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ABSTRACT

This work presents a novel data-centric solution for fault
diagnostics and failure prognostics consisting of a data-
augmentation method which is well suited for non-stationary
mutivariate time-series data. The method, based on time-
varying autoregressive processes, can be employed to extract
key information from a limited number of samples and gen-
erate new artificial samples in a way that benefits the devel-
opment of diagnostics and prognostics solutions. The pro-
posed approach is tested based on three real-world datasets
associated with failure diagnostics problems using two types
of machine learning methods. Results indicate the proposed
method improves performance in all tested cases.

1. INTRODUCTION

Fault diagnostics and failure prognostics of equipment and
systems, a.k.a. PHM, predictive maintenance, etc., have been
the focus of active investigation and intense real world solu-
tion development during the recent decades. The motivation
is clear, as avoiding the occurrence of failures or reducing
their consequences in general translates in benefits such as
reduced downtime, improved yield and safety. A large va-
riety of methods have been proposed over the years, rang-
ing from reliability methods based on population statistics to
data-driven solutions employing cutting-edge machine learn-
ing methods, or physics-based approaches incorporating ad-
vanced failure mechanism models. However, it can be argued
that the most important factors limiting the successful devel-
opment and application of PHM solutions are not in the meth-
ods themselves. Those limitations are in general related to the
availability of good quality historical data which can be used
for the development and validation of such solutions (Biggio
& Kastanis, 2020; Kim, Choi, & Kim, 2021). Failure events
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can be very rare but their impact can be so relevant that it
is worth investing in development of related PHM solutions.
Many times the failure events of interest may have happened
a reasonable number of times in the past such that available
data from those events would be enough for development of
related PHM solutions. However, many times, relevant sensor
data associated to the historical events has not been collected
or, if collected, corresponding labels are not available, or if
available they are not reliable or not detailed enough, e.g.,
defining the actual failure mode.

Such data limitations naturally affect more directly data-
driven methods, but reliability-based and even physics-based
methods may also be impacted. The former because relia-
bility solutions are also based on historical data, despite sim-
plifications such as the assumption of parametric statistical
models or the combination of data from different but similar
equipment. The latter is also impacted, although to a lesser
extent, as physics-based diagnostics and prognostics solu-
tions must also be validated based on sufficient real histori-
cal data before they can be deployed to the field. Whenever
enough data is not available, despite the extensive literature
related to PHM methods, the development and validation of
diagnostics or prognostics solution may result in poor perfor-
mance or may not even be feasible. In such cases, the possi-
bilities for PHM solution development are limited to anomaly
detection which are usually not as prescriptive or actionable
as fault diagnostics and failure prognostics.

Considering the points above, data-centric approaches to
PHM can be valuable in terms of addressing the relevant
data-related challenges faced in real world both for diagnos-
tics (Leao, Fradkin, Lan, & Wang, 2021) and prognostics
(Garan, Tidriri, & Kovalenko, 2022). However, focusing on
a data-centric PHM still represents a broad set of possibili-
ties ranging from improved data collection and labeling to ap-
proaches for making the most out of available data. Among
those possibilities, data augmentation methods have gained
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ever increasing attention over the recent years also consider-
ing both diagnostics (Matei, Zhenirovskyy, de Kleer, & Feld-
man, 2018; Kwak & Lee, 2023) and prognostics (Kim, Kim,
& Choi, 2020) applications. In particular, data augmentation
methods have improved the performance of diagnostics ap-
proaches with limited data in different PHM use cases (Yang
et al., 2023; D. Wang, Dong, Wang, & Tang, 2023; Li, Zhang,
& Zhang, 2023; Jiang & Ge, 2021; Shen, Yao, Jiang, Yang,
& Zeng, 2023; de Oliveira, Niemi, Garcı́a-Ortiz, & Torres,
2023; Taghiyarrenani & Berenji, 2022).

This work proposes a novel method for augmentation of mul-
tivariate time-series data based on time-varying autoregres-
sive (TVAR) models. The goal is to extract information from
scarce data and use it to create additional samples in a way
that can improve the quality of diagnostics and prognostics
solutions. One characteristic which makes it especially suited
for failure diagnostics and prognostics problems is the fact
that it can directly deal with non-stationary time series.

The remaining of this paper is organized as follows: section
2 contains the technical background related to TVAR; in sec-
tion 3 the proposed application of TVAR for data augmenta-
tion is presented; experiments and results are described and
discussed in section 4; section 5 is the conclusion.

2. BACKGROUND ELEMENTS

2.1. Considerations About The Time Series Data

This paper addresses the problem of augmenting sensor time
series from the viewpoint of time-series groups or classes. To
this end, we consider that the data to be analyzed are divided
into classes like “anomalous” and “normal”. Furthermore,
the following assumptions are considered for the time-series
datasets to be augmented by the proposed method:

A1) Time series of the same dataset are sampled equally.
A2) Time series of the same class can be modeled by the same
mutivariate, potentially non-stationary stochastic process.

The potential non-stationary behavior means that the proper-
ties of the stochastic process are allowed to vary over time.
The proposed data augmentation derives from assumption
A2), and consists in finding a suitable stochastic process to
model the time series of a given class, then using it to create
new time series as new realizations of the stochastic process.

2.2. Considerations About The Time Series Models

In this work, we use parametric time series models to repre-
sent the stochastic processes characterizing the signal classes.
These models describe mathematically how the samples and
stochastic moments of the time series vary over time time.
Examples of well-known models are Autoregressive (AR),
Autoregressive Moving Average (ARMA), and Autoregres-
sive Integrated Moving Average (ARIMA) (Deistler & Scher-

rer, 2022). Such models often require the data to be station-
ary, or the potential nonstationarity in the data to follow spe-
cific forms (e.g., trend and seasonality), so it can be extracted
from the data through subtraction, differencing or other trans-
formations (Box, Jenkins, Reinsel, & Ljung, 2015). However,
real-world time series often show a variety of non-stationary
behaviors that cannot be modeled by traditional approaches
(de Souza, Chanussot, Favre, & Borgnat, 2012, 2014, 2018,
2019; de Souza, Chanussot, & Favre, 2014).

Unlike classical approaches, time-varying autoregressive
(TVAR) models allow their parameters to change over time
to better capture the nonstationarities in the data (Kay,
2008). This change is controlled by a set of TVAR basis
functions, weights, and the model order. Based on how
these quantities are chosen, different non-stationary behav-
iors can be modeled (Niedzwiecki, 2000). Owing to these
powerful modeling capabilities, we choose to characterize
the underlying stochastic process of the time series with
a TVAR model, meaning that time series belonging to the
same class will share the same TVAR expression (see A2).
Different customizations to the TVAR basis functions and
parameters have been proposed for modeling various types
of non-stationary data (e.g., acoustic signals (Sodsri, 2003),
electroencephalography (EEG) (Pachori & Sircar, 2008), and
radar clutter data (Abramovich, Spencer, & Turley, 2007)).
Here, we choose the customization proposed in (de Souza,
Kuhn, & Seara, 2019) and use it as a startpoint to derive the
data-augmentation procedure.

2.3. TVAR Model

In (de Souza, Kuhn, & Seara, 2019), a TVAR process of
first-order has been proposed to model non-stationary pro-
cesses whose mean and covariance vary over time following
an arbitrary functional form defined by the user. The non-
stationary processes characterized by the TVAR model are
M -dimensional vectors x(n) (multivariate time series) vary-
ing in time according to the following regressive expression:

x(n+ 1) = a(n)x(n) + b(n)v(n) (1)

with n as time variable, v(n) ∈ RM as the perturbation noise,
and a(n) and b(n) as time-varying parameters given by the
weighted sum of f0(n), ..., fQ(n) scalar basis functions

a(n) =

Q∑
q=0

αqfq(n) and b(n) =

Q∑
q=0

βqfq(n) (2)

having α0, ..., αQ and β0, ..., βQ as weights. Also, two as-
sumptions are considered for the TVAR model in Eq. (1):

A3) The initial value of the process x(0) is an arbitrary free
parameter defined by the user.
A4) the noise vector v(n) is stationary with zero mean and
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correlation matrix Φ = E
[
v(n)vT(n)

]
. Also, it has uncorre-

lated samples for n ̸= m, i.e., E
[
v(n)vT(m)

]
= 0 if n ̸= m.

Considering the assumptions above and Eq. (2), one can ob-
tain the following general expressions for the mean vector and
covariance matrix of x(n) in Eq. (1), respectively:

m(n+ 1) =

n∏
ℓ=0

a(ℓ)x(0) (3)

and

C(n+ 1) =

{
b2(n) +

n−1∑
w=0

[
n∏

ℓ=w+1

a2(ℓ)b2(ℓ)

]}
Φ (4)

whereas the non-stationary behavior of x(n) can be verified
by the fact that Eqs. (3) and (4) are functions of n. The basis
functions and constants in Eq. (2) are often customized so
the TVAR model can describe different non-stationary evo-
lutions. One customization for Eq. (2) proposed in (de
Souza, Kuhn, & Seara, 2019) enables the mean and covari-
ance in Eqs. (3) and (4) to converge at different rates to a pre-
determined functional form. This customization is obtained
by making Q = γ0 = β1 = 1 and γ1 = β0 = 0 in Eq. (2),
and choosing the following expressions for the TVAR basis
functions:

f0(n) =
p(n+ 1)er

n+1
1

p(n)ern1
(5)

and

f1(n) = λp(n+ 1)er
n+1
1

√
(1− rn+1

2 )2

e2r
n+1
1

− (1− rn2 )
2

e2rn1
(6)

where p(n) in an arbitrary functional form characterizing the
time-varying behavior of the mean vector and covariance ma-
trix. Here, p(n) is called the TVAR interpolation function.
Moreover, r1, r2, and λ are real constants meeting the fol-
lowing requirements: R1) 0 < {r1, r2} < 1 and R2) λ ̸= 0.
By substituting the values of Q, α0, α1, β0, β1, and the ex-
pressions for f0(n) and f1(n) into Eqs. (2) and (1), we get

x(n+ 1) =
p(n+ 1)er

n+1
1

p(n)ern1
x(n) + λp(n+ 1)er

n+1
1

×

√
(1− rn+1

2 )2

e2r
n+1
1

− (1− rn2 )
2

e2rn1
v(n).

(7)

By using the same substitutions in Eqs. (3) and (4), it can be
shown that the following expressions for the mean vector and
covariance matrix of Eq. (7) can be obtained:

m(n+ 1) =
e−1

p(0)
p(n+ 1)er

n+1
1 x(0) (8)

and
C(n+ 1) = λ2p2(n+ 1)

(
1− rn+1

2

)2
Φ. (9)

Since the value of x(0) in Eq. (8) is arbitrary (see A3), one
can define it as x(0) = γx̃(0), where γ is an arbitrary real
constant and x̃(0) is a basis vector. Then, Eq. (8) becomes

m(n+ 1) = γ
e−1p(n+ 1)

p(0)
er

n+1
1 x̃(0) (10)

where γ is assumed to meet requirement R3) γ ̸= 0. By
looking at Eqs. (10) and (9), it can be seen that parameters γ
and λ are simply constant gains, while r1 and r2 control the
convergence of the mean and covariance towards their steady-
state expressions (i.e., for large n) given by

mss(n+ 1) = γ
e−1p(n+ 1)

p(0)
x̃(0) (11)

and
Css(n+ 1) = λ2p2(n+ 1)Φ. (12)

Note that Eqs. (11) and (12) both depend on the TVAR inter-
polation function p(n), which is the most important quantity
to be found. Hence, in this paper, we focus on obtaining p(n)
and consider γ, λ, r1, and r2 as fine-tuning parameters. De-
tails on how to calculate the TVAR interpolation function and
the proposed data augmentation method are given next.

3. DATA AUGMENTATION WITH TVAR

3.1. Overview of the Proposed Method

Here, we use the TVAR model to represent the underlying
stochastic process of the time series belonging to a given
class (see A2). We consider that such a stochastic process can
be described by empirical statistics computed from the data.
Thus, fitting the TVAR model amounts to finding parame-
ters and interpolation functions that make the expressions for
the first- and second-order moments of the TVAR process
match the empirical statistics calculated for the data1. Having
found suitable TVAR parameters and interpolation function,
we plug them back in the TVAR process formula (see (7)) to
create randomized augmented data for a given signal class.

3.2. TVAR Sub-Models for the Mean and Covariance

As p(n) appears both in the mean and in the covariance ex-
pressions (see Eqs. (10) and (9)), we cannot resort to one
TVAR model (based on a single p(n)) to describe time se-
ries in which mean and covariance change in distinct forms
over time. To account for these cases, we propose to use two
TVAR sub-models to characterize the underlying stochastic
process of the signal class, one for the mean (TVARm) and an-
other one for the covariance (TVARc). We let each sub-model

1Thus, this case differs from the usual time series model fitting paradigm,
where model parameters are adjusted to match single time series.
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to have its own interpolated expressions pm(n) and pc(n), as
well as parameters {γm, λm, r1m , r2m} and {γc, λc, r1c , r2c},
which should be initialized with the sub-models and meet R1)
to R3). These constants can be fine-tuned with Eqs.(10) and
(9) to match the non-stationary statistics of the data (See Sec-
tion 3.3.1). We consider that the TVARm and TVARc sub-
models capture the first- and second-order dynamics of the
time series of a given class, respectively. The final augmented
signals are obtained by using the pm(n) and pc(n) and param-
eters for TVARm and TVARc in (7), which will lead to Eqs.
(13) and (14), respectively, both of which are used to gener-
ated the augmented (new) synthetic time series.

xm(n+ 1) =
pm(n+ 1)er

n+1
1m

pm(n)er
n
1m

xm(n) + λmpm(n+ 1)er
n+1
1m

×

√
(1− rn+1

2m
)2

e2r
n+1
1m

−
(1− rn2m

)2

e2r
n
1m

v(n).

(13)

xc(n+ 1) =
pc(n+ 1)er

n+1
1c

pc(n)er
n
1c

xc(n) + λcpc(n+ 1)er
n+1
1c

×

√
(1− rn+1

2c
)2

e2r
n+1
1c

−
(1− rn2c

)2

e2r
n
1c

v(n).

(14)
The TVARm and TVARc processes in Eqs. (13) and (14) will
more likely represent behaviors captured by the mean and co-
variance, respectively. The augmented signals have length N
and are computed L times, with N and L being free param-
eters of the method. The mean vector and covariance matrix
of xm(n) are shown in Eqs. (15) and (16), while Eqs. (17)
and (18) show the same quantities for xc(n), respectively.

mm(n+ 1) = γm
e−1pm(n+ 1)

pm(0)
er

n+1
1m x̃m(0) (15)

Cm(n+ 1) = λ2
mp

2
m(n+ 1)

(
1− rn+1

2m

)2
Φ. (16)

mc(n+ 1) = γc
e−1pc(n+ 1)

pc(0)
er

n+1
1c x̃c(0) (17)

Cc(n+ 1) = λ2
cp

2
c (n+ 1)

(
1− rn+1

2c

)2
Φ. (18)

Since we search analytical expressions for the augmented
time series (like Eq. (7)), finding the TVAR interpolating
functions stands for interpolating regression expressions for
pm(n) and pc(n) over the empirical statistics calculated from
the data. Next, we address the calculation of the empirical
statistics from the data and the TVAR interpolation functions.

3.3. Interpolation Functions and Empirical Statistics

3.3.1. Computing the Empirical Statistics

The interpolation functions pm(n) and pc(n) are fitted to the
empirical first- and second-order statistics computed from the
data. As we assume the time series to be equally-sampled (see
A1), we propose to compute the empirical mean vector and
covariance matrix of the signals by means of ensemble aver-
aging (Manolakis, Ingle, & Kogon, 2005). More precisely, let
us define the collection of equally-sampled, multivariate time
series Y(g)

j belonging to a given class or group g as follows:

Cg = {Y(g)
j }j=1,...,J (19)

where the time series Y(g)
j have length N and dimension M

Y
(g)
j = [y

(g)
j (0), ...,y

(g)
j (N − 1)]T with y

(g)
j (n) ∈ RM .

(20)

Based on Cg , the empirical mean vector and covariance ma-
trix at time n can be computed via ensemble averaging as

m(g)(n) =
1

J

J∑
j=1

y
(g)
j (n) (21)

and

C
(g)

(n) =

1

J

J∑
j=1

[
y
(g)
j (n)−m(g)(n)

] [
y
(g)
j (n)−m(g)(n)

]T
.

(22)

3.3.2. Finding the Interpolation Functions

For the sake of simplicity, to present the interpolation method,
we consider the time series datasets to be univariate (i.e., we
make M = 1 in Eq. (20)). Also, we drop the superscript
(g) characterizing the group or class of the time series. By
doing so, Eqs. (21) and (22) become the univariate sequences
m(n) and c(n), respectively. The results of this section can be
extended to the multivariate case without loss of generality2.

As explained in Section 3.2, sub-models TVARm and TVARc
characterize the first- and second-order dynamics of the data
separately. Therefore, pm(n) is interpolated solely to m(n),
and pc(n) to c(n). Ahead, we address the calculation of the
interpolation functions pm(n) and pc(n) by considering one
approach based on sinusoidal regression via Discrete Fourier
Transform (DFT), which allows modeling a wide range of
sensor time series. However, other curve fitting techniques
could be considered, like splines (de Boor, 2001) and other

2To assign the mth element of the multivariate arrays to their corresponding
scalar parameters and interpolation functions, one can use diagonal matrices
to replace the TVAR scalar quantities (e.g., diag([pm,0(n), ..., pm,M(n)])
for pm(n)), where diag(·) is the diagonal operator.
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forms of linear (Montgomery, Peck, & Vining, 2006) and
nonlinear regressions (Bates & Watts, 2007), as long as they
return an analytical expression for the fitted curves.

3.3.3. Sinusoidal Regression

Many PHM time series have an oscillatory nature (e.g., vibra-
tion and electrical signals), which can be better characterized
by a sinusoidal model. A simple sinusoidal regression for
pm(n) and pc(n) can be obtained by computing a DFT-based
decomposition of m(n) and c(n). Ahead, we show the steps
to compute the regression expression only for pm(n), as the
results for pc(n) will be the same (the only difference being
replacing m(n) by c(n) in the calculations). Let the DFT of
m(n) at discrete frequency ωk = 2πk be

Fm(ωk) =

N−1∑
n=0

m(n)e−iωkn/N . (23)

By expressing Fm(ωk) in terms of its magnitude |Fm(ωk)|
and phase ϕm(ωk), such that Fm(ωk) = |Fm(ωk)|eiϕm(ωk),
and by computing Eq. (23) for ω0, ..., ωN−1 (i.e., for all the
N available time points), we can build the vector

fm = [|Fm(ω0)|eiϕm(ω0), ..., |Fm(ωN−1)|eiϕm(ωN−1)] (24)

with the magnitude and phase spectra of m(n) for frequency
values ω0, ..., ωN−1. Note that we can reconstruct m(n) from
Eq. (24) by computing the inverse DFT, i.e.,

m(n) =
1

N

N−1∑
k=0

fm(k)eiωkn/N . (25)

Let us sort the vector fm in descending order according to the
values of magnitude, obtaining f ′m as sorted vector

f ′m = [|Fm(ω′
0)|eiϕm(ω′

0), ..., |Fm(ω′
N−1)|eiϕm(ω′

N−1)] (26)

where ω′
k is the sorted frequency variable, so that largest and

smallest values of magnitude in f ′m are at ω′
0 and ω′

N−1, re-
spectively. If we recompute Eq. (25) by using the values of
the sorted vector in Eq. (26) up to the P th element, we get

m′(n) =
1

N

P−1∑
k=0

|Fm(ω′
k)|eiϕm(ω′

k)eiω
′
kn/N (27)

as an approximation of m(n) with the P most significant fre-
quencies of the spectrum (here, described by the P largest
values of magnitude). By expressing (27) in terms of cosines
and sines and taking the real part of the resulting expression,
the final sinusoidal regression formula for pm(n) is obtained

pm(n) =
1

N

P−1∑
k=0

|Fm(ω′
k)| cos[ω′

kn/N + ϕm(ω′
k)]. (28)

Finally, if we repeat the steps above for c(n), with |Fc(ω
′
k)|

being its sorted magnitude, we get the expression for pc(n)

pc(n) =
1

N

P−1∑
k=0

|Fc(ω
′
k)| cos[ω′

kn/N + ϕc(ω
′
k)]. (29)
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Figure 1. Example of sinusoidal interpolation pm(n) and
pc(n) of the empirical mean and variance for the Ford A
dataset. Interpolation orders considered are (a) and (b) P =
4, (c) and (d) P = 10, and (e) and (f) P = 14.

Figure 1 illustrate the application of the sinusoidal interpola-
tion to the empirical mean and variance curves compute for
the time series belonging to the Ford A dataset (see Section
4.1 for details on this dataset). Three different orders have
been considered for pm(n) and pc(n), namely P = 4 (Figure
1 (a)), P = 10 (Figure 1 (b)), and P = 14 (Figure 1 (c)).
Notice that the sinousidal regression can fit reasonably well
the empirical statistic curves, especially for higher orders.

The proposed data augmentation procedure is given in Algo-
rithm 1, which can be repeated for all class the user wants to
augment. In the next section, we discuss the experiments to
evaluate the data augmentation in anomaly detection settings.
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Input: Collection Cg = {Y(g)
j }j=1,...,J of time series of

a given class g to augment (see Eq. (19))
Output: i) Collection Cg,aug of augmented time series

for class g. ii) Expressions for xm(n+ 1) and
xc(n+ 1) (see Eqs. (13) and (14))

Step 1: Initialize TVARc and TVARm parameters
{γm, λm, r1m , r2m} and {γc, λc, r1c , r2c} (see R1 to R3),
and perturbation noise correlation matrix Φ (see A4).

Initialize time series length N and number of augmented
samples to create L;

Initialize curve interpolation order P ;

Step 2: For Cg , compute empirical statistics m(g)(n) and

C
(g)

(n) using Eqs. (21) and (22);

Store m(g)(n) and C
(g)

(n);

Step 3: Compute P th interpolation of m(g)(n) and

C
(g)

(n), obtain one pair of scalar functions pm(n) and
pc(n) per element of the array (See Section 3.3);

Store pair(s) of pm(n) and pc(n);

Step 4: Create xm(n+ 1) and xc(n+ 1) functions by
using pm(n), γm λm, r1m , r2m and pc(n), γc λc, r1c , r2c
in (13) and (14);

Store expressions for xm(n+ 1) and xc(n+ 1) ;
Step 5: Nested loop
for l = 1 to L do

for n = 0 to N − 1 do
Compute xm(n+ 1) and xc(n+ 1);

end
Append xm(n+ 1) and xc(n+ 1) to Cg,aug;

end
Return: i) Cg,aug, ii) xm(n+ 1) and xc(n+ 1);

Algorithm 1: Proposed data augmentation procedure.

4. EXPERIMENTAL STUDY

In this section, we evaluate the ability of the proposed data
augmentation method to improve the classification perfor-
mance of typical ML methods in anomaly detection settings.
We have tested two ML model architectures, three public sen-
sor time series datasets, and we have compared the proposed
technique against a competing data augmentation approach.
All the simulations have been carried out in Python. More
details are given ahead about the experiment design choices.

4.1. Datasets

We have tested three public datasets of univariate time se-
ries that that can be considered for anomaly detection studies.
These are the collection of bearing vibration signals released
by Case Western Reserve University (CWRU dataset) (Case
School of Engineering Bearing Data Center, 2023), the set

of measurements from piezeoelectric (PZT) sensors from the
2019 Prognostics Health Management Data Challenge (PH-
MDC2019 dataset) (He et al., 2013; Peng et al., 2015), and
the Ford engine noise data (Ford A dataset) (Chen et al., n.d.).

The PHMDC2019 dataset contains Lamb waves from fatigue
experiments on aluminum lap joints. For more details on
the experiment, please check (He et al., 2013; Peng et al.,
2015). The selected Lamb wave signals have been measured
for eight specimens (specimen T1 to T8). For each specimen,
different loads have been applied to the testing material, and
a pair of signals from two sensors have been recorded (each
signal with 4000 samples). Then, the crack lengths have been
measured for each specimen, applied load, and pair of sig-
nals. Here, we have considered that a given signal sample
corresponds to a “damaged” sample (Class 1) if the observed
crack length exceeds 4 mm. Otherwise, the sample is consid-
ered as “normal” (Class 0). We have selected specimens T3
to T8 to build the train data and the remaining specimens to
build the test. By doing so, we could guarantee that both train
and test partitions could have data from Class 1. The sizes of
the train and test splits for this dataset are shown in Table 1.
Note that PHMDC2019 is the smallest dataset considered in
this experiment. Using such a dataset allows the performance
evaluation of the proposed method in small-data settings.

The CWRU dataset contains vibration signals collected from
a drive-end bearing of an electrical motor operating under dif-
ferent loads. The selected vibration signals have been sam-
pled at 12 kHz for motor speed of 1797 RPM (Case School of
Engineering Bearing Data Center, 2023). The chosen signals
are from a normal bearing (Class 0), a bearing with a crack in
the inner race (Class 1), and another one with a crack in the
ball (Class 2). The cracks of the faulty bearings have 0.007
inches. We have created signal snippets of 0.1 second from
the vibration data of the bearings. To simulate challenging
real-world scenarios, training samples from the faulty classes
have been under-sampled to make the train data imbalanced.
The number of samples obtained for the different partitions
(i.e., train and test) and classes are shown in Table 1.

The Ford A dataset is a collection of signals for anomaly de-
tection. The data has been originally proposed as a part of the
Ford Classification Challenge, which appeared in competi-
tion program of the 2008 edition of the IEEE World Congress
on Computational Intelligence (IEEE WCCI, 2008), and cur-
rently is made available by the UCR Time Series Classifica-
tion Archive (Chen et al., n.d.). The Ford A dataset consists
of noise signals collected from sensors installed on automo-
tive engines that are either normal (Class 0), or present failure
symptoms (Class 1). The numbers of signal samples avail-
able for each class and data partition are shown in Table 1.
The signals have 500 points and are index time series (i.e., no
information was provided about the sampling frequency).
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Table 1. For the train and test splits, number of samples per
dataset and per class used in the experiment of Section 4.

PHMDC2019 Ford A CWRU

Split Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 2

Train 50 22 1846 1755 1016 50 51

Test 12 8 681 639 1016 510 505

4.2. Machine Learning Models

The augmentation methods have been evaluated in the con-
text of anomaly detection via time series classification by
two machine learning models, namely a convolutional neu-
ral network (CNN) and a random forest (RF). The CNN ar-
chitecture has been originally proposed in (Z. Wang, Yan,
& Oates, 2017) and made available in (Fawaz, 2020) as a
Tensorflow/Keras tutorial on neural networks for time series
classification. The model hyperparameters (number of fil-
ters, batch and kernel sizes, etc.) have been determined with
the KerasTuner module (Keras, 2022), and the resulting ar-
chitecture has been trained for 20 epochs. More details on
the model structure and its hyperparameters can be found in
(Fawaz, 2020).

The RF model is the standard random forest implementation
offered by Python scikit-learn library (Buitinck et al., 2013).
The chosen RF architecture has 50 estimators and max depth
of 5. The RF model is fitted to a tabular feature representation
extracted from the time series data with the Python package
tsfresh (Christ, Braun, Neuffer, & Kempa-Liehr, 2018). This
module allows for extracting typical features from time series
via a systematic framework. Further information on the avail-
able features and calculations implemented by tsfresh can be
obtained in (Christ, Braun, Neuffer, & Kempa-Liehr, 2023).

4.3. Data-Augmentation Procedures

In this study, we have compared the classification perfor-
mance obtained by using the proposed augmentation method
against an alternative approach available in the literature.

The competing data augmentation approach is given by the
Python library TSAug (Arundo Analytics, 2023), which of-
fers a suite of typical augmentation transformations for time
series. For the simulations, we have chosen some of the de-
fault transformation effects selected by the TSAug authors in
(Arundo Analytics, 2023) to exemplify the capabilities of the
library. These are i) addition of white Gaussian noise (WGN)
to the time series with varying values of standard deviation
(here, set to vary from ±10% of the standard deviation es-
timated from the data), ii) random drop of %10 of the data
points followed by filling with zeros, iii) random drift of a se-
quence of data points up and down, and iv) reduce of the tem-
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Figure 2. Examples of original and augmented time series for
the datasets evaluated in this study. The augmented signals
are generated by the fitted TVARm and TVARc sub-models
with sinusoidal interpolation of order P = 14. (a) PH-
MDC2019, (b) CWRU, and (c) Ford A datasets.

poral resolution (sampling) of some sequence of data points.
For iii) and iv), we have considered a sequence of up to five
data points. These transformations simulate random fluctua-
tions and artifacts that commonly take place when processing
batches of sensor data. Given an input time series, the TSAug
library randomly applies transformations i) to iv) to create a
new synthetic time series with the random artifacts.

The proposed augmentation (TvarAug) has been computed
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Table 2. Parameter of the TVARm and TVARc employed to
created the synthetic signal used in the experimental study.

TVARm parameters TVARc parameters

Dataset r1m r2m γm λm r1c r2c γc λc

PHMDC2019 0.5 0.5 0.01 0.1 0.5 0.5 0.01 0.1

Ford A 0.5 0.5 0.01 1 0.5 0.5 0.01 1

CWRU 0.5 0.5 0.1 1 0.5 0.5 0.1 1

for P = 4, 6, 8, 10, 12, 14 (see Eqs. (28) and (29)). For each
interpolated curve, we have created the TVARm and TVARc
expressions (see Eqs. (13) and (14)) by considering the sets
of parameter values3 given in Table 2. The noise of the TVAR
expressions has been set up as a WGN(0,1) process. Exam-
ples of the augmented time series obtained by using these
parameters values for TVARm and TVARc sub-models are
shown in Figure 2. Notice that, overall, the augmented data
can capture relevant patterns of the dynamics of the original
time series, while introducing the level of stochasticity nec-
essary for generating new synthetic signal segments.

4.4. Test Results

The TVAR augmentation (TvarAug) and the TSAug approach
have been employed to create new synthetic faulty samples
belonging to the training partitions of the three considered
datasets (see Section 4.1). These signal samples have been
augmented considering the following augmentation fractions:
0.1, 0.25, 0.5 and 1. The CNN and RF models have been
trained in the original and augmented train data partitions,
and tested considering the available test data. The evaluation
in the test data has been performed by computing the accu-
racy score of classifying the time series samples into the con-
sidered Faulty/Normal categories. For the TvarAug method,
the average test accuracy has been computed for the differ-
ent values of P considered. The obtained accuracy values are
shown in Table 3, with the best results for each case high-
lighted in bold. The use of TvarAug has improved the clas-
sification when compared to the original data (NoAug) in all
cases except the CWRU using RF where the original data al-
ready yields very good performance. As expected, the ap-
plication of data augmentation has improved the overall de-
tection performances of the ML models in all cases which
are more challenging. The proposed method outperforms the
competing approach for all considered datasets and augmen-
tation fractions, which evidences its superior performance.

5. CONCLUSION

This paper presented a novel method for data-augmentation
which can be effectively employed for fault diagnostics
or failure prognostics applications as it can adequately be

3These have been chosen by searching for parameters that could synthesize
data approximately in the same range of variation of the original datasets.

Table 3. Results as average values of test accuracy computed
over different values of P , where “NoAug” stands for no data
augmentation (original dataset), “TSAug” is the augmenta-
tion given by the TSAug library, and “TvarAug” is the pro-
posed method. Results are shown for different datasets, aug-
mentation fractions and machine learning models.

RF CNN
Data- Frac. NoAug TSAug TvarAug NoAug TSAug TvarAugset Aug

0.10 0.618 0.658 0.775 0.462 0.491 0.600
PHM- 0.25 0.618 0.650 0.791 0.462 0.483 0.608

DC 0.50 0.618 0.633 0.783 0.462 0.466 0.600
2019 1.00 0.618 0.658 0.800 0.462 0.525 0.700

0.10 0.951 0.959 0.963 0.840 0.744 0.917
Ford 0.25 0.951 0.961 0.963 0.840 0.754 0.924

A 0.50 0.951 0.939 0.960 0.840 0.790 0.876
1.00 0.951 0.948 0.966 0.840 0.791 0.897

0.10 0.997 0.996 0.997 0.876 0.815 0.951

CWRU 0.25 0.997 0.995 0.998 0.876 0.814 0.915
0.50 0.997 0.995 0.997 0.876 0.833 0.887
1.00 0.997 0.993 0.996 0.876 0.913 0.982

used for generation of artificial samples of multivariate non-
stationary time-series data. The method leverages time-
varying autoregressive models for this purpose and artificial
samples are generated based on mean and covariance esti-
mates obtained from the available real samples. The method
was successfully tested based on failure diagnostics applica-
tions. Three publicly available real world datasets and two
different machine learning methods were employed in the ex-
periments and the proposed methodology provided improved
results in almost all cases.

As the observed diagnostics results are promising, the pro-
posed method could be further tested in more complex PHM
tasks. Future work will include the application of the method-
ology for failure prognostics problems, as for this kind of ap-
plication the scarcity of data is in general even more limiting
compared to diagnostics.
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