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ABSTRACT 

Reliable operation of industrial assets is of high priority for 

businesses where productivity determines the ability to 

deliver safety-critical products of high quality in a timely 

manner. The aerospace industry leads the demand for 

predictive maintenance (PdM). In the manufacturing space, 

unscheduled down time causes production delay and 

increases operational costs while introducing potential risks 

in product quality and on-time delivery. In field application 

of these products, unexpected breakdown of critical 

components can result in safety-critical events. Failure events 

are, therefore, extremely rare in industrial settings. Diverse 

operating conditions in the manufacturing environment and 

field applications contribute to the heterogeneous nature of 

data collected from these assets. This work presents an 

anomaly detection framework for PdM of industrial assets to 

address the practical challenges of scarce failure data sources 

and heterogeneous data across assets. We introduce a fine-

grained modeling approach that efficiently accounts for 

individual asset differences in a semi-supervised fashion 

which requires only normal operation data for model training. 

The framework is demonstrated with an end-to-end industrial 

use case. Vibration sensor data from pumps in one of our 

manufacturing facilities is ingested to enable PdM with 2 

weeks lead time using the proposed framework. This 

transforms unexpected breakdown time to scheduled 

maintenance, thereby reducing cost of delays and operation 

interruptions. The systematic implementation of the 

framework in the case study covers the practical production 

aspects including data quality evaluation, model training, 

optimization and daily serving of predictions. Furthermore, 

implementation challenges and recommendations are 

discussed based on the end-to-end solution implementation 

experiences.  
 

1. INTRODUCTION 

With the advancement of data collection, transmission, 

storage, streaming, sensor monitoring technologies, and 

increased awareness of valuable data insights, industries are 

striving to leverage data analytics and computational models 

for business value proposition at ever-increasing speeds. 

Among the plethora of data types, time-series data is the most 

common type, where data records are timestamped and 

meaningfully interpreted within the sequence. While 

abundant information can be accessed via time-series data 

analysis, anomaly detection is of high interest due to common 

business needs of staying proactive and informed of 

unexpected events; whether it is to avoid hazardous events 

and productivity loss manifested by anomalies, or to detect 

changes in sales patterns informing product popularity. For 

example, a milling machine with embedded voltage and 

pressure sensors as well as externally installed rotational 

speed and vibration sensors can communicate time-series 

data records to downstream models for condition based 

monitoring (Cavalieri & Salafia, 2020). The Numenta 

Anomaly Benchmark (NAB) dataset (Ahmad, Lavin, Purdy, 

and Agha, 2017) provides a variety of time-series streaming 

data sources ranging from server network utilization to 

medical sensors accessing patient health. Anomaly detection 

algorithms are tested with these data sources to achieve 

meaningful insights from uncovering a bottleneck in an IT 

network to alerting patients under stress in a real-time 

streaming manner. 

Anomalies can be categorized in general into 3 categories for 

time-series data. (1) Point anomalies refers to individual data 

points that are out of range compared to the rest of the data 

(Teng, Lin & Wen, 2017). These anomalies are usually easier 

to be detected with threshold-based approaches. (2) 

Contextual anomalies are anomalies that deviate from data 

points under similar contexts or conditions. For example, 
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vibration sensor readings collected when rotational speed is 

at 5000 rpm with misalignment present in the system can 

manifest as abnormal when compared with readings collected 

under the same rpm with no misalignment. These same 

anomalies may appear to be normal when comparing with 

readings collected at higher rotational speeds. (3) Collective 

anomalies, when assessed together as a collection of data 

points, deviate from the rest of the data. Trending anomalies 

are a common type of collective anomalies, where the data 

points can be within a normal range, but the sequence 

displays abnormal trend when evaluated collectively 

(Shaukat, Alam, Luo, Shabbir, Hameed, Li, Abbas & Javed, 

2021).  

While there is no proven anomaly detection approach that 

works the best for different datasets against all categories of 

anomalies, there are ways to adapt the anomaly detection 

workflows to expand the types of anomalies that can be 

detected. This adaptation can happen at the feature 

engineering stage. For example, when adding the context 

associated with target anomalies into the feature dimension 

either through normalizing existing features according to 

context or using context features as additional dimensions 

(Foorthuis, 2021)., methods suitable for detecting point 

anomalies and collective anomalies can work for contextual 

anomalies. When features are aggregated considering 

sequence, collective anomalies can be transformed to point 

anomalies. These adaptations do introduce challenges in the 

feature engineering space in terms of knowing what context 

to include, the proper window for sequence construction, and 

identifying the underlying correlations for normalizing 

features based on context etc.  

Existing research efforts in the realm of anomaly detection 

cover supervised, semi-supervised (Jiang, Kao & Li, 2021) 

and unsupervised (Audibert, Michiardi, Guyard, Marti, and 

Zuluaga, 2020) approaches. Labeled normal and abnormal 

data are prerequisites for supervised methods, also known as 

2-class classification. This type of method has the advantage 

of higher accuracy since more insights can be deduced from 

both classes but loses advantages in industrial applications 

where abnormal data is scarce. Semi-supervised methods 

only require data from one class, usually the normal class, to 

train the underlying model and classify new data based on its 

similarity to the normal class. This approach is ideal for 

industrial applications where normal data is abundant. 

Unsupervised methods share the same advantage with semi-

supervised methods since there is no requirement on data 

labels. These categories of methods learn the characteristics 

of normal and abnormal data through training. Its application 

is more effective when a representative data population with 

both normal and abnormal records are present. 

In the PdM space, there are oftentimes abundant data under 

normal conditions and either limited or no data associated 

with that of abnormal conditions. Semi-supervised and 

unsupervised methods with no requirement on availability of 

failure data are therefore practical choices (Sgueglia, Sorbo, 

Visaggio & Canfora, 2022). Moreover, methods with less 

assumptions on data distribution, time dependencies and 

correlations, generalize better to a wide variety of 

applications and should be prioritized for implementation 

(Shaukat et al., 2021). Explainability is another critical aspect 

as it closely relates to the success of user adoption. Solutions 

that can assist end users in understanding the underlying 

causes of prediction results are preferred over black box 

solutions. 

In this work, we present a semi-supervised time-series 

anomaly detection framework that is designed to incorporate 

a plethora of anomaly detection algorithms in a fine-grained 

manner for industrial predictive maintenance applications, to 

achieve the following objectives: 

1. Generalize to industrial applications where normal 

operation data is abundant but failure data is 

unavailable or limited. 

2. Perform under known conditions of sensor noise, 

heterogeneous data across assets (Cho, May 

,Tourkogiorgis, Perez, Lazaro, Maza & Kiritsis, 

2018), and diverse asset operation profiles and 

conditions. 

3. Offer efficient and flexible model management 

options when deployed to production as an end-to-

end application (from data ingestion to insight 

consumption by end-users). 

4. Provide explainable evidence into model prediction 

results for end users in order to enhance user 

confidence and information that can assist Subject 

Matter Expert (SME) investigation. 

2. APPROACH 

2.1 The anomaly detection framework 

The proposed anomaly detection framework is presented in 

Figure 1. Data quality check and qualification are built in for 

both training and prediction to ensure accurate downstream 

results. For example, qualifying training data corroborates 

proper establishment of normal baseline profile. Feature 

engineering is the key step that extracts features potentially 

capable of manifesting discriminative signatures under 

abnormal conditions. This process calls for a collaborative 

effort among SMEs and data analytics practitioners in 

exploring useful features based on prior knowledge, 

experience, or physics-based modelling.  We also 

recommend keeping this process expandable so that more 

features can be included into the production system as 

practitioners gain knowledge on feature correlations with 

abnormal symptoms from analyzing abnormal events that 

happen later. The feature engineering process can also handle 

the task of converting one category of anomalies to another. 

Specifically, contextual anomalies can effectively be 
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converted to point anomalies or collective anomalies with 

context incorporated numerically into the feature space. Our 

case study targets both point anomalies and collective 

anomalies. As machine degradation tend to happen over 

varied time periods, PdM practitioners are interested in 

abnormal data trends. When data is aggregated in timeframes 

into features, the collective signature can inherently be 

included with consideration of how data changes over the 

defined timeframe. For example, when data trend is a 

consideration for collective anomalies, features including 

slope and trendline etc. per aggregation period can transform 

collective behavior into point-wise behaviors.  

 

Figure 1. The fine-grained semi-supervised anomaly 

detection framework  

 

In the next stage, a semi-supervised anomaly detection 

algorithm can be selected for training considering 

performance metrics. In this work, we utilized an anomaly 

detection model class developed in house that builds baseline 

profiles for normal data and measures deviations against 

newly collected data.  

2.2 The Fine-Grained Modeling Approach 

 
Although it is improbable for a single model to universally 

address the anomaly detection requirements for all types of 

assets, we recommend exploring expanding categories of 

models to accommodate various fields. During the early 

stages of model development, one can assess multiple types 

of anomaly detection models and down-select specific 

models based on the performance metrics they exhibit. 

Meanwhile, for a given model type, there can be multiple 

model instances fit for individual differences among the 

population (product, device, equipment etc.); we refer to this 

as the fine-grained modeling approach. Essentially, the 

multiple model instances (spanning anywhere from tens to 

thousands) all belong to the same model type, with each 

having its unique model parameters and configurations.  

 

When a specific anomaly detection model class is selected, 

there are two options for applying the model for a class of 

assets: 1) a unified model for assessing all assets and 2) a fine-

grained model structure where each asset gets its own model 

instance.  

 

Option 1 requires exploration and development efforts in data 

preprocessing and feature engineering to ensure that model 

inputs are scaled to be consistent across assets without losing 

information. This is possible in cases where established data 

standards are available or data from multiple assets can be 

scaled and conditioned to conform to a unified distribution. 

This assumption, however, may not suffice in all cases and 

can easily make the models vulnerable to changes in the field. 

For example, when maintenance is performed on a subset of 

assets, or sensors are replaced for assets in one cell but not 

all, data drift may be present for certain assets only (requiring 

flexibility to make asset-specific adjustment instead of 

population-wise model adjustment). Additionally, the 

interpretability of features with physical meaning may be lost 

during data scaling. 

 

Option 2 is selected due to the benefits of flexibility during 

field usage and reduced effort to characterize data 

inconsistency across assets. Data quality is an important 

consideration for any modeling effort. In the industrial 

setting, additional logistics and complexity regarding data 

quality is involved due to challenges in data collection 

(sensor selection, mounting and degradation over time) and 

additional settings unique to this field (signal conditioning 

and scaling at the hardware/software layer etc.). A practical 

aspect of sensor selection is that oftentimes, businesses can 

go with cost-effective sensor options that might not yield 

the best data quality but still serve the application purpose 

(revealing anomalous patterns despite data noise). 

Moreover, not all assets may receive the same sensor 

settings/configurations and thus different noise attributes 

can be introduced to raw data. In this case, investing effort 

into making data uniform across assets can be futile. 

Consequently, a flexible approach to minimizing the effects 

of those individual differences may be more effective and 

risk adverse. 
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2.3 Performance metrics 

Classical performance metrics for anomaly detection models 

include precision, recall and F-measure which is a weighted 

combination of precision and recall. In the predictive 

maintenance space, it is the anomalous predictions that 

trigger action, which means time and capital investment. 

Actions taken in accordance to true anomalies contribute to 

avoidance of unscheduled downtime and potentially 

hazardous events. Actions taken to investigate false 

anomalies result in periods of unproductivity, and in the 

long run, reduced confidence in deployed models. 

Moreover, businesses have preferences on what metrics are 

of higher importance in specific scenarios. Productionizing 

the framework takes collaborative efforts and 

understandings from not only data science and analytics 

personnel, but also stakeholders who fund and support such 

initiatives and end users who take actions on the prediction 

results to realize true business value and cost savings.  

From our experiences, it is helpful to revisit the basics in 

regards to performance metrics in an effort to connect 

specific performance metrics to business related metrics, 

make it understandable across multiple personas, and 

highlight direct connection to business purposes. 

Meanwhile, those metrics need to have specific contexts 

based on the prediction goal. For example, an anomalous 

prediction produced with enough lead time allows for 

proper investigation, but late predictions can be unfruitful 

regardless of accuracy. 

For PdM, the true positive metric (TP) and false positive 

metric (FP) can be evaluated for model validation. TP and 

FP need to be obtained from datasets of 2 conditions (prior-

to-failure and normal operating condition). For semi-

supervised approaches, we need to work with the fact that 

oftentimes there is no data around failure to evaluate true 

positive rate. The goal is therefore mainly to minimize the 

false positive rate (quantifiable) and at the same time 

maintain the detection sensitivity to unseen anomalies 

(validated upon data availability).  

For the limited failure instances that are available, this data 

can be leveraged to evaluate the true positive performance 

metric for models combined with the false positive metric 

obtained from normal data evaluation. This process 

validates models of choice and provides evidence for model 

adoption when communicating to stakeholders and end 

users. In our case study, this validation stage is the 

checkpoint that determines whether the developed models 

qualify for deployment. 

2.3.1 True Positive (TP) and False Positive (FP) 

 
This metric is not available for assets with no failure 

records. If available, TP is the top priority metric for 

evaluation as it represents detection of failure incidents. 

How to determine positive labels when they are not 

explicitly indicated? 

Assumption: failure due to asset degradation happens over 

time for most industrial assets. We assume a proper failure 

developing period for failure progression. Therefore, data 

collected during this time prior to machine breakdown 

(according to plant maintenance records) is considered 

abnormal/faulty data. This assumption contains a failure 

developing period that can vary depending on failure modes. 

In our case study, we have combined SME (Subject Matter 

Expert) knowledge and historical data evidence to arrive at a 

reasonable assumption for labeling data prior to failure. 

Given a failure event, during the defined failure developing 

period prior to the failure occurrence, if N anomalous 

predictions are made, on the premise that the earliest 

prediction provides a sufficient time window for remedy 

actions, the event is successfully captured. The higher TP 

the better, but it is still of value for end-users even if only 

one aggregated alert was generated to trigger action in time. 

For example, after applying the business logic of requiring 2 

consecutive anomalous predictions to generate an alert, TP 

score larger than 7.69% (1 out of 13 days prior to failure) is 

a good metric if the first alert is generated in time (enough 

lead time for PdM team to take action), meaning that the 

event is captured prior to maintenance. 

This metric needs additional data sources (inputs indicative 

of failure records or failure data directly as input) aside from 

training data. 

FP is a direct measure of false alarms. This is a must-have 

metric for model evaluation, registry, and optimization. 

The general understanding is that lower FP rates are more 

desirable. However, this only applies to scenarios when 

there is a path to validate other metrics such as TP such that 

there is confidence in detection sensitivity of the model. 

Having a FP close to 0 is risky given no evaluation of TP 

because the model then runs the risk of low sensitivity to 

anomalies. 

2.3.2 Business Logic for Alert Consistency 

In practical scenarios where anomalous artifacts manifest 

themselves in the feature space within a certain period before 

failure occurs, applying business logic to integrate alert 

consistency can improve robustness of alert predictions and 

decrease FP. Here we adopt the business logic of 

accumulating N days of continuous anomalous predictions 

before the system generates an alert that calls for remediation. 

With business logic included, here we have 2 sets of TPs and 

FPs. TPraw and FPraw are the metrics before applying business 
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logic; TPlogic and FPlogic are the metrics after applying 

business logic. 

With the above 4 metrics, performance evaluation can now 

focus on TPlogic and FPlogic as alerts for anomalies in actual 

applications are generated after applying business logic. 

FPraw can be leveraged to resolve the previously mentioned 

risks of having models that generate minimum or even 0 false 

positive rates but are potentially inefficient in detecting 

anomalies. 

2.4 Model Optimization Metric 

In this section, we construct an objective function to represent 

the model optimization metric. This objective function is the 

loss function that the optimization process attempts to 

minimize. During the training stage, with access to only 

normal data, we can obtain FPraw and FPlogic introduced in the 

last section. The objective function can be defined as: 

𝑓𝑚𝑖𝑛 = ∑ (𝐹𝑃𝑙𝑜𝑔𝑖𝑐 − 𝐹𝑃𝑟𝑎𝑤)
𝑛
𝑖=1          (1) 

Where i is the evaluation period and n is the total number of 

evaluation periods. 

With the above definition, the false positive rate after 

applying business logic is minimized which translates to a 

reduced number of false alarms for end users. At the same 

time, it blends in the requirement to increase the false positive 

rate for raw prediction, causing the model to increase the 

probability of classifying data as abnormal, which equals to 

increased sensitivity to anomalies. Therefore, a combined 

effect in the objective function will allow the optimized 

model to achieve high classification performance in terms of 

minimized false alarms while also remaining sensitive to 

anomalies. To avoid optimization effect resulting in high FP 

rate, we found it effective to combine the optimized 

parameter set with empirical threshold of the risk score. 

Weights can be assigned to each component of the fmin 

metric if there is a desire to adjust current effects. It is also 

worth noting that this metric is designed for collective 

anomalies that are of major interest in our applications.  

fmin is used as the optimization metric for a Bayesian 

optimization approach implemented in Hyperopt (Bergstra, 

Yamins & Cox, 2013). Hyperopt is a distributed 

asynchronous hyper parameter optimization library. A 

configuration space for all model parameters can be specified 

and properly described (uniform, log-uniform, quantized log-

uniform and categorical). The Tree-structured Parzen 

estimator Approach (TPE) is leveraged for optimization 

which can improve upon prior parameter evaluations and the 

corresponding loss function during iterative model 

evaluation. The TPE algorithm scales linearly in the number 

of variables and the optimization efficiency is greatly 

improved based on past observations. 

 

3. CASE STUDY 

3.1 Systematic Implementation in Predictive 

Maintenance of Cooling Pumps 

In this case study, we implement the proposed framework for 

predictive maintenance of pumps supplying cooling and 

circulation fluid for machine tools on the shopfloor. Those 

pumps are of relatively low cost but represent a large portion 

of assets on our shop floor, accumulatively resulting in 

expensive unscheduled downtime and operation 

interruptions. Since we have 500+ of these pumps at one site 

alone, enabling predictive maintenance capability for this 

large population of assets can contribute to avoiding a great 

number of unscheduled downtime and reducing manual 

hours around issue tracking & investigation. More 

importantly, the developed framework is extendable to other 

type of assets where corresponding feature engineering 

techniques can be applied to reveal degradation signatures for 

individual assets. Therefore, a generalizable framework with 

modular software design, extendable to include new types of 

models, are built to satisfy the business needs. Figure 2 

represents the production implementation of the proposed 

framework in Figure 1.  

 

Figure 2. Production System Flow of the Framework 

 
The semi-supervised anomaly detection framework is applied 

to historical data to evaluate performances, especially before 

maintenance events. The ingested data includes velocity and 

acceleration of 2 axes. Data quality criteria are established to 

account for the expected signal value range, the number of 

missing records, percentiles of signal values as well as data 

drift measurements.  Furthermore, data qualification 

measures are incorporated to ensure that training data is 
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representative of normal operation and daily incremental 

sensor data qualifies to enter the prediction pipeline. Feature 

engineering is performed with the raw vibration data to obtain 

statistical features as well as features reflecting signal trend 

over pre-defined time intervals. In this way, potential 

collective anomalies can be transformed into point 

anomalies. The anomaly detection approach used in this case 

study considers the statistical distribution shift between 

baseline and test data. Fine-grained models are trained and 

registered per asset, which provides an advantage for flexible 

and low-cost retraining per asset. In the events that can 

potentially lead to data drift, including asset maintenance and 

replacement, model retraining should be triggered. The alert 

generation module outputs feature heatmaps (example in 

Figure 5) and alert persistency metrics. These prediction 

results are the data-driven evidences for insights and action. 

 

Figure 3 shows the predicted risk score for an asset* (time 

axis is shifted for data privacy consideration). Daily risk 

score is a direct model output in the range of 0 to 1, with a 

higher value indicating a higher risk of being classified as 

abnormal. As can be observed, 2 weeks before asset failure, 

there were continuous records of high risk scores, 

consistently indicating a potential issue. These values are 

distinctly higher than other periods of time in history when 

there were no reported maintenance events according to plant 

maintenance records. 

  

 

Figure 3. Predicted Risk Score of Asset #3 

 
Here we assume a failure development period of 2 weeks and 

apply the business logic of requiring 2 continuous days of risk 

scores crossing thresholds to activate an alert. The resulted 

alert history is presented in Figure 4. 

  

Figure 4. Predicted Daily Alert Flags of Asset #3 

 
For Asset #3, an extended period of time before maintenance 

is used to evaluate FP and 2 weeks before maintenance is 

used to validate TP. Outside of the assumed failure 

development period, there were 0 days with risk scores over 

the threshold (0.8), therefore FPraw is 0. Within the assumed 

failure development period, there were 11 days out of 14 days 

where predicted risk scores exceeded the threshold. After 

applying the business logic, there were 9 days out of the 13 

days before the event where alerts were generated. There 

were no alerts generated for the normal operation period 

under study.  Table 1 illustrates the metrics for the cited event 

of this asset. The event was successfully predicted with 

sufficient lead time (>1 week) to trigger action. 

Table 1. Performance Metrics of Event for Asset #3 

 
Performance Metric TPraw TPlogic FPraw FPlogic 

Value 78.5% 69.2% 0 0 

 

It is worth noting that once a failure is developing, it might 

not always manifest in data (e.g., abnormal vibration for 

pumps), due to effects of other operating parameters (e.g., 

feedrate for machine tools, cutting depth etc.). Therefore, we 

expect to see inconsistent alerts prior to failure and consider 

any TPlogic larger than 7.69% to be a meaningful prediction 

that can effectively trigger intervention action and generate 

business value. The bottom line is as long as the developing 

issue manifests at certain times during the assumed failure 

development period, the method can identify the failure and 

generate alerts. 

3.2 Supporting Evidence 

Easy-to-digest supporting evidence is provided for end users 

to gain insights into why certain predictions were made, 

especially when receiving anomalous predictions. Figure 5 
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shows an example of supporting evidence for the predicted 

anomalous event in the previous section. This is a time-series 

feature heatmap indicating which features have deviated 

from the baseline as determined by the optimized model. 

Features with high deviation are highlighted while features 

conforming to the baseline are black. As can be observed, 

there are continuously high feature deviations from baseline 

before anomalous predictions and end users know from this 

visualization which features have contributed as well as how 

long the underlying risk has been present. Moreover, all 

features generated here have physical meanings 

corresponding to the asset operations which end users can 

interpret. These insights equip practitioners with the ability 

to make informed decisions on remediation actions and can 

contribute to the long-term adoption of production systems.  

  

Figure 5. Feature heatmap of Asset #3 

4. IMPLEMENTATION CHALLENGES AND 

RECOMMENDATIONS 

4.1 User Journey to Value 

There is a consensus in the understanding of the value 

predictive maintenance can bring for businesses when data is 

transformed into insights. It is equally, if not more, important 

to emphasize that the final value realization is achieved 

through users taking actions on the insights. For example, 

when a shop floor maintenance team receives an asset alert 

and takes action to schedule maintenance in a timely manner 

instead of letting the asset run to failure, business value is 

created by preventing unscheduled downtime. Therefore, 

user adoption of the deployed system is a critical aspect of 

the implementation.  

Here we walk through the user journey of the consumption of 

model results for specific key scenarios citing the case study 

and provide our recommendations. 

4.1.1 False Alarm 

Model prediction: false positive 

Key scenario 1: 

Action: Asset check-up is performed, confirmed no issue 

with the asset and the asset continued to run with no issue for 

>1 month afterwards. 

Personas: predictive maintenance technician (PdM), machine 

maintenance tool service team (MTS), operator 

Cost estimation: about 3 hrs. combined from PdM and MTS 

This is normally performed during scheduled downtime 

(instead of unscheduled downtime), so no extra cost for 

operation interruption. 

Recommendation: Fine-grained model for this asset should 

be retrained to improve accuracy and ensure that the re-

trained model performs better than current version. This 

requires the implementation to provide a model retraining 

option. Investigation should be performed if model retraining 

doesn’t solve the issue. In this case, consider including a 

different model type to enhance detection. 

4.1.2 Success prediction of An Event 

Model prediction: true positive 

Key scenario 2: 

Action: Asset degradation is known via alerts. The asset 

continued to run until failure. 

Business value: No value added if there are no operational 

adjustments. 

Key scenario 3: 

Action: After receiving alerts, critical manufacturing tasks 

are scheduled for this asset. 

Personas: production team 

Business value: avoided possible product delivery delay and 

key operation interruptions. 

Time to re-arrange for production: can be a shift time (4-8 

hours depending on complexity of set-up). This time is 

invested in order to minimize the risk of running critical 

manufacturing tasks on a machine with an alert status. 

Key scenario 4 (Recommended): 

Action: Given an alert for asset degradation, an asset check-

up is performed, confirming an issue with the asset. The asset 

is then scheduled for maintenance/replacement at a 

convenient time. 

Personas: PdM, MTS, operator, production team 

Business value: Avoided unscheduled downtime and 

operation interruptions enabled by model (varies depending 

on asset type, estimated >8 hrs.) 

4.1.3 Missed Event 

If the deployed model fails to detect an event, we recommend 

recording this for model improvements. It is expected that 
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deployed models may have missed events and false alarms 

and these field-application responses should be incorporated 

for continuous development and continuous integration for a 

live production system to grow and mature. Given a missed 

event, model retraining can be triggered to produce another 

model version with better performance metrics based on 

historical data. This can be another fine-grained model of the 

same type or of a different model type. Experiences here can 

also contribute to improved model retraining guidelines such 

that future model retraining can be triggered automatically in 

the presence of performance drift, thus preventing missed 

events with an enhanced version of the model. 

4.2 Metrics Capture for Production System 

4.2.1 Business Metrics 

We recommend defining the format and mechanism to 

capture user feedback automatically for evaluating value 

creation and model improvement. In an ideal case with 

seamless connection to Enterprise Resource Planning (ERP) 

system that records plant maintenance details, maintenance 

events can be automatically pulled from these systems at a 

certain cadence, combined with model performance 

evaluation to update model performance metrics. Business 

metrics for predictive maintenance can cover TP, FP and FN 

for each event (one metric value per event). ERP system 

records delay estimates for similar types of events. These can 

be combined with TP to quantify realized business value. FP 

and FN are measures for analytics teams to assess negative 

costs, make model improvements, or explore other model 

types for better accuracy. This is a key step that brings the 

business value enabled by predictive maintenance from 

estimation to realization. 

Below is a brief explanation of how each metric corresponds 

to field operations: 

TP: Captured event, confirmed a maintenance needed after 

receiving alert and going through a pre-defined list of actions. 

FP: False alarms, confirmed no need for maintenance after 

receiving alert and taking action to investigate.  

FN: Missed event, there was a major event on the monitored 

component that is not human-error related, but users never 

received an alert. 

 

4.2.2 Production System Metrics 

These metrics provide insights on how well the implemented 

production system runs and if it meets business expectations 

(e.g., predictions need to arrive in time for users to take 

action).  Consider time of input, time of output, errors, and 

resources used for the operation.  To enable drilldown, all 

metrics are enriched with metadata such as function, steps, 

and job so they can be used for tracing details.  Table 2 lists 

some of the metrics used in our implementation: 

Table 2. Examples of Production System Metrics 

 
Production System Metric Indication 

Input On Time Measures if all input is 

available at the time of run 

Results On Time Measures if the prediction or 

alert is provided on time 

Count of 

Error/Warning/Retries 

Measures the health status of 

system execution 

Execution Time Wall time of every step and 

job.  Can increase CPU or 

optimize code to lower 

execution time if needed. 

Total Input/Output Rows & 

Columns 

Measures the amount of data to 

be processed 

Total IO Read/Write Measures the efficiency of 

data movement for a given 

input size 

Average CPU Utilization Measures usage of CPU 

resources. Low CPU 

utilization indicates non-

efficient usage. 

 

4.2.3 System Troubleshooting Pattern 

After capturing historic System Metrics, trend can be used to 

help troubleshooting.  One approach is to check for the 

deviation from moving averages of sample metrics.  To 

enhance traceability, metrics are tagged with metadata such 

as names of workflow steps, functions and jobs etc.  This 

provides the ability to aggregate and filter metrics following 

by scoring/grading for system health (normal – within 

threshold, warning - works but above average error and retry, 

failed with errors). 

For example, for each step/functionality below, it would be 

beneficial to stop the process from continuing if a step is 

unhealthy.  Otherwise, downstream results will be unreliable 

and a waste of execution costs.  

• Data Ingestion part (ETL) – There should be sufficient 

data landing on time, otherwise, downstream features 

will be calculated as nan or zero or even error.  When 

data does become available with delayed arrival, the 

system can re-run, but will it meet business needs (e.g., 

late prediction may not allow enough time for PdM to 

take action)? 

• Feature engineering – The number of rows, columns 

written should be consistent per model.  Anything out of 

the ordinary should trigger a data audit.  Predictions 

should not occur for models with missing features unless 

accounted for in deployed models and proven to still 

yield valid prediction results. 
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• Model prediction – Check if the number of predictions 

generated is consistent with trend.  Did it meet business 

expectations? 

With the above metrics and the corresponding historical 

trends for reference, personnel in charge of troubleshooting 

can effectively identify root causes and bring in the right 

resource for corrective action. 

5. DISCUSSIONS AND FUTURE WORK 

This work demonstrates the end-to-end implementation for 

predictive maintenance in the industrial 4.0 space. As 

mentioned in previous work discussing program 

implementation for scalability across manufacturing sites 

(Tong, Bakhshi, & Prabhu, 2022) or product domain (e.g., 

predictive maintenance for key components of aircraft), 

scalability calls for systematic implementation of all stages 

including data collection, analytics algorithms, deployment 

tools and operational adoption. After a successful pilot 

implementation at one site, lessons learned can be leveraged 

as a lighthouse for other sites to follow . Data collection can 

be enabled both at the manufacturing site (especially for 

legacy equipment, addon sensors can be installed for 

identified needs) or on the equipment manufacturer side as an 

additional business service (for new equipment which can 

come with pre-installed sensors ready to connect to 

customer’s data collection instrumentation). With growing 

technology maturity and established successes in PdM, part 

of the analytics can be adopted at the edge (especially for 

fine-grained applications where minimum communication 

between assets are required), saving substantial cost in cloud 

data storage and system maintenance. 

6. CONCLUSIONS 

This paper describes a fine-grained semi-supervised 

anomaly detection framework that addresses the practical 

challenges of heterogeneous data across industrial assets and 

the scarce failure data sources. A case study on predictive 

maintenance of cooling pumps is presented covering an end-

to-end implementation of the proposed framework. Practical 

implementation challenges and proposed recommendations 

including user adoption to ensure estimated value is 

realized, metrics for production system assisting with 

business value capture, and production system maintenance 

and troubleshooting are discussed with detailed examples. 
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