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ABSTRACT

The Short-Time Fourier transform is widely applied in the
condition monitoring of rotating machinery. Even so, select-
ing the optimal window length for the Short-Time Fourier
Transform remains a challenge. This work presents a pro-
cedure for adapting the Short Time Fourier Transform algo-
rithm to be differentiable with respect to window length by
using continuous window functions defined over the entire
input signal duration. Thanks to this modification, a differen-
tiable loss criterion can be defined to measure the Short-Time
Fourier quality, and the gradient of the loss criterion with re-
spect to window length can be computed. The optimal win-
dow length for a given loss criterion can then be efficiently
solved for using a gradient-based optimization algorithm. Re-
sults from a simulated bearing dataset and three experimen-
tal bearing datasets are used to compare the optimal spectro-
grams obtained using different loss criteria. Specifically, a
sparsity-based loss criterion is compared with two loss cri-
teria inspired by the characteristic cyclo-stationarity nature
of faults in rotating machinery. The results demonstrate the
value of a continuous and differentiable window length selec-
tion method and highlight the importance of selecting appro-
priate loss criteria for defining STFT quality. Further, loss cri-
teria that account for the cyclo-stationary nature of the signals
are shown to be less likely to target single high-amplitude im-
pulsive events compared to the sparsity-based loss criterion.

1. OPTIMAL WINDOW SELECTION FOR THE SHORT-
TIME FOURIER TRANSFORM

The Short-Time Fourier transform (STFT) is a widely used
method for analysing non-stationary signals as encountered in
rotating machinery. It yields an informative time-frequency
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representation by segmenting a signal with time-varying
properties into consecutive windows and taking the Fourier
transform of each window.

The Heisenberg Uncertainty principle dictates that the utility
of the resulting time-frequency representation is dependent
on a trade-off between time and frequency resolution, as gov-
erned by the selected STFT window length. Hence, optimal
STFT window length selection is a crucial step in the analysis
of non-stationary signals as encountered in rotating machin-
ery.

As an alternative to searching for the optimal window length
by trial and error or by evaluating all possible window
lengths, we propose a STFT with associated loss criteria that
can efficiently be optimised with respect to window length.
The proposed STFT and loss criteria are a function of contin-
uous window length, meaning that many conventional optimi-
sation methods designed for continuous functions can be ap-
plied to conveniently solve for optimal window length. Fur-
thermore, the proposed STFT is differentiable, allowing for a
particularly efficient search of optimal window length using
gradient-based optimizers.

A differentiable STFT can be useful for many signal process-
ing tasks, but in this work, we focus on the application of the
differentiable STFT to the condition monitoring of rolling el-
ement bearings. Specifically, we consider different unsuper-
vised loss criteria for measuring spectrogram quality, includ-
ing criteria that exploit knowledge of the periodic impulses
expected in faulty rolling element bearings.

Previous work concerned with optimal STFT window length
selection adjusted the window size in the frequency domain
by defining the window size as a fixed number of cycles at
each frequency (Mateo & Talavera, 2018), adjusted the win-
dow length based on the derivative of the instantaneous fre-
quency (Xie, Lin, Lei, & Liao, 2012) or selected the window
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length by optimising the cone kernel distribution (Czerwinski
& Jones, 1997).

More recent window selection methods exploited modern ad-
vances in automatic differentiation (Paszke et al., 2017) that
make it possible to differentiate intricate loss criteria and op-
timise them using gradient-based optimisation methods.

Zhao et al. (2021), estimated optimal window parameters for
the STFT by computing the gradients of the STFT with re-
spect to window length and solving for the optimal window
length by gradient-based optimisation. This differentiable
STFT is further combined with neural networks and applied
to a sound classification problem both for the case where the
optimal window length is constant and for the case where it
can vary in time.

Similarly, Lieber et al. (2022) proposed a differentiable STFT
and applied it to STFT frequency tracking as well as spoken
digit classification. In contrast with Zhao et al. (2021), a con-
stant FFT size is used where a Hann window is zero-padded
to match the full signal length, thereby making the STFT dif-
ferentiable. The differentiability of the approach with respect
to window length is proven, both for constant hop length
and constant overlap. This work was then further extended
by optimising for a time-dependent adaptive window length
(Leiber, Marnissi, Barrau, & Badaoui, 2023).

In other related work, Fang et al. (Fang, Hu, Yang, Cao, &
Jia, 2022) employed a differentiable framework for finding
optimal filters for the deconvolution of bearing fault signals.

In this work, we propose a simplified variant of the differen-
tiable STFT which neither requires a variable FFT size with
changing window length (Zhao et al., 2021) nor zero padding
(Leiber et al., 2022). We further introduce three unsupervised
loss criteria that measure the STFT quality as function of win-
dow length. An unsupervised loss criteria implies that labeled
samples are not used to solve a supervised problem as in ear-
lier work (e.g. sound classification (Zhao et al., 2021), fre-
quency tracking (Leiber et al., 2022)).

Since faulty machine data are generally not available to be
used as target labels in the condition monitoring machines,
an alternative loss criterion is required to drive the optimal
window length optimisation problem. Although kurtosis-
based metrics that encourage spectrogram sparsity have suc-
cessfully been used to measure STFT quality (Zhao et al.,
2021), such metrics are often ineffective for signals from ro-
tating machinery that include impulsive signal components
(Wodecki, Michalak, & Zimroz, 2021). Therefore, in addi-
tion to a differentiable STFT, we introduce three different loss
criteria for optimizing the STFT window length. We demon-
strate the benefit of accounting for the cyclo-stationarity na-
ture of rolling element bearing signals in the design of the
these loss functions, thereby exploiting the knowledge that
faults in rolling element bearings cause the resonate fre-

quency of the machine to be modulated by a characteristic
fault frequency (McFadden & Smith, 1984). We finally show
that the usefulness of a differentiable STFT depends on se-
lecting an appropriate loss criterion that can appropriately
measure the quality of the STFT for a given window length.

The paper is structured as follows. In Section 2 we show how
the STFT can be made differentiable with respect to window
length by multiplying the signal with a set of windows hav-
ing many values close to zero. Section 3 presents three loss
functions for measuring spectrogram quality that can be opti-
mised with respect to window length. Next, the effectiveness
of the proposed gradient-based optimisation loss functions is
demonstrated in Section 4 using a simulated bearing fault sig-
nal. Finally, the same method is applied to three experimental
signals in Section 5 and conclusions are drawn in Section 6.

2. A DIFFERENTIABLE STFT

The STFT of signal x[i] of length L sampled at discrete time
index i is defined as:

F [m, k] =

N−1∑
n=0

x[m+ n]w[n]e−j 2π
N kn, (1)

where i, n, k and m are the discrete indexes of the signal time,
window time, FFT frequency bin and resampled window time
respectively, with w a window function of length N .

The number of samples in a window, N , will determine the
time-frequency resolution of the resulting STFT. Longer win-
dows will better capture the frequency content of the signal
but will also lead to reduced time resolution. To solve for
the optimal window length using gradient-based optimiza-
tion, Eq. 1 needs to be differentiable with respect to the win-
dow length. This is done by making the window function w a
function of signal sample time i rather than the conventional
window time n. Consequently, the size of the FFT for each
of the windows becomes equal to the signal length L:

F̂θ[m, k] =

L−1∑
i=0

x[i]wθ(i,m)e−j 2π
L ki (2)

Note that this modification of the STFT is done exclusively
for the sake of differentiability and that the corresponding
increase in the frequency resolution does not necessarily
contribute additional information to the differentiable STFT
(Leiber et al., 2022).

Ultimately, this procedure corresponds to an element-wise
multiplication of the signal x[i] with a window function
wθ(i,m), centred at m and taking values close to zero out-
side the interval [m− N

2 ,m+ N
2 ]. This procedure is demon-

strated graphically in the left hand side of Figure 1, where a
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stack of signals are element-wise multiplied with a stack of
time-offset windows.

In this work, the windowing function w is a Gaussian win-
dow, although it could in principle be parameterized by mul-
tiple free parameters as for the generalized Gaussian window.

wθ(i,m) = exp

(
−
(
6(i−m)

θ

)2
)

(3)

The window function w (bottom left corner of Figure 1) is
parameterised by continuous window length θ, serving as a
proxy for the window length N . In this work a Gaussian win-
dow function is used rather than a Hann window as in (Leiber
et al., 2022) since the window function is close to zero for
large values of n, meaning that the window does not require
zero padding as the window length changes during optimisa-
tion. In Eq. 3, six standard deviations of the Gaussian win-
dow are considered as the full window length N , with the
window function taking very small values outside of this re-
gion (Zhao et al., 2021).

In this work, M windows are equally spaced over the entire
signal duration with window hop length or stride s =

⌊
L
M

⌋
,

such that
m ∈ {s, 2s, 3s, . . . ,Ms}. (4)

The number of windows M can be as large as computational
resources allow but should be sufficiently large to ensure that
the new window sample rate can capture the fault frequency.
In this work, we chose the number of windows M such that
are at least 15 windows between two fault events.

Thanks to the modified STFT formulation in Eq. 2 the STFT
is differentiable with the window length proxy θ.

∂F̂θ[m, k]

∂θ
=

L−1∑
i=0

x[i]
∂w(i,m)

∂θ
e−j 2π

L ki (5)

A differentiable metric for STFT quality can now be com-
puted from the STFT, backpropagating the computed loss
function gradients and optimising the windowing parameters
(Right hand side of Figure 1).

3. CYCLO-STATIONARY LOSS FUNCTIONS FOR DEFIN-
ING STFT QUALITY

We consider three loss criteria namely L1, L2 and L3 for
quantifying STFT quality for the purpose of bearing fault de-
tection. In all cases, the squared magnitude of the STFT, or
spectrogram, is used in the loss function and visualisation.

Sθ[m, k] =
∣∣∣F̂θ[m, k]

∣∣∣2 (6)

L1 aims to find the window length that leads to a maximally
sparse STFT. This metric, called the concentration, is based
on the kurtosis (Zhao et al., 2021) and is defined as:

L1(θ) =
c4(Sθ)

c2(Sθ)
with cp(v) = |v|p (7)

L2 is inspired by cyclostationary analysis in condition mon-
itoring of rotating machinery (Antoni, 2009) and accounts
for the periodic impulses of energy characteristic of bearing
faults. This is done by maximizing the envelope spectrum
over a range of expected fault frequencies. The envelope, Eθ

is computed by averaging the magnitude of the spectrogram
over the frequency axis.

Eθ[m] =
1

N

N−1∑
k=0

Sθ[m, k] (8)

The total loss then consists of summing the envelope spec-
trum Fourier coefficients for a range of cyclic frequency in-
dices C = {ca, ca +1, . . . , cb} around the expected fault fre-
quency. A range of frequencies is specified to ensure that the
loss function does not fit the envelope to a non-fault-related
signal component like the rotation or gear mesh frequency.

L2(θ) =
∑
c∈C

(
M−1∑
m=0

Eθ[m]e−j 2π
M cm

)
(9)

Similar to L2, L3 also accounts for the periodic impulses of
energy typical of bearing faults but does not assume that the
envelope signal will be sinusoidal as in L2. Instead, L3 max-
imizes the sum of the autocorrelation of the envelope for a
range of lag values P = {pa, pa + 1, . . . , pb} around the ex-
pected lag between fault impulses.

L3(θ) =
∑
p∈P

(
M−1∑
m=0

Eθ[m]Eθ[m+ p]

)
(10)

In this work, the range of cyclic frequencies and lag values
used in L2 and L3 are chosen to span the range [0.9fc, 1.1fc]
where fc is the expected fault frequency for given rotation
speed. Consequently, the range of cyclic frequencies and lag
values are defined as:

ca,b =

⌊
1± 0.1fcM

fs

⌋
pa,b =

⌊
1± 0.1fs

fc

⌋
.

(11)

All operations required for computing any of the loss func-
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Elementwise
multiplication

Compute loss
criterion

Backpropagate
gradients

Take optimizer
step

Windowing
parameters

Stack
signals

Stack
windows

Fourier
transform

(Differentiable)

Figure 1. Procedure: Multiplication of the signal with a window function that has the same length as the input signal leads to
a differentiable STFT. After computing a loss criterion measuring the spectrogram quality, the optimal window length can be
solved for using a gradient based optimiser.

tions can be conveniently differentiated by automatic differ-
entiation. Since the gradient of the STFT with respect to the
window length is known from Eq. 5, the gradient of the loss
with respect to the window length can be computed using the
chain rule.

∂L

∂θ
=

∂L

∂F̂θ

∂F̂θ

∂θ
(12)

Finally, the gradient is used in a gradient-based optimiser to
update the optimal window until convergence.

4. OPTIMAL STFT WINDOW LENGTH SELECTION
FOR A SIMULATED BEARING SIGNAL

In this section, the proposed optimisation algorithm is ap-
plied to a simulated bearing fault signal. The signal, shown
in Figure 2, is based on a phenomenological bearing model
(McFadden & Smith, 1984). Periodic excitations of the nat-
ural frequency of the machine when a rolling element passes
through a fault region is modelled as a a first-order time
response convolved with a Dirac comb. Although no slip
of rolling elements are present in the simulation, the am-
plitude a of the bearing impulses are normally distributed,
a ∼ N (µ = 1, σ = 0.1), and the signal is contaminated with
Gaussian noise, ν ∼ N (µ = 0, σ = 0.1). Further properties
of the simulated signal are listed in Table 1.

To demonstrate the gradient-based optimization of a STFT
loss criteria, Figure 3a shows the loss landscape of the objec-

Table 1. Phenomenological model parameters

Simulation parameter Value
Sampling Rate 20.48 kHz
Signal Duration 0.7 s
Transient amplitude mean 1 m/s2

Transient amplitude standard deviation 0.1 m/s2

Measurement Noise standard deviation 0.33 m/s2

Fault mode Outer race
Ball diameter 8.4 mm
Pitch circle diameter 71.5mm
Number of rolling elements 16
Carrier frequency 4230 Hz
Transient damping ratio 0.05
Contact angle 15.17 Degrees
Operating speed 500 RPM

tive function L2 in Eq. 9. The optimisation trajectory from
the optimisation start point, traced by the optimiser, is su-
perimposed on the response surface, demonstrating that the
optimiser can find the optimal window length (indicated with
∗) for the prescribed loss function.

Further, to demonstrate the time-frequency resolution trade-
off, spectrograms for non-optimal candidate window lengths
A and C, annotated in Figure 3a, are shown in Figures 3b and
3c respectively. Candidate A has a low frequency resolution,
while candidate C has a low time resolution. All optimal win-
dow lengths obtained in this paper for a given loss criterion
will necessarily make a compromise between time and fre-
quency resolution, with certain loss criteria favoring higher
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Figure 2. Synthetic outer race fault bearing signal contami-
nated with noise.

time resolution, and others favoring higher frequency resolu-
tion.

The choice of loss criterion and the resulting optimal window
length can ultimately influence machine diagnosis, either di-
rectly, or in downstream signal processing tasks that employ
the STFT. For instance, for the bearing diagnostics problem,
a window length resulting in a very high frequency resolution
but low time resolution could fail to capture all periodic im-
pulses in time. As a result, the periodic fault signature char-
acteristic of a bearing fault might not be detected in the spec-
trogram. Conversely, a loss criteria that tends to select win-
dow lengths with very high time resolution will have a coarse
frequency resolution meaning that the specific resonant fre-
quency bands that convey the bearing fault information might
not be present in the STFT or downstream signal processing
methods that make use of the STFT.

After convergence of an optimizer minimizing the example
loss function L2 in Figure 3a, the optimal window length is
obtained (B* in Figure 3a) and the spectrogram with optimal
window length can be visualized. Spectrograms obtained af-
ter solving for the optimal window length according to each
of the three loss criteria L1, L2 and L3 are shown in Figures
4a, 4b and 4c respectively.

In all cases the fault information is more clearly visible
in the spectrogram as compared to the time domain signal
shown in Figure 2. However, even though all of the afore-
mentioned time-frequency representations are for exactly the
same signal, it is clear that different loss criteria can lead to
different optimal spectrograms. For example, the sparsity-
based metric L1 (Figure 4a) tends to magnify single fault
impacts in the spectrogram, thereby disregarding weaker im-
pulses present in the signal that could have have confirmed
the presence of regular repeating impulses characteristic of a
fault. Conversely, metrics that account for the expected cyclo-
stationarity in a faulty bearing, namely L2 and L3 (Figures
4b and 4c), have impulses of all transients at a similar in-
tensity, but tend to smear energy in the spectrogram over the
time axis. Ultimately, the optimal window length solution

is dependent on the selected loss criteria, with the loss crite-
ria inspired by cyclo-stationarity analysis tending to choose
optimal window lengths that capture most periodic impulses
present in the signal.

Finally, the same simulated signal is used to demonstrate the
benefits of having access to gradient information from the dif-
ferentiable STFT during window length optimisation. For a
random starting window length in the continuous range of (0
samples, 200 samples), the median number of function eval-
uations required to reach a window length optimisation con-
vergence of one signal sample is recorded in Table 2. Four
different optimisation methods are applied to each of the pro-
posed loss criteria in Eqs. 7, 9 and 10, with each problem
solved 30 times to obtain the median recorded in the table.

Table 2. Median (30 trails) number of function evaluations re-
quired to converge to a window length tolerance of one sam-
ple. Optimisation algorithms that exploit the gradients pro-
vided by the differentiable STFT tend to require fewer loss
function evaluations to reach convergence.

Loss Gradient-based Gradient-free
Adam BFGS Nelder-Mead Powell

L1 9.0 20.0 60.5 66.5
L2 23.0 11.5 63.0 63.5
L3 16.0 9.5 67.0 67.0

Two of the optimisation algorithms (Adam, BFGS) make use
of the gradient of the loss criterion with respect to the window
length. Conversely, the other two algorithms (Nelder-Mead,
Powell) do not have access to the gradient information made
available through the differentiable framework proposed in
this work, allthough they still rely on the continuous nature
of Eq. 2.

The first notable result is that using a continuous window
function allows for the use for standard optimisation algo-
rithms that require significantly fewer function evaluations
as compared to the 200 function evaluations that would have
been required if the full grid of window lengths in the (0, 200)
range (tolerance of one sample) were computed. The second
result is that the gradient-based optimisation algorithms re-
quires significantly fewer function evaluations to reach the
desired tolerance as compared to the gradient-free methods.
In all of the cases tested here, even if the computational cost
of computing the gradient equally expensive as computing
the loss, the gradient based methods would be more compu-
tationally efficient on the whole. Therefore, the formulation
presented here does not only yield smooth and continuous
optimisation problems that can be solved using standard opti-
misation algorithms, but additionally, the differentiability of
the approach ensures that the window length can efficiently
be optimized for using gradient based optimisation.

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

(a) Loss landscape

(b) Candidate A: Low frequency resolution. (c) Candidate C: Low time resolution.

Figure 3. Optimisation landscape and candidate solutions for L2. The window lengths for non-optimal candidate solutions A
and C are indicated on the loss landscape.

5. APPLICATION ON THREE EXPERIMENTAL
DATASETS

The proposed window length selection method is evaluated
on three experimental datasets, including two public datasets
(Qiu, Lee, Lin, & Yu, 2006; Case Western Reserve University
Bearing Dataset, n.d.) and an in-house dataset measured at
KU Leuven, Belgium. The dataset specifications are listed in
Table 3.

Table 3. Experimental dataset specifications.

Dataset CWRU IMS KUL
Signal name 210 Test 2, Bearing 1
Fault mode Inner Race Outer Race Inner Race
Fault frequency [Hz] 159.92 236.43 193.51
Sampling frequency [Hz] 12000 20480 51200
Duration [s] 0.58 0.2 0.2

Models in the rest of this paper are optimised using the Adam
optimiser with 100 optimisation steps and a learning rate of
50 to ensure full convergence. The learning rate is compara-
tively large since the optimisation problem is directly solved
for continuous window length in number of samples. Signals

are further standardized to have a standard deviation of 1000
to avoid machine precision issues when computing the loss.

The optimal spectrograms for a given dataset and loss crite-
rion are shown in Figures 5 to 7. Each set of figures show
spectrograms for exactly the same signal from a given data
set, but use different loss criteria for defining the window
length optimally. Interestingly, the choice of loss criterion
has a greater influence on some data sets as compared to oth-
ers. For example, different loss criteria lead to very simi-
lar spectrograms for the IMS dataset (Figure 5), with none
of the loss criteria leading to spectrograms that are differ-
ent from the others. However, for the CWRU (Figure 6) and
KUL dataset (Figure 7) the choice of loss criteria can have
a significant influence in the resulting optimal spectrogram
with some loss criteria defining significantly different opti-
mal time-frequency trade-offs than others.

Similar to the results obtained for the simulated data set, the
sparsity loss function L1 tends to favour shorter optimal win-
dow lengths that magnify single impulsive events that are
not necessarily related to the bearing fault frequency. Of the
tested experimental signals, this behaviour is most apparent
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(a) L1: Sparsity loss (b) L2: Envelope spectrum loss

(c) L3: Autocorrelation loss

Figure 4. Optimal spectrograms for different loss criteria for simulated bearing fault signal. The sparsity-based loss L1 tends
to favour time resolution, magnifying single fault impacts in the spectrogram while the cyclo-stationarity based loss functions
L2 and L3 smear energy in the spectrogram over the time axis.

for the KUL dataset (Figure 7a). Here, the L1 sparsity loss
(Figure 7a) chooses a window length that highlights a small
subset of impulses and suppresses other impulses to the extent
that they are barely perceptible. In contrast, the loss criteria
L2 and L3 (Figures 7b and 7c), that account for the cyclo-
stationary nature of the signal, tend to show all individual
impulses at a similar intensity, albeit at the cost of having the
impulses more smeared over the time axis. Interestingly, for
the CWRU data set (Figure 6), the auto correlation loss L3

(Figure 6c) also suffers from a similar problem as the sparsity
loss L3 with the optimal window length choosing to highlight
a selection of high amplitude samples.

Ultimately, the results demonstrate that different loss criteria
for defining spectrogram quality can lead to very different se-
lected optimal window lengths, highlighting the importance
of selecting the correct loss function for a given problem. The
choice is however application specific. For instance, one one
can argue that for the KUL data (Figure 7) the sparse spec-
trogram of loss criterion L1 (Figure 7a) will be most useful
for diagnosing a fault visually from the spectogram. On the
other hand, for cases where the spectrogram is used in a sub-
sequent signal processing step focused on the periodicity of
the impulses in the spectrogram (e.g. cyclic modulation spec-
trum), loss criterion L2 and L3 would be more appropriate.

Depending on the desired result in the application, and the
data at hand, the most appropriate loss criterion must be be
selected.

6. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for making the STFT dif-
ferentiable with respect to window length by using a contin-
uous window over the entire signal duration. Three different
loss functions for quantifying the spectrogram quality are ap-
plied to a simulated dataset and three experimental datasets.

The results demonstrate the value of a continuously variable
window length that allows for efficiently solving for the opti-
mal window length using gradient-free or gradient-based op-
timisers. Further, the importance of the appropriate unsuper-
vised loss criterion is made apparent, with a sparsity-based
loss criteria often highlighting isolated, high-amplitude tran-
sients, while loss criteria that respect the periodic nature of
the bearing fault signals yield impulses with a more uniform
power at each fault impact in the spectrogram.

In future work, the proposed framework can be generalised to
infer multiple window parameters and can be applied for win-
dow length selection in popular cyclo-stationary indicators
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(a) IMS, L1: Sparsity loss (b) IMS, L2: Envelope spectrum loss

(c) IMS, L3: Autocorrelation loss

Figure 5. Optimal spectrograms for different loss criteria: IMS dataset.

like the cyclic spectral correlation (Antoni, Xin, & Hamza-
oui, 2017).
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(a) CWRU, L1: Sparsity loss (b) CWRU, L2: Envelope spectrum loss

(c) CWRU, L3: Autocorrelation loss

Figure 6. Optimal spectrograms for different loss criteria: CWRU dataset.

(a) KUL, L1: Sparsity loss (b) KUL, L2: Envelope spectrum loss

(c) KUL, L3: Autocorrelation loss

Figure 7. Optimal spectrograms for different loss criteria: KUL dataset.
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