since a CWT scalogram image of a vibration signal only 
captures the magnitude of the CWT coefficients, to maximize 
the similarity among the matched pairs or dissimilarity 
among unmatched pairs, additional CWT coefficient features 
as expressed in Eq. (3) – Eq. (7) will be added to the image 
embedding to form the text embeddings of the (image, text 
prompt) pairs.  Finally, the text embedding is computed as: 

𝑡𝑒𝑥𝑡 𝑖𝑚𝑎𝑔𝑒 𝜔 𝜔
𝜔 𝜔 𝜔       (10) 

4. THE DATASET AND ANALYSIS RESULTS 

4.1. The Plastic Bearing Dataset 

To evaluate the performance of the proposed methodology 
for plastic bearing fault diagnosis, vibration signals collected 
from plastic bearing seeded fault tests performed on a bearing 
test rig in the laboratory are used.  For vibration data 
acquisition, two 603C01 wide range accelerometers and a 
data acquisition card NI PCI-4472B were used.  The 
accelerometers were mounted on the surface of the bearing 
housing.  Figure 5 shows the bearing test rig and the vibration 
sensors on the bearing housing. 

 

 

 

 

 

 

Figure 5.  Bearing test rig (left) and accelerometers (right) 

To simulate the localized faults on a plastic bearing, four 
different bearing fault types were generated: inner and outer 
race contact surface faults, rolling element fault, and cage 
fault (see Fig. 6). The damages of the contact surface on the 
bearing inner race and outer race were generated by 
scratching the race surface using an electric solder iron with 
a heated tip.  The diameter of the damaged surface area was 
about one third of the ball diameter. The rolling element 
damage was created by scratching one of bearing balls with a 
grinding wheel. Roughly 40% of the ball volume was ground 
off.  The broken cage was created by cutting the Teflon 
retainer using a pair of sharp scissors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The 4 plastic bearing seeded faults 

Note that in addition to the bearings with the faults shown in 
Figure 6, a healthy bearing without any fault was used in 
collecting the vibration data. During the testing, vibration 
signals were collected with a sampling rate of 102.4 kHz. 
Totally, four input shaft speeds 10 Hz, 20 Hz, 40 Hz, and 60 
Hz were used during the testing.   

4.2.  Signal Processing with CWT 

In order to generate the appropriate scalogram images and 
compute the time-frequency features using CWT, the right 
CWT decomposition scales have to be used.  To determine 
the scales of the CWT, the frequency spectrums of the 
vibration signals were first obtained and analyzed.  Figure 7 
provides the frequency spectrum of the vibration signals for 
the 5 bearings at 60Hz input shaft speed obtained using fast 
Fourier transform (FFT). 

From Figure 7, we can see that most of the frequency 
activities are concentrated in the frequency range between 
5kHz and 25kHz.  To extract the scalogram images and time-
frequency features in this frequency range, scales spaced 
evenly on a logarithmic scale between 5kHz and 25kHz will 
be computed.   

Accelerometers 

Ball fault Outer race fault 

Cage fault Inner race fault 
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(a) Inner race fault               (b) Outer race fault 

 

 

 

 

 

(c) Cage fault                        (d) Ball fault 

Figure 7.  The frequency spectrums of the bearing faults at 
input shaft speed of 60Hz 

 

Define: 

     𝑛 = number of scales 

     𝑓_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = sampling frequency 

    𝑓_𝑙𝑜𝑤𝑒𝑟  lower frequency limit of the frequency range 

    𝑓_𝑢𝑝𝑝𝑒𝑟  upper frequency limit of the frequency range 

    𝑖 = index of the scale, 𝑖 0, … ,𝑛 1 

     

Then the ith  CWT logarithmic scale 𝑠 can be computed as: 

𝑠 10

_
_

∗

_
_

_
_

          (11) 

 

Note that CLIP uses an embedding size of 512.  Therefore, in 
our paper, the number of scales 𝑛 was set as 512. 

Using “Morlet” as the wavelet function and the scales 
generated between 5 kHz and 25 kHz frequency range with 
Eq. (11), the scalogram images of the 4 types of the bearing 
faults generated by CWT are provided in Figure 8. 

 

 

  

(a) Inner race fault                    (b) Outer race fault 

 

 

 

 

 

(c) Cage fault                              (d) Ball fault 

Figure 8.  Scalogram images of the bearing faults at input 
shaft speed of 60Hz 

 

4.3. The Analysis Results 

Once the scalogram images were generated using CWT, these 
images were then passed through the pre-trained CLIP model 
to generate the image embeddings.  CWT coefficients were 
obtained to compute the statistics and then added into image 
embeddings to form the text embeddings.  With the generated 
image and text embeddings, cosine similarity matrices were 
computed for K-way N-shot learning classification.  In this 
paper, K = 5 and version 1 of CLIP was used.  Note that K 
was set as 5 because in addition to the 4 bearing faults, a 
healthy bearing without any fault was also used in the dataset.  
In this version of CLIP, two image processing models are 
used: vision transformer with base size (ViT-B) and 
ResNet50 (RN50).  Therefore, the results provided next 
include both models. 

The classification results of 1-shot learning for each of the 4 
input shaft speeds are provided in Table 1. 

 

Table 1. 5-Way 1-Shot results 

Classification Accuracy  Input Shaft 
Speed 

ViT-B RN50 

60% 60% 10 Hz 

60% 80% 20 Hz 

80% 40% 40 Hz 

100% 100% 60 Hz 
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As we can see from Table 1, for both image processing 
models ViB-T and RN50, as the input shaft speed increases, 
the classification tends to be more accurate.  This is 
reasonable.  As the speed increases, the impact generated by 
the bearing faults tend to be more significantly recorded by 
the vibration signals and therefore be more distinctly 
reflected by the scalogram images.  However, there is an 
exception for RN50 at 40Hz.  This indicates that the results 
of ViT-B are more stable than that of RN50.   

The classification results of 2-shot learning for each of the 4 
input shaft speeds are provided in Table 2. 

Table 2. 5-Way 2-Shot results 

Classification Accuracy   
Input Shaft Speed 

ViT-B RN50 

100% 100% 10 Hz 

100% 100% 20 Hz 

100% 40% 40 Hz 

100% 100% 60 Hz 

  

From Table 2, we can see that as the number of shots 
increases to 2, a perfect classification will be obtained except 
for RN50 at 40Hz.  Table 2 again shows that the results of 
ViT-B are more stable than that of RN50.  One explanation 
for this is that ViT-B is a transformer based deep learning 
model and has a more sophisticated deep structure than that 
of RN50.  

To compare with the results in He, Li, and Zhu (2013), a 
comparison summary is provided in Table 3.  Note that in 
Table 3, only the best results for the two methods are used for 
the comparison purpose. 

 

Table 3.  Comparison with He, Li, and Zhu (2013) 

Classification Accuracy   
Input  
Shaft 
Speed 

Method in this paper He, Li, and Zhu 
(2013) 

1-shot 2-shot 

60% 100% 90.0% 10 Hz 

80% 100% 95.7% 20 Hz 

80% 100% 96.3% 40 Hz 

100% 100% 97.1% 60 Hz 

 

From Table 3, we can see that the CLIP based few-shot 
learning method has shown a significant improvement over 
the previous research results.  The highest classification 
accuracy achieved by the previous research is 97.1% and it 
took more than two multiple samples.  However, the CLIP 
based method needs only two samples to achieve a 100% 
classification accuracy. 

Since the few-shot learning approach developed in this paper 
is based on the concept of transfer learning, we also did test 
the transfer learning capability of the developed method.  To 
do that, we mixed the bearing faults with different input shaft 
speeds together.  With K-way N-shot learning, N number of 
images for each speed will be used for training.  For example, 
for 5-way 2-shot learning, two samples of each speed were 
used in the training set.  The transfer learning results for 
mixed input shaft speeds are provided in Table 4. 

 

Table 4.  Transfer learning results for mixed input  
shaft speed conditions 

Classification Accuracy  K-way N-shot 

ViT-B RN50 

85% 70% 5-way 1-shot 

100% 80% 5-way 2-shot 

100% 100% 5-way 3-shot 

  

As we can see from Table 4, for the best results, the CLIP 
based few-shot learning can get up to 85% accuracy with only 
one sample.  As the number of samples increases to two, it 
can obtain a 100% accuracy.  Again, the CLIP based 
approach has shown its power for transfer learning with only 
few samples. 

 

5. CONCLUSION 

In this paper, a pre-trained deep learning model called CLIP 
that combines image processing and NLP is adopted to few-
shot learning for plastic bearing fault diagnosis.  We explored 
the feasibility of leveraging CLIP model in the realm of 
bearing fault diagnosis via few-shot learning. Specifically, 
we addressed the challenges posed by CLIP's creation of 
requisite text prompt embeddings for the diagnosis of 
mechanical faults, within a few-shot learning framework. 
Our investigation illuminated the remarkable capability of 
CLIP to adapt to new tasks with minimal examples, a feature 
we exploited to devise a solution for plastic bearing fault 
diagnosis. The effectiveness of the few-shot learning method 
with CLIP was demonstrated using vibration data collected 
from plastic bearing seeded fault tests in the laboratory and 
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was compared with that of the previous results.  The 
comparison has shown that the CLIP based approach 
presented in this paper provided significant performance 
improvement over the previous data mining method for 
plastic bearing fault diagnosis.  Even though the presented 
methodology was demonstrated with a plastic bearing fault 
diagnosis case study, it should be applied to other types of 
fault diagnosis applications where both numerical and text 
data can be used. 
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