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ABSTRACT

In this paper, we develop a fault identification approach for
electro-hydraulic servo actuators based on injecting a prede-
fined diagnostic signal into the system and then extracting
fault-related features from the phase space topology. Next,
we build regression models using an artificial neural network,
which maps the feature space to fault space to identify the
faults represented by the system’s parameters. The perfor-
mance of the proposed fault identification approach is eval-
uated when the degradation of permanent armature occurs.
The effect of parametric faults on the dynamics is studied and
discussed. The robustness of the proposed method under the
condition of noise is explored. The obtained results indicate
the effectiveness of injected diagnostic signals in enriching
the dynamics of the system and increasing the quality of ex-
tracted for training artificial neural networks.

1. INTRODUCTION

Electro-hydraulic servo systems perform precise and sensi-
tive tasks such as controlling the position or force, chang-
ing the pressure, and starting or stopping the hydraulic
flow (Tamburrano, Plummer, Distaso, & Amirante, 2018).
A hydraulic system is vulnerable to dust particles, erosion,
and unstable working conditions such as a high load or se-
vere impact which lead to unpredictable parametric changes
in friction, supply pressure, or fluid properties. If these ini-
tial abnormalities are not identified in time, they may result in
the deterioration of performance even failure or instability of
the whole system (Ren, Chen, Hu, & Yuan, 2016). Therefore,
developing an effective diagnostic technique for continuously
monitoring the condition and identifying the fault parameters
at their very inception is of high importance.

Machinery faults can be identified either by interrupting the
machine to run a diagnostic procedure or by performing an
online diagnosis during the normal operation of the machine.
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In most cases, the latter has evident advantages in safety and
economy. Additionally, because of the uncertain hydraulic
parameters caused by viscous damping, variable load stiff-
ness, and external loads (Guo & Chen, 2021), it is usually
necessary to develop a tracking controller to ensure asymp-
totic stability and adaptivity of hydraulic systems (Z. Yao,
Yao, & Sun, 2018; Deng & Yao, 2019). Therefore, the de-
velopment of online diagnostic and online state monitoring
techniques which play an important role in controlling is of
great significance in hydraulic systems.

Online diagnosis targets incipient faults which are harmless
to the normal operation of systems. Because of this, the vari-
ations of state variables caused by parametric faults are barely
detectable. One feasible solution is deriving new healthy in-
dicators as a function of fault parameters which are more sen-
sitive to parametric faults according to the physics model of
systems (Ersfolk et al., 2018; Soualhi, Nguyen, Medjaher,
Lebel, & Cazaban, 2022; G.-W. Kim & Wang, 2007; Lian,
Xu, & Lu, 2013). Then, extra sensors are required to mea-
sure new data to obtain healthy indicators for parametric fault
identification. However, the requirements of extra hardware
and an accurate physics model limit the applicability of the
above method.

Another promising method of online diagnostics is the injec-
tion of diagnostic signals to increase the sensitivity of state
variables to parametric faults. The concept of signal injection
was originally developed for rotor position estimation (Jiang
& Holtz, 1997). Briz et al. (Briz, Degner, Diez, & Guer-
rero, 2004) injected high-frequency signals to detect the stator
winding faults in inverter-fed machines. Dotelli et al. (C. Yao
et al., 2014) used high-frequency signals to monitor mem-
brane drying and low-frequency signals to detect cell flooding
in polymer electrolyte membrane fuel cells. Yao et al. (C. Yao
et al., 2014) proposed a diagnostic algorithm for online mon-
itoring power transformer winding deformation by injecting
high-frequency signals.

However, there are no studies in literature regarding online
diagnostics of hydraulic servo systems employing signal in-
jection techniques. Most efforts in hydraulic diagnostics have
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been devoted to improving the efficiency of utilizing the fault-
related information in the measured signal by means of signal
processing (Goharrizi & Sepehri, 2011; Amirat, Choqueuse,
& Benbouzid, 2013), feature extraction (Jegadeeshwaran &
Sugumaran, 2015; Qiu, Min, Wang, & Fan, 2022), and ma-
chine learning algorithm (Tang, Zhu, & Yuan, 2021; Huang,
Wu, Li, Yang, & Gui, 2021). Nevertheless, our team still be-
lieves in the promising prospects of extending the technique
of signal injection to hydraulic systems. Because the fun-
damental obstacle of online diagnostics is the limited fault-
related information resulting from incipient faults. Compared
with increasing the utilization efficiency of fault-related infor-
mation, using injected diagnostic signals to enrich the fault-
related information is more potential.

The difficulty in extending the technique of signal injection
to hydraulic servo systems results from the nonlinear nature
and coupled mechanisms of electro-hydraulic servo systems.
The sensitivity to fault parameters cannot be guaranteed by
established physics models. Meanwhile, gradual degradation
in several mechanisms co-evolves, it is difficult to obtain in-
dependent and separable responses excited by injecting di-
agnostic signals. Therefore, the effectiveness of frequency
analysis which is widely used in signal injection techniques
is compromised. Moreover, multiple-factorial noises obscure
injected diagnostic signal which is designed with low power
to ensure normal operation of systems. In this study, we de-
velop a novel fault identification approach that is based on in-
jecting a predefined diagnostic signal into the system and then
extracting fault-related features from phase space topology.
The injected diagnostic signal is designed to enrich the fun-
damental response instead of generating a separable response.
Meanwhile, the abundant dynamics phenomena observed in
the enriched responses ensure the sensitivity to fault param-
eters. The feature extraction technique is chosen to be the
phase space topology (PST) method which is conceived and
developed by our own team (Samadani, Kwuimy, & Nataraj,
2015; Mohamad, Nazari, & Nataraj, 2020). The PST method
extracts density-based features from the phase space density
distributions which circumvent frequency analysis and the in-
fluence of noises.

The rest of this paper is organized as follows. In Section 2,
a description of servo systems is presented. In Section 3,
the proposed diagnostic method is explained. In Section 4,
a parametric analysis is performed on the fault’s effects on
the system response. Section 5 describes the parametric esti-
mation algorithm and presents the results. Finally, Section 6
summarizes the main conclusions of the paper.

2. ELECTRO-HYDRAULIC SERVO SYSTEM

An electro-hydraulic servo actuator consists of a symmetrical
cylinder controlled by a two-stage servo valve as shown in

Fig 1. The following subsections will briefly introduce the
system and its faults.

2.1. Working Principle

In general, electro-hydraulic servo actuator systems consist
of a torque motor and two stages of hydraulic power regu-
lation. The working principle of the electro-hydraulic servo
actuator can be summarized as follows. The electromagnetic
torque motor controls the first stage by positioning a flapper.
The flapper controls the hydraulic fluid flow through two noz-
zles in the first stage. This process provides positive internal
closed-loop flow control. Next, differential pressure positions
the second-stage spool, which controls the direction and rate
of hydraulic fluid flow to the actuator.

A nonlinear dynamical model of a two-stage servo actuator
system with spool position feedback has been used in the
analysis (Gordić, Babić, & Jovičić, 2004).
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Figure 1. Functional schematic of an electro-hydraulic servo
actuator

2.2. Parametric Fault

In industrial servo systems, one main performance require-
ment for a successful application is that the electro-hydraulic
system has to meticulously achieve all the desired control
variables such as position, velocity, and acceleration in ad-
dition to the desired force and torque.

There are many parameters that can be monitored in typical
electro-hydraulic systems. In this study, we focused on the
degradation of the permanent magnet of the armature.

The temperature of motors typically rises during high-speed
motion, which has a significant effect on the permanent mag-
net of the motor and the torque capabilities. The motor torque
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constant (Ki) is directly related to the magnetic flux density
of the permanent magnets. The overall flux density changes
with an increase in the magnet temperature, and the increase
rate of temperature also varies depending on the magnet ma-
terial.

If the motor is operating within the designed operating tem-
peratures, the decrease in flux density is temporary and will
be recovered as the magnet temperature cools down. This
is known as reversible thermal demagnetization. However,
if the temperature of the magnets exceeds the maximum de-
signed operating temperature, partial demagnetization will
occur and will be permanent, which is also known as irre-
versible thermal demagnetization.

Reversible thermal demagnetization depends on the specific
magnet material that is being used. The reversible decrease
in Ki(T ) with increasing magnet temperature is given by the
following formula:

Ki(T ) = Ki(T0)[1− αT (T − T0)] (1)

where, T0 = 25◦C is the initial temperature. Both reversible
and irreversible phenomena affect the motor torque constant
Ki, and hence, the torque capability and the permanent mag-
net motor efficiency are dependent.

3. METHODOLOGY

An overview of the proposed fault identification method used
in this paper is provided in Fig. 2. The main idea is based on
injecting a pre-defined diagnostic signal into the system and
then analyzing the system response represented by its state
variables using the phase space topology (PST) method to
extract fault-related features. Next, a regression model using
an artificial neural network (ANN) is developed to estimate
the electric-hydraulic servo actuator parameters. In summary,
features will be extracted from the phase space of state vari-
ables after injecting a signal into the system. Then, these fea-
tures will be used for estimating the degradation of the perma-
nent magnet of the valve armature, represented by the change
of the coefficient Ki.

3.1. Injection of Diagnostic Signal

For the identification of faults, we propose to inject a pre-
defined signal sI into the servo-actuator system. A periodic
signal was selected as an input as follows.

sI = AI sin(fIt) (2)

where AI and fI are the amplitude and the frequency of the
injected signal, respectively. The design of the injected sig-
nal depends on the dynamic analysis of the electric-hydraulic
servo system. The sine function is chosen to maximize the
dynamic information in the obtained response, the selection
of amplitude ensures the normal and safe operation of the sys-
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Figure 2. An overview of the proposed fault identification
method.

tems, and the chosen frequency should circumvent the reso-
nance frequencies.

The original excitation is assumed as a periodic signal as fol-
lows.

sp = Ap sin(fpt) (3)

where Ap and fp are the amplitude and the frequency of the
periodic input signal, respectively.

The main idea here is to inject a signal at a specific frequency
which can enrich the nonlinear response and unfold some hid-
den information about the system’s health condition. This
signal should not affect the usual operation of the system. In
fact, using a low amplitude and high frequency injected signal
has proven its reliability for fault detection in motor applica-
tions (S.-K. Kim & Seok, 2011; Arellano-Padilla, Sumner, &
Gerada, 2011). Hence, the amplitude of the original excited
signals is assumed as Ap = 0.04 and the injected diagnostic
signal amplitude is selected to be a smaller value AI = 0.01.
Because the goal is to develop a diagnostic approach that will
not cause harm to the system, the injected diagnostic signal
frequency is selected to be fI = 800 Hz while the periodic
input signal frequency is selected to be fp = 500 Hz.

Figs. 3 demonstrate the time series of angular displacement
excited with only periodic input signal sp (a), and both pe-
riodic input signal sp and injected diagnostic signal sI (b).
Fig 4 demonstrate the power spectra of angular displacement
excited with periodic signal sp (a) and both periodic signal
sp and injected diagnostic signal si (b). With the injected di-
agnostic signal, multiple periods appear in the time series as
shown in Fig. 3 (b). And, the multiple peaks in the spectrum
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Figure 3. Time series responses of angular displacement θ:
(a) with excitation sp, (b) with excitation sp and injected di-
agnostic signal sI
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Figure 4. Spectrum of angular displacement θ: (a) with exci-
tation sp, (b) with excitation sp and injected diagnostic signal
sI

further prove the existence of multiple periodic responses as
shown in Fig. 4 (b).

Note that, the injected diagnostic signal enriches the dynam-
ics, and these changes remain on a low scale in terms of am-
plitude which will not sabotage the normal operation of the
system. In the next section, we discuss the selection of fea-
tures that can capture these low-scale changes.

3.2. Phase Space Topology Method

Although phase space is a widespread concept in dynamic
system theory, depicting all possible dynamical states of the
system evolving over time, we have harnessed it into a new
and powerful technique called phase space topology (PST).
PST is based on the characterization of the phase space by
means of geometry properties, such as eccentricity, harmonic
amplitude, excursion variation, and density distribution peak
properties or properties derived from them, and has proven
to be a very effective approach that does not rely on inherent
assumptions of linearity.

There is a different phase space trajectory for each type of
system response. For example, a single-frequency periodic
response has a single loop closed, whereas multi-periodic and
quasi-periodic responses have trajectories of several loops.
This implies that the phase space trajectory can be used to
describe the nature of the system in a qualitative fashion.
The method of PST is, however, based on characterizing the

phase space topology with quantitative measures by creating
the phase space density distribution for each axis.

A kernel density estimator was used as follows in order to
estimate the density distribution. Let X=(x1, x2, ..., xn) be
a set of independent and identically distributed sample data
drawn from an unknown density distribution function Ψ. Its
kernel density estimator, Ψ̂h(x), can estimate the shape of
this function, where ˆ implies that it is an estimate, and h
indicates that its value may be dependent on h.

Ψ̂h(x) =
1

nh

n∑
i=1

Γ

(
x− xi

h

)
(4)

where, h > 0 is the smoothing parameter, and the kernel
function Γ(.) satisfies the requirements as follows.

∞∫
−∞

Γ(u) du = 1 (5)

Γ(−u) = Γ(u) ∀u (6)

The standard Gaussian density function is used due to its con-
venient mathematical properties, which is defined as the fol-
lowing equations.

Γ(u) =
1√
2π

e−
1
2u

2

(7)

After estimating the kernel density for phase space variables,
quantitative measures are extracted from these distributions.
For example, the phase space plane for the angular displace-
ment θ and angular velocity θ̇ of the responses excited with
periodic signal sp is presented in Fig. 5 (a). A single loop
can be observed in the phase plane. The corresponding den-
sity distribution of the variable θ is estimated and presented in
Fig. 5 (b). As is evident, two unique sharp peaks are caused
by the higher concentration of points marked as red dots in
the corresponding areas of the phase plane as shown in Fig. 5
(d). These points, along the vertical axis in the phase plot,
are called the returning points and are the areas in which the
system spends more time. Likewise, the density distribution
for the phase plane variable θ̇ is shown in Fig. 5 (c). Two
peaks corresponding to the returning points along the hori-
zontal axis of the phase plane are marked as black dots in
Fig. 5 (d) to emphasize these points.

After the injection of the diagnostic signal sI , the changes in
the phase space plane are demonstrated in Fig. 6 (a). We can
observe multiple loops in the phase plane. The correspond-
ing density distribution of the variable θ is estimated and pre-
sented in Fig. 6 (b). Four unique sharp peaks are caused by
the higher concentration of points marked as red dots in the
corresponding areas of the phase plane as shown in Fig. 6
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Figure 5. Density estimation of phase portrait with the pe-
riodic excitation sp: (a) phase plane, (b) density distribution
of θ, (c) density distribution of θ̇, (d) phase plane with the
location of the corresponding distribution peaks

(d). The density distribution for the phase plane variable θ̇
is shown in Fig. 6 (c). Six peaks are caused by the returning
points along the phase plane marked as black dots in the cor-
responding areas of the phase plane as shown in Fig. 6 (d) to
emphasize these points.

It is worth noting that for dimensions higher than three, even
though visualization of the phase space trajectory is impossi-
ble, the method is still applicable. This is because the compu-
tations are performed individually and independently for each
state of the system.

The next step includes extracting accurate and adequate infor-
mation that fully represents the system’s behavior. In order to
do that, while preserving as much information as possible,
we propose a feature set by approximating the phase space
density distributions using Legendre Polynomials. When the
approximation matches the actual density distribution, the
polynomial coefficients arguably retain the most information
present in the phase space.

Let x be a state of the system and the kernel density estimator
yd = Ψ̂h(x). Legendre polynomials are used to approximate
yd and can be directly calculated from Rodrigues’ formula
which is given by the following equation.

Φm(x) =
1

2mm!

dm

dxm

[
(x2 − 1)m

]
, m = 0, 1, 2, . . . (8)

where,
Φ0(x) = 1, Φ1(x) = x (9)

The coefficients of the Legendre polynomials are obtained by
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Figure 6. Density estimation of phase portrait with both the
periodic excitation sp and the injected diagnostic signal sI :
(a) phase plane, (b) density distribution of θ, (c) density dis-
tribution of θ̇, (d) phase plane with the location of the corre-
sponding distribution peaks

using the least squares method assuming the following linear
regression model as the following form.

Ψ(x, β) =

m∑
j=1

βjΦj(x) (10)

Letting

Xij =
∂Ψ(xi, β)

∂βj
= Φj(xi), (11)

the estimated coefficients are given by the following equation.

β̂ = (XTX)−1XT yd (12)

The coefficients β̂ constitute the features in the PST approach.
The approximate density is then calculated using Legendre
Polynomials as follows.

Ψa = Xβ̂ (13)

The root mean square error (RMSE) and Pearson’s corre-
lation coefficient (PCC) are calculated using the following
equations to determine the fit quality.

RMSE =

√
1

N
ZZT , PCC =

σT
d σa√

(σT
d σd)(σT

a σa)
(14)

where, Z = (yd−Ψa) is the residual vector, N is the number

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

of points in the density function, σd = (yd − E{yd}) and
σa = (Ψa − E{Ψa}), where E{.} is the expected value.

3.3. Artificial Neural Network

Artificial neural networks (ANNs) are computational models
that were historically inspired by the biological architecture
of the human brain. Essentially, ANNs are statistical data
modeling tools that map complex input-output relationships
and recognize the behavioral patterns of nonlinear systems.
The most popular type of ANN is the Multi-Layer Feed For-
ward (MLFF) neural network.

An MLFF neural network includes different layers of neu-
rons, including an input layer, hidden layers(which can be
one or more layers), and an output layer that is connected
with weights. Neurons in all layers, except the input layer,
use predefined activation functions. In this study, the struc-
ture of ANN has one hidden layer. The activation function
of all neurons is Tansig, which is defined as the following
equation.

ftansig(x) =
2

1 + e−2x
− 1 (15)

The inputs of ANN in this study are PST features and the
output is the interest parameters Ki. The PST features in this
study are the Legendre polynomial coefficients obtained from
state variables.

4. ANALYSIS AND DISCUSSION

4.1. Fault Sensitivity Analysis

The change in dynamic responses of the hydraulic systems
can be used to identify the faults. To capture the variation of
Ki from the healthy region, CKi

is defined in Eq. 16.

CKi =
Ki

Ki

(16)

CKi
are the values of Ki normalized to what we define to be

healthy value Ki. The system is considered to operate in a
healthy regime when CKi

is close to 1. For illustration, we
assume that Ki = 0.556 Nm/A. Generally, nonlinear systems
might have multiple healthy regimes, and hence the healthy
values for the same parameter are non-unique. However, it
should be emphasized that our approach has no inherent as-
sumptions about the number of healthy regions and what the
healthy value of the system might be.

To analyze how the system response is affected by the varia-
tion of these parameters, four faulty conditions are considered
and compared with the healthy condition. These faulty condi-
tions are caused by the torque gain degradation corresponding
to 20%, 40%, 60%, and 80% decrease in CKi

.
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Figure 7. Time series of angular displacement θ with extra
noise: (a) with excitation sp, (b) with excitation sp and in-
jected diagnostic signal sI

4.2. Noise Effect Analysis

Noise from different sources, i.e., fluid dynamic or mechan-
ical noise (Peng, Li, & Fan, 2014), is likely to contaminate
the response measured in reality. Hence, in order to intro-
duce a sense of reality into our own model, we will integrate
measurement noise as follows. Signal-to-noise ratio (SNR)
describes the intensity of the noise and is expressed as Eq. 17.

SNR = 20 log10

(
σs

σn

)
(17)

where σs and σn are the root mean square values of the re-
sponse signal and the noise, respectively. Small SNR indi-
cates large noises and vice versa.

Figure 7 demonstrates the time series responses of angular
displacement θ with (a) period signal sp and (b) period signal
sp and injected diagnostic signal sI .

4.3. Phase Space Density Analysis

The abundant nonlinear dynamics driven by the injected di-
agnostic signal leads to variations in the phase space density
distribution.

In case of the periodic excitation, the density distributions of
the angular displacement and velocity without injected diag-
nostic signal for the various cases of CKi

are demonstrated
in Fig. 8. As CKi

decreases, we observe the increases in am-
plitude of density distribution indicated by the y-axis and the
decrease in the spread of density distribution on the x-axis.
The density distributions are clearly distinguishable with the
variation of CKi for both angular displacement and velocity
as shown in Figs. 8 (a) and (b).

Fig. 9 demonstrates the density distributions of angular dis-
placement and velocity with combined periodic signal and
injected diagnostic signal. It can be observed that more peaks
appear as CKi

increases and the peaks are clearer even for
small values of CKi

as compared with density distribution
without injected signal as shown in Fig.8.
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Figure 8. Density distribution with the periodic signal sp: (a)
angular displacement θ, (b) angular velocity θ̇
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Figure 9. Density distribution with both the periodic signal
sp and the injected diagnostic signal sI : (a) angular displace-
ment θ, (b) angular velocity θ̇

From the above, we conclude that the injection of the diag-
nostic signal enriches the dynamics of the hydraulic-electro
servo system and provides more qualitative characteristics in
the phase space plane and density plots which can be ex-
tracted as features for developing a machine-learning model.

5. PARAMETER ESTIMATION AND RESULTS

In this section, 100 sets of data corresponding to various Cki

are generated as the training set to develop a neural network.
Other 20 sets of data are generated as the testing set.

In the case of periodic excitation, PST features are extracted
from both angular displacement θ and angular velocity θ̇ sep-
arately to train NNs, and the estimated regression plots of
them are demonstrated in Fig. 10. Fig. 10 (a) shows the out-
puts of NNs trained by θ-related features where the RMSE of
the case without the injected diagnostic signal is 8.2157e−04,
and the RMSE of the case with the injected diagnostic signal
is 2.3506e − 5. Fig. 10 (b) demonstrates the outputs of NNs
trained by θ̇-related features where the RMSE of the case
without the injected diagnostic signal is 1.8965e − 04, and
the RMSE of the case with the injected diagnostic signal is
1.4795e− 05.

After the introduction of noise with SNR = 5 dB in the sim-
ulations, the corresponding regression plots are demonstrated
in Fig. 11. Fig. 11 (a) shows the outputs of NNs trained by
θ-related features where the RMSE of the case without the in-
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Figure 10. Regression plots predicted by ANNs: (a) trained
by features extracted from angular displacement θ, (b) trained
by features extracted from angular velocity θ̇. In this case, the
blue stars denote the results excited by only the periodic sig-
nal sp, black circles represent the results excited by both the
periodic input signal sp and injected diagnostic signal sI , and
the red dashed line is the 45-degree line representing perfect
estimations.

Table 1. RMSEs of estimations of parameter Ki (sp: pe-
riodic excitation, sI : Injected diagnostic signal, θ: angular
displacement, θ̇: angular displacement, none: no noise, 5 dB:
SNR = 5 dB)

scenario Excitation Feature Noise Rmse
1 sp θ none 0.00082
2 sp and sI θ none 0.00002

3 sp θ̇ none 0.00019

4 sp and sI θ̇ none 0.00001
5 sp θ 5 dB 0.02493
6 sp and sI θ 5 dB 0.00394

7 sp θ̇ 5 dB 0.03735

8 sp and sI θ̇ 5 dB 0.00732

jected diagnostic signal is 0.0249, and the RMSE of the case
with the injected diagnostic signal is 0.0039. Fig. 11 (b) ex-
hibits the outputs of NNs trained by θ̇-related features where
the RMSE of the case without the injected diagnostic signal
is 0.0373, and the RMSE of the case with the injected diag-
nostic signal as 0.0073.

Note that the performance of NN’s is better using the features
of density distribution plots excited with combined periodic
signal sp and injected diagnostic signal sI compared with
features excited by only periodic signal sp in case of added
noise. This can be observed by the RMSE values tabulated
in Table 1 which validates the effectiveness of the proposed
method in enhancing the robustness of extracted features in
case of added noise. Moreover, we can observe lower RMSEs
with injected diagnostic signals for each scenario in Table 1.
We conclude that the injected diagnostic signal is effective in
increasing the estimation accuracy of trained NNs.

6. CONCLUSION

In this study, we propose an online diagnostic method us-
ing injected diagnostic signal to identify the degradation of
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Figure 11. Regression plots predicted by ANNs with extra
noise: (a) trained by features extracted from angular displace-
ment θ, (b) trained by features extracted from angular veloc-
ity θ̇. In this case, the blue stars denote the results excited
by only the periodic signal sp with extra noise, black circles
represent the results excited by both the periodic input sig-
nal sp and injected diagnostic signal sI with extra noise, and
the red dashed line is the 45-degree line representing perfect
estimations.

permanent armature represented by the motor torque con-
stant gain (Ki) in an electro-hydraulic servo system. The in-
jected diagnostic signal enriches the dynamics of the electro-
hydraulic system which leads to more distinguishable density
distribution plots of the phase portraits. Therefore, the fea-
tures extracted from phase space by PST methods are more
capable of capturing the fault-related information and train-
ing an artificial neural network for parametric fault estima-
tion. The lower RMSEs of estimating fault parameters using
the extracted features from the PST method for each scenario
with injected diagnostic signal demonstrate the effectiveness
of the proposed method. In case of added noise, the artificial
neural network performance better estimations with injected
diagnostic signal compared to without injected diagnostic sig-
nal with lower RMSE values. The presented results demon-
strate the robustness of the proposed fault diagnostic method
for the hydraulic system.

the evident superiority of RMSEs with injected diagnostic
signals compared with RMSEs without injected diagnostic
also validate the effectiveness of the proposed method in en-
hancing the robustness of trained ANNs.
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