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ABSTRACT

This paper proposes a model-based diagnosis approach to de-
tect and isolate intermittent faults in complex systems that op-
erate under feedback control. The feedback control attempts
to compensate for model uncertainties and deviations from
nominal behavior, but these uncertainties are crucial for ac-
curate fault diagnosis. We focus on faults that are observ-
able only in a particular region of the state space, which
is rarely reached in nominal behavior. To address this, we
present an approach that considers both control requirements
and diagnosis uncertainty in an optimization problem simi-
lar to model-predictive control. We compute perturbations on
control signals that forces the system to reach states where
faults are detectable. We apply our approach to a quadrotor
system under motion feedback control, demonstrating the ef-
fectiveness of our method. Our approach has the potential to
improve the resilience of complex systems by quickly detect-
ing and recovering from disruptive events.

1. INTRODUCTION

The resilience of complex systems depends on the ability
to quickly detect, respond to, and recover from disruptive
events, such as faults. Therefore, developing effective fault
diagnosis algorithms for systems under feedback control is
crucial. However, diagnosing faults in such systems can
be challenging, particularly when dealing with intermittent
faults that are difficult to accurately diagnose due to feed-
back control actions. In this paper, we propose an approach
that addresses this issue by applying diagnosis algorithms to
a system under feedback control to detect and isolate faults
while satisfying control-related requirements.

The control and diagnosis algorithms operate on opposing
sides of the system. Feedback control aims to eliminate de-
viations from nominal behavior by compensating for model
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uncertainties. However, these uncertainties are at the core
of accurate diagnosis as they indicate the presence of faults.
Therefore, we focus on diagnosing faults that are observ-
able only when the system is in a particular region of the
state space, which is rarely reached in nominal behavior. To
achieve this, we utilize a model-based diagnosis (MBD) ap-
proach, which has a long history in the artificial intelligence
(de Kleer, Mackworth, & Reiter, 1992) and control fields
(Gertler, 1998),(Isermann, 2005),(Patton, Frank, & Clark,
2000). Traditional MBD approaches in the control commu-
nity include filters such as Kalman (Kalman, 1960) and parti-
cle filters (Gordon, Salmond, & Smith, 1993; Arulampalam,
Maskell, & Gordon, 2002)) or optimization-based techniques
that estimate parameters whose deviation from nominal val-
ues indicate the presence of a fault.

We introduced in (Matei, Zhenirovskyy, de Kleer, & Goebel,
2022) an approach to improving diagnostic certainty by gen-
erating control inputs to disambiguate faults in a fuel system.
However, that approach did not consider control objectives
and focused solely on diagnosis. In this paper, we take a step
further by considering a system under feedback control and
aim to determine small changes applied to the control sig-
nals generated by control algorithms that achieve two objec-
tives: (i) keeping the system in a desired region of the state
space and (ii) reducing diagnosis uncertainty. Our approach
is similar to model-predictive control (MPC) (Garcia, Prett,
& Morari, 1989), which solves an optimization problem to
determine control inputs over a time horizon. In our case, the
objective function in the MPC algorithm is geared towards
minimizing diagnosis uncertainty while control requirements
are implemented through optimization constraints. The un-
certainty minimization objective is defined in terms of simi-
larity functions among observations corresponding to the am-
biguous fault modes. By minimizing the similarity among
these observations, we reduce the information theoretic en-
tropy function applied to a random variable defining the fault
mode, thus we reduce the uncertainty.

To showcase our method, we applied it to a quadrotor sys-
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tem, which is controlled by a PD cascade feedback control
scheme. The quadrotor system is nonlinear, and nominal
control inputs must be changed carefully due to safety con-
straints.

Notations: We use bold letters to denote vectors. To represent
discrete time dependency, we use the notation x(tk) = xk,
for time instants tk. A sequence of variables over time, i.e.,
a time series, {xk}Kk=0 is denoted by x0:K . We denote the
probability distribution function (p.d.f.) of a random variable
X by fX(x). We represent the conditional p.d.f. of X|Y
by fX|Y (x|y). When there is no loss of clarity, we omit the
subscript notation of fX|Y (x|y), that is, we will use f(x|y).
We denote by N (µ,Σ) the multivariate Gaussian distribution
with mean µ and covariance matrix Σ.

Paper structure: In Section 2, we present the system model
and introduce the diagnosis problem. In Section 3, we de-
scribe an optimization-based approach for diagnosing faults
that estimates fault parameters using the system model. In
Section 4, we discuss our approach for disambiguating diag-
noses using an optimal control approach, followed by show-
casing the application of our approach on a quadrotor system
that has intermittent faults in its rotors.

2. PROBLEM STATEMENT

The scope of our analysis is to investigate parametric faults,
where each fault mode is characterized by a scalar parameter.
We define a set of fault parameters F = {f1, f2, . . . , fN},
where N is an integer number. Under normal operating con-
ditions, each fault parameter fi has a nominal value f̄i, and
the parameter vectors are assumed to remain close to these
nominal values.

To diagnose the health of the system, we use MBD. Our ap-
proach involves analyzing a closed-loop system consisting of
a nonlinear model of the system and a controller that com-
putes the inputs to the system. More precisely, the system
can be represented as follows:

ẋ = f(x,u;p) , x(0) = x0, (1)
y = h(x) + v, (2)
u = C(y;xf ), (3)

where x, u, p, and y represent the state, input, fault parame-
ter, and output vectors, respectively. We assume that the con-
trol inputs are generated by a map C, which utilizes the out-
put measurements to guide the system towards a final state
xf . The output measurements are affected by independent
and identically distributed (i.i.d.) additive noise, which we
denote by v. We assume that this noise follows a Gaussian
distribution, with a zero mean and a covariance matrix of Σv .

We define a set of fault parameters F = {f1, f2, . . . , fN},
where N is an integer number. We assume that each fault pa-

rameter fi has a nominal value f̄i, and in normal conditions,
the parameter vectors remain close to these nominal values.

We use the single fault scenario, i.e., no two faults be-
came active at the same time. The fault event is defined by
{|pi − p̄i| > εi, p−i = p̄−i}, where εi is a positive scalar.
The scalar εi depends on the measurement noise and the sen-
sitivity of the behavior of the system to changes in parame-
ter pi. The fault magnitude is determined by estimating the
value of the system parameter pi. Given a sequence of input
and output measurements over the time horizon τ , the diag-
nosis problem consists of computing the conditional proba-
bility P(|pi − p̄i| > εi|y0:τ ,u0:τ ), for all i together with
the estimation of the parameter pi. An ambiguous diagno-
sis appears when there exist a least two faults i and j so that
P(|pi − p̄i| > εi|y0:τ ,u0:τ ) ≈ P(|pj − p̄j | > εj |y0:τ ,u0:τ ),
meaning that their probability is roughly the same, impeding
a clear decision on what fault is the root cause of the observed
anomalous behavior.

To illustrate our approach to fault detection and disambigua-
tion, we consider a quadrotor system model (Bouabdallah
& Siegwart, 2007), whose state variables are the positions
and angles, and the linear and angular velocities. The model
was derived by considering various physical effects such as
rolling, pitching and yawing moments, and rotor dynamics.
We assume that the perturbations from hover flight are small.
Thus, the transformation matrix between the rate of change
of the orientation angles (ϕ̇, θ̇, ψ̇) and the body angular ve-
locities can be considered as unity matrix. The state space
representation is given by

ϕ̈ = b1U2, (4)
θ̈ = b2U3, (5)
ψ̈ = b3U4, (6)

ẍ =
ux
m
U1, (7)

ÿ =
uy
m
U2, (8)

z̈ = g − cosϕ cos θ

m
U1, (9)

where ϕ, θ and ψ are the pitch, roll and yaw angles, and
the tuple x, y, z is the position of the quadrotor in the 3-d
space. The variables ux and uy are expressed as functions
of the angles, i.e., ux = cosϕ sin θ cosψ + sinϕ sinψ, and
uy = cosϕ sin θ sinψ − sinϕ cosψ The inputs to the sys-
tem are linear combinations of the (scaled) angular velocities
generated by the rotors:

U1 = b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4), (10)
U2 = b(−Ω2

2 +Ω2
4), (11)

U3 = b(Ω2
1 − Ω2

3), (12)
U4 = b(−Ω2

1 +Ω2
2 − Ω2

3 +Ω2
4). (13)
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In controlling quadrotors, the typical approach involves three
cascading stages: altitude, position, and attitude control.
To simplify the process, we utilize PD-based control strate-
gies. However, for those interested in PID-based con-
trol schemes, we refer readers to (Bouabdallah & Siegwart,
2007). Given a set of desired linear position and velocities
(xr, yr, zr, ẋr, ẏr, żr), a PD controller for setting the quadro-
tor at altitude zr is

U1 =
m

cosϕ cos θ
(g − kl3ze − dl3że),

where ze = z − zr, and kl3, dl3 being the proportional
and derivative coefficients of the controller. The motion in
the (x, y) plan is determined by changing the angles of the
quadrotor. For example, first we use PD controllers to com-
pute quantities used to set the angles:

αx =
m

U1
(−kl1xe − dl1ẋe),

αy =
m

U1
(−kl2ye − dl2ẏe),

where xe = x − xr, ye = y − yr. These quantities are used
to set the pitch and roll reference angles: ϕ̂r = αx sin(ψ) −
αy cos(ψ), θ̂r = αx cos(ψ) − αy sin(ψ). The last step is to
determine inputs for tracking the reference angles:

U2 =
1

b1
(−ka1ϕe − da1ϕ̇e),

U3 =
1

b2
(−ka2θe − da2 θ̇e),

U4 =
1

b3
(−ka3ψe − da3ψ̇e),

with ϕe = ϕ − ϕ̂r, θe = θ − θ̂r and ψe = ψ − ψr, where
ψr is the yaw reference angle. We tuned the parameters of
the controller so that the quadrotor is able to reach a hovering
position (0,0,2) from an initial hovering position of (1,1,0) in
less than 2 seconds. We assume that in the nominal case, the
angular velocities of the rotors are upper bounded, i.e., Ωi ≤
Ω2

max, where Ωmax = 1000rad/s. As such, the control inputs
Ui are bounded as follows: 0 ≤ U1 ≤ 4bΩ2

max, −bΩ2
max ≤

U2 ≤ bΩ2
max, −bΩ2

max ≤ U3 ≤ bΩ2
max and −2bΩ2

max ≤
U4 ≤ 2bΩ2

max.

The numerical, model parameters are given by L=0.3 m,
r=0.1 m, m=1.2 kg, and g=9.81 m

s2 . In addition, we have
the following parameter definitions: ixx = 2mr2

5 + 2mL2,
iyy = ixx, izz = 2mr2

5 +4mL2, b1 = L
ixx

, b2 = L
iyy

, b3 = L
izz

and b = 2.5 × 10−5. The controller parameters are given
by kl1=5.587, dl1=3.482, ka1=84.817, da1=12.753, kl2=5.356,
dl2=3.364, ka2=86.574, da2=12.773, kl3=16.165, dl3=7.428,
ka3=1283.786, da3=1283.786.

Figure 1 displays the 3D trajectory of the quadrotor while un-

Table 1. Controller parameters

kl
1=5.587 dl1=3.482 ka

1=84.817 da1=12.753
kl
2=5.356 dl2=3.364 ka

2=86.574 da2=12.773
kl
3=16.165 dl3=7.428 ka

3=1283.786 da3=1283.786

der feedback control. The task involved moving the quadrotor
from its initial hovering position of (1,1,0) to the final hover-
ing position of (0,0,2).

Figure 1. Feedback control generated trajectory for moving
from (1,1,0) to (0,0,2) in nominal conditions.

To model intermittent faults in the rotors, we assume that the
maximum velocity the rotor can generate decreases, and is
expressed by Ωi ≤ piΩ

2
max, where pi ∈ [0, 1] represents the

fault parameters we aim to estimate. Under nominal condi-
tions, the fault parameters have a value of 1. Previous re-
search has studied various types of rotor faults; for instance,
(Guzmán-Rabasa et al., 2019) considers additive rotor faults,
while (Avram, 2016) assumes multiplicative rotor fault mod-
els.

Our focus on intermittent rotor faults is due to their chal-
lenging nature: these faults only become noticeable when
the rotors need to operate at their maximum angular velocity,
making them harder to detect and isolate. It is worth noting
that reaching the upper limit of maximum velocities may not
be necessary, depending on the mission requirements for the
quadrotor.

3. MODEL-BASED DIAGNOSIS

To test the effects of the nominal and perturbed control sig-
nals on diagnosis, we utilize an optimization-based approach
to estimate the fault parameters. The optimization problem
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takes a time series of output measurements (e.g., position,
angles, and linear and angular velocities) over a time horizon
τ , denoted as y0:τ , and estimates a fault parameter for a sin-
gle fault scenario. The formal description of the optimization
problem is given by

min
pi

τ∑
k=0

(
yk − ŷi

k

)T
Σ−1

v

(
yk − ŷi

k

)
, (14)

where yk are the measurements at times tk and ŷi
k are the

predicted outputs when the system is in fault mode i. To gen-
erate estimates of the fault parameters p̂j for j ̸= i, we solve
such optimization problems for each fault mode. To deter-
mine which fault is active, we compute empirical probabili-
ties using the formula:

qi ∝ N (ŷi
k,Σv).

Here, ŷi
k is obtained by simulating the model for a 5 seconds

time interval, with the fault parameter p̂i while setting the re-
maining fault parameters to their nominal values. These em-
pirical probabilities serve as proxies for the conditional prob-
ability density functions, given by:

f(pi|y0:τ ) =

∏τ
k=0 f(yk|pi)f(pi)∫ ∏τ
k=0 f(yk|pi)f(pi)dpi

.

The proxies become the probability density function
f(pi|y0:τ ) when the prior distributions of the fault parameters
are uniform.

We do not emphasize the choice of diagnosis algorithms since
our focus is on the content of the output measurements that
lead to a diagnosis. Filtering-based methods such as parti-
cle filters (Arulampalam et al., 2002) or various versions of
the Kalman filter (McElhoe, 1966; Julier & Uhlmann, 1997),
where the fault parameters are transformed into state vari-
ables, are appropriate for estimating the fault parameters.
Qualitative diagnosis algorithms, such as analytical redun-
dant relations (ARRs) (Staroswiecki, 2000; Staroswiecki &
Comtet-Varga, 2001), can also be used, although they have
to be coupled with fault magnitude estimation algorithms.
These have the advantage that they do not require fault mod-
els, but they typically need more sensors to generate an un-
ambiguous diagnosis solution. We speed up the diagnosis al-
gorithm, by solving the optimization problems corresponding
each fault hypothesis using parallel processes.

To show what a diagnosis algorithm would produce when us-
ing nominal control inputs, only we created a scenario where
we sequentially injected faults to each of the four rotors. We
considered a 60% loss of maximum squared angular veloc-
ity and perfect measurements. The output data is based on
moving the quadrotor from an initial position of (1,1,0) to a
final position of (0,0,2). Figure 2 shows the trajectories for
the state variables and the control inputs when the first rotor

is faulty. The diagnosis results are presented in Table 2. It
can be observed that under all fault scenarios, the diagnosis is
inaccurate and ambiguous when the trajectories are generated
by the nominal controller. This is due to the insufficient ex-
ertion of the controller, which fails to push the system to the
regime where the maximum velocity limitation becomes evi-
dent and observable. Using a PID controller instead of a PD
controller would not help either, since the actuation degra-
dation cannot be supplemented by the integral term of the
controller.

Table 2. Diagnosis results under nominal control

Scenario Fault parameter esti-
mates (p̂1,p̂2,p̂3,p̂4)

Fault probabilities
(q1,q2, q3, q4)

p1=0.4 0.369,0.352,0.352,0.352 0.25,0.25,0.25,0.25
p2=0.4 0.369,0.352,0.352,0.352 0.25,0.25,0.25,0.25
p3=0.4 0.369,0.352,0.352,0.352 0.25,0.25,0.25,0.25
p4=0.4 0.369,0.352,0.352,0.352 0.25,0.25,0.25,0.25

4. FAULT DISAMBIGUATION

In this section, we present our methodology for designing
perturbations on control inputs that lead to unambiguous di-
agnostic solutions. Specifically, we first formulate an optimal
control problem to compute these perturbations. Then, we
apply this formulation to the use case of a quadrotor.

4.1. Control perturbation design

Our goal is to design controller input perturbations that gen-
erate output measurements with sufficient information for ac-
curate fault diagnosis. To achieve this, we formulate an opti-
mal control problem that, when applied to a set of ambiguous
fault modes, determines a set of input perturbations capable
of producing output measurements that are as dissimilar as
possible.

To measure the similarity between two output measurement
vectors, we define a similarity metric. Let i be the in-
dex of a fault mode, pi be the fault parameters that de-
scribe this mode, and yi(k) represent the outputs measured
in this fault mode at time tk. The similarity between the
outputs of the system in two fault modes i and j is de-
fined as si,j = − 1

τ

∑τ
k=1 |yi(k) − yj(k)|2. The cumu-

lated similarity among outputs in all fault modes is given by
S =

∑
i>j si,j . To reduce the variance between similari-

ties when designing the input perturbations, we introduce the
quantity D =

∑
i,j ̸=l,m |si,j − sl,m| as a regularization func-

tion. Our objective is to minimize S + λD, where λ is a reg-
ularization parameter. When designing the perturbations, we
ensure that they do not adversely affect the system’s mission.
For instance, if the objective is to reach a final position, we
impose this constraint when learning the perturbations. The
fault parameters pi impose constraints on the values that the
control input can take under fault mode i, constraints which
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Figure 2. Trajectories of the state variables and the control inputs for p1=0.4, and p2 = p3 = p4 = 1.

we denote by Ui. We also add state constraints to ensure that
the system remains within a safe set of states, denoted by X .

With these definitions, we can formulate the optimal con-
trol problem that computes the disambiguating input pertur-
bations:

minδu S + λD, ∀i
subject to:

ẋi = f(xi,ui + δu;pi) ,xi(0) = x0, ∀i
yi = h(xi;pi) + vi, ∀i
ui = C(yi;xf ), ∀i

ui + δu ∈ Ui, ∀i
xi ∈ X ,

xi(τ) = xf , ∀i,

where i is the fault index, ui is the vector of controls gen-
erated by the PD controllers when the quadrotor is in fault
mode i.

The perturbation vector δu = [δu1, δu2, δu3, δu4] must be
valid for all fault modes and, therefore, its values must satisfy
the constraint ui + δu ∈ Ui for all i. To account for multiple
fault modes, we create duplicates of the system model, and
the complexity of the optimization problem increases as the
number of fault modes considered jointly increases. Although
CasADi (J. A. E. Andersson, Gillis, Horn, Rawlings, & Diehl,
2019) is a valid option for solving the optimization problem,
we have chosen to use a gradient-free optimization algorithm
and a Function Mockup Unit (FMU) (Blochwitz et al., 2011)
representation of the closed-loop system. We simulate the
FMU with the control perturbations as inputs and instanti-

ate it with the set of fault parameters pi to generate various
fault modes. Gradient-free algorithms enables us to use non-
differentiable operators such as min or max, to impose con-
straints on the input and state vector. The FMU simulations
were done using the pyfmi Python package (C. Andersson,
Akesson, & Fuhrer, 2016), and the numerical optimizations
were executed using Powell algorithm from Python scipy’s
optimization package.

We model the input perturbations as a piecewise linear func-
tion with a hyperparameter that controls the number of
change points over the time horizon, allowing us to manage
the number of optimization parameters.

To enforce safety state constraints and final state constraints,
we add terms to the cost function. For example, the term
µ (max{0, dist(X ,xi)− ε}+max{0, |xf − xi| − ε}),
where µ is a large positive scalar, dist is a distance op-
erator, and ε is a small positive scalar, enforces the necessary
constraints. The resulting input perturbations can be used to
diagnose the system before executing a mission. However,
if too many fault modes are considered at once, learning the
control input perturbations may fail since we over-constrain
the perturbations. Therefore, a better approach is to limit the
number of jointly considered fault modes, learn perturbations
for groups of joint fault modes, and apply them sequentially
for each such groups.
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4.2. Results for the quadrotor use case

In Section 3, we showed that the diagnosis algorithm under
nominal control fails to produce the correct diagnosis in a sin-
gle fault scenario where all fault modes have the same magni-
tude. Therefore, at a minimum we can determine disambigua-
tion input perturbation for rotor faults with the same fault
magnitude. We discretize the fault magnitude domain [0, 1]
and generate perturbation inputs for each discrete fault mag-
nitude. We specifically generate perturbations for the fault
magnitudes 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and for each of these
values, we consider 4 fault modes that correspond to a loss in
the maximum angular velocity that each rotor can achieve.

Let p represent the fault magnitude, and let p1 = (p, 1, 1, 1),
p2 = (1, p, 1, 1), p3 = (1, 1, p, 1), and p4 = (1, 1, 1, p)
be the fault parameters used to instantiate the system model.
Each vector of fault parameters induces a constraint set for
the inputs. For instance, for p1, the control inputs must sat-
isfy 0 ≤ U1 ≤ b(p + 3)Ω2

max, −bΩ2
max ≤ U2 ≤ bΩ2

max,
−bΩ2

max ≤ U3 ≤ bpΩ2
max, and −b(p + 1)Ω2

max ≤ U4 ≤
2bΩ2

max. Similar inequalities can be determined by the re-
maining fault parameter vectors. The quadrotor mission is to
move from a hovering initial position (1,1,0) to a hovering
final position (0,0,2) in under 4 seconds. Here, hovering im-
plies that the angles, linear and angular velocities are zero.
The state safe set is defined by the cylinder (x − 1)2 + (y −
1)2 ≤ 4 and 0 ≤ z ≤ 3. We limit the number of change
points for the perturbations δui to 20 points, resulting in a
total of 4× 20 optimization variables.

We present the results of the optimization for two cases:
p = 0.4 and p = 0.9. Figures 3, 4, 5, and 6 show the perturba-
tion inputs and simulated outputs under the four fault modes
for the two considered fault magnitudes. It is evident that for
p = 0.4, the differences in outputs for the four fault modes
are distinct, whereas this is not the case for p = 0.9. This
is expected since the effects of the fault modes at this fault
magnitude level are not significant. Moreover, the main dif-
ferences are in the x, y positions and angles, while the z direc-
tion remains unaffected across all fault modes. It is important
to recall that U1 controls the altitude z and is upper-bounded
by b(p + 3)Ω2

max, while U2 and U3 are upper-bounded by
bpΩ2

max, but not simultaneously. These two inputs control the
angles and thus the position in the x, y plane. Consequently,
U2 and U3 are much more sensitive to the fault effects.

Subsequently, we applied an optimization-based diagnosis
using the perturbation inputs for each fault magnitude. We
added noise to the simulated output measurements up to 30dB
signal-to-noise ratio (SNR). Tables 3 through 14 display the
results. For the given noise level, all diagnoses were accurate.
The parameters were correctly identified, and the empirical
probabilities for the true fault modes were dominant. Figure
7 shows an example of trajectories generated by the perturbed
PD feedback control with a fault magnitude of p = 0.4 on ro-

tor 1. Notable changes in the quadrotor’s angles are observed
until it settles in its final position. It is this type of behavior
that results in rich output data, ultimately leading to accurate
fault diagnosis.

Figure 3. Input perturbations for fault magnitude p = 0.4.

Table 3. Fault magnitude 0.4: fault parameter estimates.

p̂1 p̂2 p̂3 p̂4
p1=0.4 0.4 0.865 0.928 0.785
p2=0.4 0.875 0.4 0.859 0.872
p3=0.4 0.817 0.86 0.4 0.842
p4=0.4 0.808 0.806 0.773 0.4

Table 4. Fault magnitude 0.4: empirical probabilities.

q1 q2 q3 q4
p1=0.4 0.981 0.006 0.006 0.006
p2=0.4 0.01 0.971 0.01 0.01
p3=0.4 0.027 0.026 0.921 0.026
p4=0.4 0.029 0.029 0.029 0.914

Table 5. Fault magnitude 0.5: fault parameter estimates.

p̂1 p̂2 p̂3 p̂4
p1=0.5 0.5 0.506 0.533 0.504
p2=0.5 0.598 0.5 0.535 0.518
p3=0.5 0.588 0.494 0.499 0.504
p4=0.5 0.591 0.499 0.529 0.5

Table 6. Fault magnitude 0.5: empirical probabilities.

q1 q2 q3 q4
p1=0.5 0.964 0.01 0.013 0.012
p2=0.5 0.021 0.936 0.023 0.02
p3=0.5 0.121 0.017 0.795 0.067
p4=0.5 0.057 0.016 0.072 0.855

The accuracy of the diagnosis may be compromised by the
amount of noise, particularly when fault magnitudes are low.
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Figure 4. Simulated outputs under single fault rotor scenarios under the effect of the input perturbations for fault magnitude
p = 0.4.

Figure 5. Input perturbations for fault magnitude p = 0.9.

Table 7. Fault magnitude 0.6: fault parameter estimates.

p̂1 p̂2 p̂3 p̂4
p1=0.6 0.6 0.667 0.3 0.608
p2=0.6 0.706 0.6 0.503 0.672
p3=0.6 0.71 0.677 0.6 0.673
p4=0.6 0.708 0.673 0.595 0.6

Table 8. Fault magnitude 0.6: empirical probabilities.

q1 q2 q3 q4
p1=0.6 0.92 0.022 0.035 0.023
p2=0.6 0.054 0.833 0.06 0.053
p3=0.6 0.171 0.102 0.557 0.17
p4=0.6 0.092 0.071 0.122 0.715

Table 9. Fault magnitude 0.7: fault parameter estimates.

p̂1 p̂2 p̂3 p̂4
p1=0.7 0.7 0.648 0.3 0.617
p2=0.7 0.802 0.699 0.671 0.753
p3=0.7 0.804 0.782 0.701 0.779
p4=0.7 0.803 0.782 0.678 0.7

Table 10. Fault magnitude 0.7: empirical probabilities.

q1 q2 q3 q4
p1=0.7 0.922 0.018 0.042 0.018
p2=0.7 0.116 0.618 0.143 0.123
p3=0.7 0.182 0.181 0.391 0.246
p4=0.7 0.143 0.136 0.197 0.525

To investigate this, we reduce the signal-to-noise ratio (SNR)
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Figure 6. Simulated outputs under single fault rotor scenarios under the effect of the input perturbations for fault magnitude
p = 0.9.

Figure 7. Quadrotor trajectory trace when rotor 1 loses 60%
of the maximum velocity it can develop: the effects of the
perturbation inputs.

Table 11. Fault magnitude 0.8: fault parameter estimates.

p̂1 p̂2 p̂3 p̂4
p1=0.8 0.8 0.687 0.3 0.663
p2=0.8 0.911 0.8 0.756 0.837
p3=0.8 0.911 0.852 0.798 0.84
p4=0.8 0.911 0.85 0.764 0.801

Table 12. Fault magnitude 0.8: empirical probabilities.

q1 q2 q3 q4
p1=0.8 0.895 0.023 0.06 0.023
p2=0.8 0.179 0.406 0.216 0.199
p3=0.8 0.211 0.212 0.316 0.261
p4=0.8 0.196 0.195 0.254 0.355

Table 13. Fault magnitude 0.9: fault parameter estimates.

p̂1 p̂2 p̂3 p̂4
p1=0.9 0.9 0.901 0.773 0.853
p2=0.9 0.971 0.902 0.896 0.933
p3=0.9 0.973 0.946 0.9 0.937
p4=0.9 0.971 0.945 0.893 0.899

Table 14. Fault magnitude 0.9: empirical probabilities.

q1 q2 q3 q4
p1=0.9 0.512 0.156 0.17 0.163
p2=0.9 0.212 0.295 0.249 0.244
p3=0.9 0.221 0.25 0.268 0.261
p4=0.9 0.219 0.246 0.261 0.274
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to 20 dB and perform the diagnosis for two extreme cases:
p = 0.4 and p = 0.9. The resulting tables are shown in Tables
15 through 18. In all cases, the fault parameters are estimated
correctly, but the main impact is on the probabilities of fault
modes. Specifically, for p = 0.9, all fault modes are nearly
equally likely. Since this fault magnitude has a minor impact
on the quadrotor’s behavior, choosing an incorrect fault mode
does not result in any significant consequences.

Table 15. Fault magnitude 0.4: fault parameter estimates un-
der SNR=20dB.

p̂1 p̂2 p̂3 p̂4
p1=0.4 0.400 0.862 0.928 0.786
p2=0.4 0.875 0.399 0.848 0.870
p3=0.4 0.825 0.860 0.400 0.854
p4=0.4 0.810 0.806 0.776 0.398

Table 16. Fault magnitude 0.4: empirical probabilities under
SNR=20dB.

q1 q2 q3 q4
p1=0.4 0.845 0.052 0.052 0.052
p2=0.4 0.135 0.595 0.135 0.135
p3=0.4 0.221 0.25 0.268 0.261
p4=0.4 0.138 0.138 0.138 0.587

Table 17. Fault magnitude 0.9: fault parameter estimates un-
der SNR=20dB.

p̂1 p̂2 p̂3 p̂4
p1=0.9 0.901 0.902 0.773 0.860
p2=0.9 0.970 0.901 0.888 0.928
p3=0.9 0.971 0.945 0.910 0.939
p4=0.9 0.971 0.943 0.902 0.901

Table 18. Fault magnitude 0.9: empirical probabilities under
SNR=20dB.

q1 q2 q3 q4
p1=0.9 0.289 0.234 0.240 0.237
p2=0.9 0.245 0.255 0.250 0.250
p3=0.9 0.247 0.250 0.252 0.251
p4=0.9 0.246 0.250 0.251 0.253

5. CONCLUSIONS

This paper addresses the challenge of ambiguous fault diag-
nosis in the presence of intermittent faults where sensor mea-
surements do not provide sufficient information to compute
fault probabilities with high certainty. Specifically, we fo-
cused on the problem of actuator faults and proposed an op-
timal control approach to disambiguate diagnosis solutions.
We considered systems under feedback control and designed
perturbations on the control inputs generated by the feedback
control loop to reduce the similarity between measurements
in ambiguous fault modes. To increase simulation efficiency,
we used gradient-free algorithms with functional mock-up
units (FMUs) as computational model representations. We

ensured that the optimization formulation did not affect the
primary control objective and that the system remained in a
safe set of states. To control the complexity of the optimiza-
tion problem, we limited the number of change points of the
perturbations. Our approach was demonstrated on a quadro-
tor example, and we showed that by using disambiguation
perturbations together with control inputs generated by the
motion control algorithm, we could isolate faults with high
probability and accurately estimate their magnitude. These
results demonstrate the effectiveness and applicability of our
approach for addressing ambiguous fault diagnosis in practi-
cal systems.
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