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ABSTRACT

Machine learning (ML)/Artificial Intelligence (AI) has
widespread applications and has revolutionized many in-
dustries due to advanced and matured sensor technologies,
as well as large-scale data collection efforts. One of the key
tasks for effective ML/AI operations is the extraction and
identification of useful and usable data to identify complex
interrelationships and solve problems efficiently. The useful-
ness of the data is the value and meaning of the data within
the desired model, while the usability of the data refers to
the ease of use of data in a model. Complex supervised and
unsupervised ML models, which used to be the domain of
cutting-edge scientists and academics, can now be invoked
as basic function calls in public domain packages within
Python, R, MATLAB, and other languages. While these
functions require effective data preprocessing to overcome
the unpredicted impacts of data quality in the real world
(e.g. missing data, environmental noise, synchronizing at
different sampling rates, etc.), their ease of use means they
are often called with little to no understanding of the un-
derlying math or ways to efficiently work through the data
set. The approachability provided by the packages enables
users to dive into complex problem sets with little advance
preparation. However, in doing so there is a lack of under-
standing which will inevitably cause problems, skew results,
or force the user to take a less efficient path to get to a similar
answer. Each package provides relatively simple examples
that deal with specific public data sets, yet not many pro-
vide the background knowledge and comprehensive methods
required for building the inputs for extensive and effective
time-series data modeling. Typically, the complex nature of
time-series sensor data requires an in-depth understanding
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of signals analysis and domain subject expertise to use in
ML/AI predictive models. This paper will provide the reader
an overview of the problems associated with time-series sen-
sor data modelling, propose a common set of preprocessing
steps to follow, demonstrate a taxonomy classification for
time series data, provide introductory reasoning regarding
the underlying process, and discuss the models that would
benefit from such a methodology. This is done here with
the goal of equipping non-knowledge-domain experts with
updated and approachable techniques to find which features
to focus on while preprocessing for their time-series data
preparation efforts.

Keywords: Machine learning (ML)/Artificial Intelligence
(AI), supervised and unsupervised ML, data preprocessing,
time-series data, knowledge domain, probability distribution,
feature extraction and selection, data preparation.

1. INTRODUCTION

Time series sensor data is a sequence of historical measure-
ments of an observable variable at prescribed time intervals.
There are many interests of studies that use time series for
predictions, but the scope of this paper will concentrate on
the data required for prognostic health management (PHM)
of combustion engine vehicles such as speeds, pressures, tem-
peratures, and the like.

A common viewpoint is to see time series data as just another
data point to help with model predictions, however adding
this variable into a problem makes it more complex. A few
example concerns that come with handling time series data
are unordered timestamps, timestamp format changes, times-
tamps collected incorrectly/have unexpected delay, missing
values or timestamps, sudden changes in data types, out of
range values, rounded values, or aggregated data points. With
all the problems that could come up with time series data
preparation, the later sections of the paper will show how to
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Figure 1. High Level Time Series Model

Figure 2. Time Series Data Preparation Components

deal with them to make a dataset useful for ML/AI models to
process.

ML/AI Time Series modeling is an important, but challeng-
ing, topic of research and development (R&D), which has
attracted the attention of research communities within nu-
merous practical fields such as business, defense, economics,
finance, science and engineering, and more over last few
decades. The main objective of ML/AI time-series model-
ing is to effectively ingest sensor data, extract features, arith-
metically analyze the past time series observations/features
and develop an appropriate ML/AI time-series model to de-
scribes the inherent structure of the series. This model is then
applied to generate future values for the series and make fore-
casts. With the increase of time series data availability, more
ML/AI time series algorithms have been proposed and devel-
oped. A high level ML/AI time series model is depicted in
Figure 1.

The data preparation process in Figure 1 has a significant
impact on the performance of the ML/AI models. From a
technical perspective, the main objective of the data prepara-
tion process is to ensure the data quality for the ML/AI (Han,
2011) interpreted by its usability and usefulness. The usabil-
ity of the data is commonly determined by several factors in-
cluding accuracy, completeness, consistency, timeliness, re-
liability, and interpretability (Teng, 1999), while the useful-
ness of the data is ensured after three operations: data clean-
ing, data transformation, and feature selection as depicted in
Figure 2.

During the last two decades, time series data classification
and prediction has been considered as one of the most chal-

lenging problems in data mining (Esling & Agon, 2012).
One of the most popular and traditional time series data ap-
proaches is the use of a nearest neighbor (NN) classifier cou-
pled with a distance function to support classification be-
tween known classes or distance away from known classes.
It was also shown that collecting the individual NN classi-
fiers (with different distance measures) outperforms the en-
semble’s individual components (Lines & Bagnall, 2015). In
each of these approaches, selecting the correct raw and engi-
neered features is critical to a successful and efficient model
output. Within time series data, the raw and engineered data
can be classified based on the data contents. Signals can be
considered constant, binary, low-state, mid-state, high-state,
diagnostic, or utility. Each category of signal can indicate the
appropriateness for different time series models.

This paper will first introduce the issues/problems faced with
time series data, preprocessing, and review time series ML/AI
model types. Section 2 outlines the problem regarding time
series data models more specifically. Section 3 identifies
steps and methods of time series data preprocessing including
signal taxonomy, feature selection, data imputation, cleaning,
synchronization, determination of data usefulness and usabil-
ity to optimize the ML/AI process. Particular models are in-
troduced in Section 4 to provide background on time series
model capabilities. Next, model evaluation with the prepro-
cess of time series data using different evaluation metrics is
examined to understand the model performance of ML/AI as
well as the strengths and weaknesses in Section 5. A ML/AI
model utilizing some of the preprocessing is demonstrated
and implemented with Python using real world data from a
Honda CR-V in Section 6. Section 7 outlines the conclusion
and future work.

2. PROBLEM FORMULATION

A time series is a sequential set of data points, typically mea-
sured over known time steps. It is mathematically defined
as a set of vectors x(t), t = 0, 1, 2, . . . , n where t represents
the time elapsed, and the variable x(t) contains the measure-
ments taken during an event in a time series in a set chrono-
logical order. For simplicity, the time steps are considered to
be linear in our discussion, as small fluctuations in the time
delta are normal for engine data points, but are typically not
harmful to the time series modeling.

In time series ML/AI modeling, past observations are col-
lected, analyzed, and used to develop a suitable mathemati-
cal model. The future events are then predicted or classified
using the model. This approach is useful when there is in-
sufficient knowledge about the statistical pattern followed by
the successive observations or when there is a lack of a sat-
isfactory explanatory model. Time series forecasting has im-
portant applications in various fields. Often valuable strategic
decisions and precautionary measures are made due to a good
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Table 1. A taxonomy of time series data

Signal Type Information Value Example Data
Constant Contains static vehicle information and signals that never change state. Vehicle Identification Number
Binary Commonly represents warning lights and other on/off systems that vary. Switches, Indicator Lights
Low-State Low number of possible values for this signal (generally single digit). Vehicle Gear
Mid-State Contains Low-State signals that exhibit variance into the double digits. Percentages, Pressures
High-State Complex signals that represent high-resolution or variance sensor data. Engine Temperature, RPM
Diagnostic Typically string values that provide information on the system failures. Failure Mode Indicator (FMI)
Utility Values for overall vehicle usage or as tools to support calculations. Time, Trip Distance, Counters

forecast, i.e. fitting an adequate model to a time series is very
important.

However, there are certain fundamental problems with
ML/AI applications to time series data. While a relatively
recent explosion in standardized packages has made complex
models available in a single line of code, little information
is typically provided beyond a basic example using synthetic
data (many times built on a sine function). The user is left a
lot of trial and error or complex digressions into ML theory
to try to identify the best method to attack the problem. Time
series data further complicates this situations with the fact
that the data is typically cyclical, but in often erratic ways.
Patterns may be observed in one data set, but not again until a
few more data collection efforts have been undertaken. This
issue and problem make the ML/AI training inefficient, even
untrainable, if the data pattern cannot be found or recovered.
Overfitting happens when a model learns the detail and noise
in the training data to the quantity that it negatively impacts
the performance of the model on generalized new data. This
occurs when the noise or random fluctuations in the training
data are measured and learned as concepts by the model. The
problem is that these concepts do not apply to new data and
negatively impact the models to generalize. The Principle
of Parsimony (Ariew, 1976) states that a good time series
ML/AI model goal is to achieve a desired level of data fitting
using as few explanatory features as possible.

3. STEPS FOR PREPROCESSING TIME-SERIES DATA

When handling time-series data common problems to arise
may include non-synchronized sample rates, the significant
presence of noise in a target signal, and outlier detection.
This leads to the implementation of core signal processing
techniques into the preprocessing workflow to generate data
usable for the purposes of implementation with ML and AI
processes. This section explores these problems and endeav-
ors to provide sample solutions by which this necessary pre-
processing may be conducted. Furthermore, the background
and basis of these techniques is briefly discussed for the ben-
efit of added context.

3.1. Usefulness and Usability of Data

Before beginning with the preprocessing of data for ML and
AI, it is prudent to first evaluate the dataset being worked
with to form a determination of its usefulness and usability.
In this context the data’s usefulness refers to the value pro-
vided by the data to the end model’s expected output. A data
point that does not contribute to the classification of a sys-
tem has low usefulness. The data’s usability refers to the ease
with which the data may be handled to arrive at the desired
end result. Hence, data the requires cumbersome amounts
of preprocessing and large amounts of training time to pro-
duce a result of comparably low merit demonstrates a poor
relationship between the data’s usefulness and usability when
compared to input data that can be more easily processed and
generates more valuable results. These factors are useful in
guiding efforts to develop successful ML and AI algorithms
and encourage identifying opportunities presented by datasets
that are not only valuable, but attainable as well.

3.2. Time Series Taxonomy

The direct applicability of a signal to a desired model output
(that is, it’s usefulness and usability) may not be immediately
known. A method to quantify the usefulness of signals to
models is presented in the Taxonomy in Table 1.

The process begins by first evaluating the extent of variation
within the input signal. A signal with a single possible value
leads to an input being evaluated as a constant signal (e.g. the
Vehicle Identification Number or a ”power on” signal). These
signals represent useful metadata to track, but are typically
not otherwise helpful.

A signal with two possible values is evaluated as a binary
signal (e.g. signal lamp indicators or door status indicator).
These signals are typically useful for platform status informa-
tion or configuration.

Signals with a limited number of Y-values (typically less than
10) would lead to an input’s evaluation being that of a low-
state signal (e.g. the transmission gear selected). These sig-
nals are beneficial to more complex models to provide input
on the operational state of the platform in question.

Signals exhibiting variation beyond the low-state limit are
treated as variable signals as either mid-state or high-state,
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where the distinction is based on the number of bits used for
the data. How the data is interpreted is based on the data def-
inition for the signals, which should clearly articulate what
the data ranges are, removing issues with misclassification.
These data points provide the richest data set for complex ma-
chine learning, although they can be prone to noise or other
artifacts in the data.

Two other categories exist in the data. Diagnostic signal data
types are those where the “signal” that is presented is really
an indicator. An example of this would be a Controller Area
Network (CAN) bus Failure Mode Indicator (FMI), where
different numeric values represent distinct failure modes and
there is no math or conversions that can change their meaning
and have it still be intelligible. The final category are utility
signals. These are not useful for machine learning directly,
rather they provide context, indeces, and support for calcula-
tions (e.g. time, hours, distance).

To build an effective time series model, mid and high-state
signals will be considered for the main data inputs, using
constant signals for metadata tagging and low-state signals
to define the operational profile of the platform and provide a
means for clustering the results.

3.3. Noise Removal and Outlier Handling

After selecting the appropriate signals, the next step of pre-
processing required for the preparation of the data is noise
removal and outlier removal. Most commonly, noise re-
moval is taken to refer to the process by which undesir-
able background-level characteristics of a given signal are
smoothed out or otherwise replaced to diminish their overall
impact on the represented signal as a whole. In the context of
time series data, noise could additionally be introduced from
extra sources, such as a data input remaining active in a time
period it is not expected to be active, or from a temporary
time period in which a given input demonstrates erratic or
abnormal behavior of its own.

In these cases of noise processing, it is important that the per-
son processing the data takes the appropriate time to assess
the data being considered as noise in order to verify that it is
appropriate to treat it as such. If a time period of abnormal
sensor readings is indeed indicative of an external failure, re-
moving the evidence of that process’s presence or diminish-
ing it via the removal of the ”noise” could prove significantly
damaging to final results.

One common method implemented for noise removal is to
apply a low pass filter to the data. Many possible window
functions exist to accommodate the variety of signal proper-
ties and behaviors that a given problem set may need to ad-
dress, but a common choice is the Gaussian filter, which is
known for its ability to smooth the data to which it is applied.
Through this process some noise is removed, but it is also

critical to understand the additional side effects of any win-
dow function that is selected for noise removal. For instance,
while the Gaussian window smooths the target signal it may
also spread out isolated peaks in the data to inhabit an arti-
ficially widened span of time. Behaviors like this are what
render it critical to understand the behavior of any window
that is applied to data for final processing.

With noise removed from the data, outlier detection and
correction follows. Various metrics exist for determining
what values to classify as outliers, such as the 1.5 Inter-
Quartile Range (IQR), 3σ, machine learning models such as
Autoregressive Integrated Moving Average (ARIMA), Holt-
Winters, Dynamic state-space models, Principal Component
Analysis (PCA) analysis, Long-short term memory (LSTMs)
and Recurrent Nueral Networks (RNNs). Each has their own
strengths and weaknesses, however, the 3σ rule and IQR can
be considered reliable means of outlier detection for common
use cases.

There are three categories of outliers that are commonly seen
in data sets (Jones, 2019). The first are global outliers or
point anomalies, which are data points that are far outside the
operational range of the data set. Conditional outliers are if
the value significantly deviates from the rest of the data points
in the same context. So, in time series data, in the context of
time passage, there would be some data that would be con-
sidered an outlier in the context of the time series. This type
of outlier is common in time series data. The last type are
collective outliers, which is a collection of data points that
deviates significantly from the entire dataset. The data points
themselves may look fine and would not be classified as out-
liers, but when they are investigated as a group, their behavior
is anomalous. An example in time series data would be the
normal peaks and valleys of the data set occurring outside of
the time frame.

The 1.5 IQR is a part of the IQR method to detect outliers. For
the IQR method, the values needed to calculate the method is
the median (or center point) of the data, the first quartile (Q1)
which are the values that lie between the minimum and 25%
of the data and third quartile (Q3) which are the values that lie
between the minimum and 75% of the data. The difference
between Q3 and Q1 is called the Inter-Quartile Range (IQR),
and the two equations of the upper or lower bounds of the data
set so if a data point is less than the lower bound or greater
than the upper bound the data point is considered an outlier,
so the equation would be:

IQR = Q3−Q1 (1a)
LowerBound : (Q1− 1.5 ∗ IQR) (1b)
UpperBound : (Q3 + 1.5 ∗ IQR) (1c)

The 1.5 IQR of the method is the constant multiplied by the
IQR such that any data that lies beyond the lower or upper
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bound of the mean on either side will be considered an outlier
(Jones, 2019).

The 3σ rule is another statistical rule for detecting outliers in
data. It states that data populations lie within three standard
deviations of the mean. To calculate the 3σ limits, the stan-
dard deviation of the data is calculated. The 3 multiplier for
this method is a constant that is multiplied by the standard
deviation to identify the outliers for the data as the three stan-
dard deviations will typically encompass 99.7% of a normally
distributed data set (Pukelsheim, 1994).

If the user is unsure, they should physically review the data
prior to and after conducting outlier detection and noise re-
moval to ensure the data still exhibits the required features.

3.4. Data Cleaning

Once certain that the data to be used is both useful and us-
able under a problem’s given constraints and the data is time-
synced and cleaned, the next step of preprocessing required
for the preparation of the data is data preprocessing with data
cleaning. Time-series data presents a unique challenge to data
cleaning in that the obtained data often may contain results
that suffer from asynchronous sampling rates from disparate
sensors. This is a critical issue to address early in data prepro-
cessing, as most models require either a common time scale
or close time-alignment.

This property is commonly observed in the data by the mis-
alignment of starting times across sensor data, or by varying
amounts of samples collected by each sensor as a result of dif-
fering sampling rates across the system. The solution to this
problem is to process the data such that the same amount of
data points are associated with all of the involved sensors, and
that the sensors all agree on a common start time. Typically,
this is completed by resampling the signal to achieve the sam-
ple size desired. In the case of down-sampling a signal, there
is an element of information loss that occurs as the quantity of
samples is lowered, while the process of up-sampling results
in many missing values in the data. In order to avoid the infor-
mation loss associated with signal down-sampling additional
processing must be paired alongside up-sampling to handle
the inclusion of null values. Down sampling is typically the
target operation as most models are generated off of slower
than full speed data.

This processing takes the form of imputation, more specif-
ically interpolation. Other methods of imputation are
widespread for data cleaning purposes but are ill-suited
to the time-consecutive nature of time-series data. The use
of interpolation techniques relies on applying a regression
using existing data as endpoints in order to determine values
for the null points evenly spaced between them that were
introduced by the prior up-sampling. Linear regressions are
commonly introduced for this purpose, but a strong under-

standing of the behavior or a target dataset could as well lead
to alternate functions that serve as the basis for the regression
such as polynomial interpolation. The primary drivers of the
correct type of interpolation are how much data needs to be
interpolated and the shape of the data around the missing
point.

It is even possible to interpolate the initial data points that
may not exist as some sensors were still powering up. By
determining the slope of the first values that exist, interpola-
tion techniques can preserve this slope in the beginning data
points. For decidedly nonlinear data, alternate best-fit func-
tions may alternatively be used in the determination of suit-
able data for the replacement of null values. Similar tech-
niques are also applicable to up-sampled data that results in
nulls after the final data point in the time series.

3.5. Feature Selection

A feature is the term used for the measurements/values that
exist in a dataset, whether they are raw data or engineered
features, that will provide the input to the ML model. Thus,
feature selection is the most critical part of preprocessing as
selecting the wrong features can render an otherwise useful
model incapable. The primary reason for downselecting the
features that are provided to the model is to achieve the target
value or output of the model as efficiently as possible. The
first way to deal with feature selection is through the taxon-
omy provided earlier. After that, the decision point hinges
on whether the data is labeled or not. In the scope of PHM,
labeling determines whether the data represents a system that
is healthy or not at a specified point in time, the remaining
time until a failure or maintenance action, or other metadata
that would be used to determine the final classification. Since
most raw data given is not labeled with health statuses, an
secondary approach is to determine the relationships between
the data to identify points that are anomalous. It is frequently
true that most PHM data will not have a target variable as the
data is typically fully healthy or unknown, so identifying the
correlation of the data will show which features will be best
to predict data in ML use (Kumar & Minz, 2014).

One correlation statistic that is in common use in data science
and easy to use is the Pearson’s Correlation Coefficient. The
Pearson’s Correlation Coefficient is a measure of the strength
of a linear association between two variables as denoted by r.
The range of r can be +1 to −1 and a value of 0 indicates that
there is no association between the two variables, a value less
than 0 is an inverse association (Profillidis & Botzoris, 2019).

Using entropy method as a means to analyze the uncertainty
of the data for the feature selection is depicted in the data
preparation process in Figure 2 and given by equation 2 where
xi is the i − th element of a data set with N elements and
P (x) is the probability distribution of xi under the condition
that

∑
P (xi) = 1 and 0 < P (xi) < 1 (Shannon, 1948).

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

Figure 3. Tree of Machine Learning Models.

H(s) = −
N∑
i=1

P (xi)log(P (xi)) (2)

Technically, uncertainty is a basic feature of automatic
and semi-automatic processes in time series data (Keijzer,
Keulen, & Dekhtyar, 2007). Uncertainty information arises
from different resources such as process uncertainty, model
uncertainty or environmental uncertainty, etc. Many solu-
tions have been studied to reduce uncertainty due to risks of
losing relevant information and misleading results(Radzuan,
Othman, & Bakar, 2013). The objective of uncertainty analy-
sis using Entropy is to determine the degrees of uncertain data
to gain knowledge, fit low dimensional model, and improve
prediction. A signal with high Entropy can be considered
to potentially carry more information, although care must be
taken in that random noise would have the highest possible
Entropy in a given set of signals.

A final important method of feature engineering data before
passing it to the model is to transfer the time domain into the
frequency domain method. The transformation into the fre-
quency domain is achieved by applying a mathematical trans-
formation. The most common transformation used is the Fast
Fourier Transformation (FFT). A FFT is a technique to visu-
alize time series data in the frequency domain to obtain an
additional feature for the ML process. For instance, a power
spectrum density and spectrogram can be obtained using a
FFT, which can be applied to provide the vibration profile
for ML. Frequency order analysis can be conducted on the
cyclical rotation of an engine. In addition, the short time FFT
(STFT) can be used to provide the significant features of the
vibration analysis in a time sequence for the given system.

4. TIME SERIES MODELS

The objective of ML/AI model(s) is to find the connections
or correlations between input data and output data, and then

support decision making. Theoretically, ML/AI models can
be categorized into 3 categories (depicted in Figure 3) based
on the type of the input data used to train the algorithms and
the resulting objectives.

The supervised learning algorithms are provided an input
dataset and then rewarded or optimized to meet a set of spe-
cific outputs. In unsupervised machine learning, the algo-
rithm is provided an input dataset without being rewarded or
optimized to specific outputs, and instead trained to group
objects by their common characteristics. The Reinforce-
ment learning algorithms are made to train itself using many
trial and error experiments. Reinforcement learning happens
when the algorithm interacts continually with the environ-
ment, rather than relying on training data.

There are two main types of supervised learning problems:
regression to predict the numerical label; and classification
to predict the class label. A number of unsupervised learn-
ing algorithms is depicted in Figure 3. Linear regression is
used to identify relationships between the variable(s) of in-
terest and the input data set, and predict its values based on
the values of the input variables. Naive Bayes is used to clas-
sify objects using probability of features under the assump-
tion of independence of variables. Decision trees are simi-
larly classifiers used to determine the category by traversing
the leaf’s and nodes of a tree. Random forest models are a
collection of many decision trees from random subsets of the
data, resulting in a combination of trees that may be more ac-
curate in prediction than a single decision tree. The K-nearest
neighbors (KNN) technique involves grouping the closest ob-
jects in a dataset and finding the most frequent or average
characteristics among the objects. Support Vector Machines
(SVM) create coordinates for each object in an n-dimensional
space and use a hyperplane to group objects by common fea-
tures. The K-Means algorithm finds similarities between ob-
jects and groups them into K different clusters. Hierarchical
clustering builds a tree of nested clusters without having to
specify the number of clusters. Self-Organizing Feature Maps
(SOFM) are an unsupervised machine learning technique to
produce a low-dimensional (typically two-dimensional) rep-
resentation (clusters) while preserving the topological struc-
ture of the data. Principal Component Analysis (PCA) is
an unsupervised, non-parametric statistical technique primar-
ily used for dimensionality reduction in machine learning.
DBSCAN is a density-based clustering non-parametric al-
gorithm. The Markov decision process (MDP) is a mathe-
matical ML model used for modeling decision-making prob-
lems where the outcomes are partly random and partly con-
trollable. State-action-reward-state-action (SARSA) and Q-
learning are two reinforcement learning methods that do not
require model knowledge, only observed rewards from many
experiment runs.

The ARMA (Box & Jenkins, 1976) (Autoregression Mov-
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ing Average) model is a stochastic model commonly used for
time series forecasting problems. Typically, Autoregression
(AR) and Moving Average (MA) models are effectively com-
bined to form a general and useful class of time series mod-
els, where AR is to use observations from previous time steps
as input to the regression equation to predict the value at the
next time step. The role of the MA is to average the observa-
tions from the previous time steps to predict the direction of
a trend.

5. EVALUATION

Classification performance metrics such as accuracy, preci-
sion, recall and classification error can be used to assess the
performance of time series models introduced in 4. These
metrics summarize the performance of the classifier while
presuming that all classes are equally important and can be
used to drive the selection of tuning parameters or the type of
classifier implemented. Although valid single-point metrics,
these metrics do not take into account the temporal aspect of
the Remaining Useful Life (RUL) estimation problem or the
fact that failing to correctly estimate low-value RULs is more
critical than failing to predict high-value RULs.

A confusion matrix captures the error distribution of the clas-
sifier per class. It can be applied to both binary and multi-
class classification problems when the true classification la-
bels are known. For a binary classification problem, the
confusion matrix shows four different classification counts,
namely true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN) as shown in Table 2.
A TP (TN) indicates a sample in the positive (negative)
class was classified correctly, and an FP (FN) a sample in
the negative (positive) class that was classified as positive
(negative). The multi-class classification model of the con-
fusion matrix can then be extrapolated as follows (Krüger,
2016), see Figure 4. Per row n ∈ C, the confusion matrix
E ∈ N(N+1)×(N+1) comprises a 1 × (N + 1) vector whose
n′-th entry is

∑
m:cm=n 1{n̂m=n′}. The entries of the n-th

row of E, with the n-th entry removed, correspond to the FN
count for class n. Similarly the entries of the n-th column of
E, with the n-th entry removed, correspond to the FP count
for class n. Let 1 denote a vector of ones with appropriate
dimensionality, diag(E) as an (N + 1) × (N + 1) matrix
comprising the main-diagonal entries of E on its main diago-
nal, and (·)′ as the transpose operator. Thus, the (N + 1)× 1
vector α := (E − diag(E))1 captures the FN count profile
and the (N + 1) × 1 vector β := (E − diag(E))′1 captures
the FP count profile.

Specific RUL estimators can be compared on the basis on
these two profiles and their accuracy score A ∈ [0, 1] through,
e.g., the Euclidean distance between Θ := (∥α∥2, ∥β∥2, 1−
A) and the ideal score tuple (0, 0, 0). This approach, how-
ever, ignores the temporal aspect of the RUL estimation prob-

Table 2. Binary classification confusion matrix.

Figure 4. N -ary classification confusion matrix.

lem and the fact that a false negative estimate that predicts a
RUL that is smaller than true RUL is preferable to one that
predicts a RUL that is larger than the true RUL. The former
case would give the system a chance to react to an impending
failure while the latter one would not.

In the context of RUL estimation, given a class n all FN val-
ues assigned to classes n′ > n should be weighed more than
those assigned to classes n′ < n. This can be achieved for
each n by using a masking function defined entry-wise as:

gn(n
′) =

{
λ1 n′ < n

λ2 n′ ≥ n
(3)

with scalars 0 < λ1 < λ2. Let G := [g1, . . . ,gN+1]
′, with

gn := [gn(1), . . . , gn(N +1)]′, denote the resulting masking
matrix. Then one can define an adjusted profile αadj := [G ◦
(E− diag(E))]1, where ◦ denotes the element-wise product.
A similar argument can be used to argue that for a given class
n FPs assigned to classes indexed by n′ with n′ < n should
be weighed more since they will convey an unnecessary sense
of urgency for action to system. With these observations, it
is possible to define adjusted FP αadj and FN βadj profiles.
Then, the tuple (∥αadj∥2, ∥βadj∥2, 1−A) can be used to assess
the quality of the RUL estimator by assessing its Euclidean
distance from the tuple (0, 0, 0) as before (Baumann, Forero,
Selby, & Hsu, 2021).
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6. IMPLEMENTATION

To demonstrate the processes above, data was collected from
a Honda CR-V driven during normal commuting cycles. The
collection was performed using a CanEdge2 from CSS Elec-
tronics connected to the OBDII port on the car. The data was
collected at fully rate and then down sampled to 1 Hz using
the first time stamp for each data type in each second. Af-
ter collection, the data was converted to a comma seperated
value (CSV) file for ingestion into common ML tools, includ-
ing MATLAB and Python. The unprocessed data can be ac-
cessed at: https://www.kaggle.com/datasets/hayley01/honda-
car-sensor-readings.

The initial step is to load the dataset into the development en-
vironment of choice and perform an initial data review look-
ing for missing values, null values, or other obvious artifacts.
In the case of the CR-V, 162 independent signals were present
in the data. A cursory glance showed that the number of sig-
nals was unrealistically large. Signals such as time, config
valid, and output disabled all clearly show they will not be
correlated to an actual signal or platform problem. However,
they were all kept in to demonstrate the efficiencies of de-
creasing the signal count at the start.

Once a general knowledge has been built on the data, it can
be pared down with the taxonomy presented earlier. A num-
ber of signals registered as constants or binary. Some ex-
amples are the ID of the logger (which never changes), and
door indicator status lights (which only change when a door
is opened). Well over half of the data points could have been
eliminated as part of those two categories. Without know-
ing more about the low, mid, and high-state signals, none of
those were dropped at this time. Again, these values were
maintained to demonstrate the efficiencies of better prepro-
cessing.

The entropy value for each signal was computed next in order
to draw a threshold for split between signals. The top signals
were then processed through the steps shown above.

The Entropy measurement for the 160 numerical measure-
ment data was calculated to determine the degrees of knowl-
edge gained in support of the feature selection to fit a low
dimensional model and improve prediction. The entropy dis-
tribution of the 160-measurement data with 4 resolution bins
is depicted in Figure 5.

In Figure 5, 4 entropy groups with 1.2 bin width are formed,
which is simply the total width divided into 4 groups, where
EntropyGroup1 is between [0 1.2], EntropyGroup2, Entropy-
Group3, EntropyGroup4 are in the range [ 1.2 2.4], [2.4 3.6],
and [3.6 4.8] respectively. The research and analysis are
conducted in EntropyGroup2 and EntropyGroup3. Entropy-
Group1 with lower entropy values contains constants in the
measurement data, and EntropyGroup4 with higher entropy
values indicates more noise-like signals in the measurement

Figure 5. Entropy Distribution of Time Series Measurement
Points

Algorithm 1 Time Series Preprocessing

1: Load data into memory.
2: Find the NULL values in the data.
3: Interpolate the NULL values through the calculated mean

of the prior values.
4: Find the IQR and remove outliers
5: Compute Entropy and drop signals from the lowest and

highest group.
6: return Preprocessed signals for ML model.

data. There were 8 signals in EntropyGroup2 and 18 signals
in EntropyGroup3. The features of EntropyGroup2 and En-
tropGroup3 were selected and used for the unsupervised ML
using SOFM (Self-Organizing Feature Map). The number of
models inputs has been significantly reduced from 160 to 26
for the ML model to learn. A SOFM with Kohonen map is
an unsupervised machine learning technique used to produce
a low-dimensional representation (clusters) while preserving
the topological structure of the data.

There are 160 measurement data (features) in the data set
used for the demonstration, and every measurement data con-
tains 24263 time series data. To effectively evaluate the per-
formance, the full 24263 time series data are applied for the
unsupervised learning, and the clustering outcome is used as
a reference comparison. With the reference, the half of the
time series data (12142 data) are used for training, and the
rest half of the time series data (12141 data) is tested and its
result is compared to the clustering outcome with training us-
ing the full time series data.

In this paper, given a data set of a commercial vehicle, the
SOFM unsupervised learning algorithm is used to learn the
feature map from the input space and cluster the discrete out-
put space. The stages of the SOFM unsupervised learning
algorithm can be summarized as follows.

• Initialization – Choose random values for the initial
weight vectors wj

• Sampling – Draw a sample training input vector x from

8
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Table 3. Comparison of signal features as separated by en-
tropy, accuracy rate, processing time, and number of features

Data Group Accuracy Rate Processing Time Features
Group 1 21.78 9.52 sec 131
Group 2 32.22 2.44 sec 8
Group 3 99.82 4.03 sec 18
Group 4 28.64 2.72 sec 3

the input space, where the training input vector x con-
tains selected features using entropy.

• Matching – Find the winning neuron I(x) that has weight
vector closest to the input vector, i.e. the minimum value
of dj(x) =

∑D
(i=1)(xi − wji)

2 .

• Updating – Apply the weight update equation ∆wji =
η(t)T(j,I(x))(t)(xi − wji), where T(j,I(x))(t) is a Gaus-
sian neighborhood and η(t) is the learning rate.

• Continuation – keep returning to step 2 until the feature
map stops changing.

The unsupervised SOFM is implemented using the Deep
Learning Toolbox in MATLAB V.9.13 (R2022b). The SOFM
network is created using MATLAB built-in selforgmap func-
tion with a [2 2] dimensions (4 clusters), coverSteps = 170;
initNeighbor = 20; topologyFunc = ’gridtop’; and distance-
Func = ’linkdist’. The result is depicted in terms of data
group, accuracy rate, processing time, and the number of fea-
tures in Table 3.

7. CONCLUSION AND FUTURE WORK

This paper provided an overview of some of the problems
with using time-series sensor data for PHM problem sets,
specifically those related to vehicles with combustion en-
gines. The data itself can be or seem to be incomplete, be
overshadowed by noise, contain out of range data, be out of
sync with similar data points, or be monitored at different
sampling rates than other data points; all of which are prob-
lematic for a ML model that wants to predict future states or
identify a difference from a set baseline. While many models
have migrated into an easy to use package with Python, R,
or MATLAB, they are typically accompanied by basic docu-
mentation built on synthetic or easy simulation data, without
much discussion on how to apply them to more difficult prob-
lem sets.

As the first step in the data pipeline for a time-series model,
Pre-Processing was discussed in detail as it relates to time-
series data. Notably, the need to perform effective Data
Cleaning, Data Transformation, and Feature Selection was
explored with examples of how this impacts the model results
and how someone new to time series data analysis can clas-
sify time series data types based on a defined taxonomy. Next,
specific time series models were discussed briefly to provide
an overview of the resulting capabilities of the captured data.

Evaluation metrics for these models were reviewed to iden-
tify which models performed the best. Finally, the work dis-
cussed above was demonstrated against real-world data from
a Honda CR-V to showcase the ability for these steps to re-
duce the time to implementation for a time series model.

Future work is recommended to present a series of peer-
reviewed publications demonstrating the real-world applica-
tion of time-series model application for PHM problems. Ex-
tending the number and complexity of models with demon-
strated use cases and non-synthetic data sets will equip and
encourage data scientists, engineers, and others seeking to ei-
ther join the industry or learn new tool sets. Finally, by or-
ganizing papers around specific parts of the machine learning
pipeline, these can server as tutorials at a greater depth than
what is typically available.

NOMENCLATURE

AI Artificial Intelligence
AR Autoregression
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregression Moving Average
CAN Controller Area Network
CBM Condition-Based Maintenance
FFT Fast Fourier Transform
FMI Failure Mode Indicator
FN False Negative
FP False Positive
IQR Inter-Quartile Range
LSTM Long Short Term Memory
MA Moving Average
MAP Maximum A Posteriori
ML Machine Learning
MLP Multilayer Perceptron
NASA National Aeronautics and Space Administration
NN Nearest Neighbor
OBDII On-Board Diagnostics 2
PCoE Prognostics Center of Excellence
PMF Probability Mass Function
PHM Prognostics and Health Management
PCA Principal Component Analysis.
RMSE Root Mean-Squared Error
RNN Recurrent Neural Network
RUL Remaining Useful Life
SOFM Self-Organizing Feature Map
TN True Negative
TP True Positive
TTF Time to Failure
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