

1

Ensemble Learning Based Convolutional Neural Networks for
Remaining Useful Life Prediction of Aircraft Engines

Thambirajah Ravichandran1, Bolun Cui1, Yuan Liu2, Sri Namachchivaya1, Amar Kumar2, and Alka Srivatsava2

1 University of Waterloo, Waterloo, ON, N2L 3G1, Canada
travicha@uwaterloo.ca

2 Tecsis Corporation, 201-203 Colonnade Road, Ottawa, ON, K2E 7K3, Canada
yliu@tecsis.edu

ABSTRACT

Remaining useful life (RUL) prediction is an essential task of
Prognostics and Health Management (PHM) of aircraft
engines performed utilizing the data collected from multiple
sensors to ensure their safety. While many studies have been
reported on RUL prediction for aircraft engines, only a few
of them focus on ensemble learning based convolution neural
network (CNN) models for RUL prediction. This paper
proposes a new data-driven approach based on a multistage
ensemble learning strategy for developing CNN models for
RUL prediction of aircraft engines. The proposed approach
places a major emphasis on generating diverse CNN models
by exploring 2D CNN models and 1D CNN models with
multiple channels and developing a multistage ensemble
approach employing sparsity promoting model selection and
weight learning methods to utilize only a subset of available
models thus improving the RUL prediction performance. The
effectiveness of the proposed approach is validated using the
NASA C-MAPSS dataset for aircraft engines.

1. INTRODUCTION

In Prognostics, the goal is to estimate the Remaining Useful
Life (RUL) of a component or subsystem, indicating the time
remaining before failure (Kalgren et al., 2006). Accurate
RUL prediction is essential for ensuring reliability, safety,
and cost-effective maintenance scheduling in areas like
aircraft engines. Recent literature categorizes RUL prediction
approaches into three types: model-based, data-driven, and
hybrid approaches (Pecht & Jie Gu, 2009; Heimes, 2008;
Heng et al., 2009).

Model-based approaches construct degradation process
models based on physical principles of the target system,

such as particle filters (Jouin et al., 2015) and Weibull
distribution (Ali et al., 2015). While these approaches can
achieve high accuracy if the system's degradation process is
precisely modeled, they often require unrealistic prior
knowledge of the target system.

Data-driven approaches rely on large amounts of sensor data
and include machine learning (ML) techniques like neural
networks (Gebraeel et al., 2004) support vector regression
(SVR) (Khelif et al., 2017), and Bayes networks (Mosallam
et al., 2016). Although these models are easier and less costly
to develop, they may not consistently meet real-world
performance requirements. Hybrid approaches combine
model-based and data-driven techniques, leveraging physical
models and updating parameters using data-driven methods.

Deep learning (DL) methods have emerged as effective tools
for pattern recognition and predictive modeling tasks
(Krizhevsky et al., 2017; Hinton et al., 2012). DL excels at
capturing representative information from raw input data by
utilizing complex deep structures and extracting high-level
abstractions efficiently compared to shallow networks.
Convolutional neural networks (CNNs), in particular, have
achieved significant success in image and speech processing
applications due to their ability to handle scale, shift, and
distortion invariance, and their use of local receptive fields,
shared weights, and spatial sub-sampling. During the recent
past, CNNs have also been successfully introduced to the
field of PHM for mechanical systems.

Recently, various studies have successfully demonstrated the
application of CNNs for RUL estimation mainly taking
advantage of their excellent automatic feature extracting
capabilities for building regression models. Babu et al. (2016)
introduced CNNs for RUL prediction by incorporating
automated feature learning from the raw sensor data in a
systematic way. Li et al. (2018) proposed a data-driven
approach for prognostics using deep CNNs with a time
window approach for sample preparation, allowing better
feature extraction by CNNs. Yang et al. (2019) introduced

Thambirajah Ravichandran et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United States
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

2

further enhancements to the feature extraction ability of
CNNs by incorporating a new kernel module for RUL
prediction where the kernels are selected automatically.
Lately, there has been a surge in research activities focusing
on RUL prediction for turbofan engines using Long Short-
Term Memory (LSTM) networks (Kong et al., 2019),
modified CNNs incorporating temporal aspects (Yu et al.,
2021), and hybrid formulations of LSTMs and CNNs (Li et
al., 2019b; Mo et al., 2020; Peng et al., 2021). Vollert and
Theissler (2021) provides an excellent review of the state-of-
the-art ML and DL techniques including LSTMs and CNNs
for RUL prediction using C-MAPSS datasets (Saxena &
Goebel, 2008).

There have been increased interest in applying ensemble
learning techniques for data-driven PHM applications in
general, and RUL prediction in particular (Hu et al., 2012; Li
et al., 2019a; Zeng & Cheng, 2020). The performance of a
data-driven RUL prediction method could be influenced by
various factors such as varying operational conditions and
environmental uncertainties, varying linear or nonlinear
degradation patterns of different system units, and the
variability in the available number of sensors and the number
of data samples. To effectively handle these varied scenarios,
ensemble learning approaches have been investigated
demonstrating superior generalization performance over
single-model-based methods(Zhang et al., 2017; Shi et al.,
2021). Wen et al. (2019) proposed a new residual CNN
(ResCNN) in combination with a simple k-fold ensemble
learning approach for RUL prediction turbofan engines. An
ensemble learning finds or learns an appropriate combination
multiple models (aka base models or base learners) by taking
advantage of each base model so as to improve the
generalization performance of the final ensemble model. The
success of ensemble learning, developed using either same or
different ML or DL algorithms, critically depends on the
diversity among the base models generated. Increasing
diversity among base models and finding an appropriate
combination of diversified base models are the two key tasks
in ensemble learning.

While many of the above studies resulted in very promising
results for RUL prediction for various mechanical systems,
only a few of them focus on ensemble learning of CNN
models for RUL prediction for aircraft engines. Additionally,
most of these studies work with a limited number of pre-
selected diverse base models. In a typical ML or DL based
RUL prediction model development process, many model
candidates are explored through the use of K-fold or repeated
holdout cross-validation combined with hyperparameter
optimization of ML/DL models. These resulting multiple
models provide an ample opportunity to construct a robust
and high-performance ensemble model for RUL prediction.
Hence, the major objectives of this study are: (i) to generate
diverse RUL prediction models by exploring two different
CNN model architectures, namely 2D CNN and 1D CNN
with multiple channels and using time window approach for

handling time-series data for better feature extraction by
CNNs, (ii) to develop a multistage ensemble learning of CNN
models for RUL prediction employing sparsity promoting
model selection and weight learning methods in sequential
and/or simultaneous manner to systematically and effectively
utilize many base models available for ensemble model
formation, and (iii) to demonstrate the proposed multistage
ensemble learning of CNN models for RUL prediction of
aircraft engines using the NASA C-MAPSS dataset.

The remainder of this paper is outlined as follows. Section 2
of this paper presents a brief introduction to convolutional
neural networks (CNN) followed by two CNN model
architectures combined with a time-window approach.
Section 3 describes a multistage ensemble learning-based
approach for CNN model development for RUL prediction.
The effectiveness of the proposed method is demonstrated
using the C-MAPSS dataset in Section 4. Section 5 provides
the conclusion of this study.

2. CNN BASED RUL PREDICTION

In this study, our focus is on the investigation of ensemble
learning techniques combined with convolutional neural
networks by exploiting their individual strengths for the
development of better performing RUL prediction models for
aircraft engines. Before presenting the details on the proposed
ensemble learning based CNN models for RUL prediction,
the CNN based RUL prediction method is outlined in this
section by describing first a brief background in CNN
regression followed by two CNN model architectures along
with the time-window approach adopted to handle time-
series input data.

2.1. Convolutional Neural Network Regression Models

Convolutional neural networks belong to feed-forward types
of neural networks because the information flows forward
directly through the layers of the model (Schmidhuber, 2015)
and there are no feedback connections involved in this type
of models. The perceptual field of a convolutional unit with
a given weight vector (filter) is moved step by step over a
two-dimensional array of input values, such as pixels of an
image (usually with several such filters). The resulting two-
dimensional array of subsequent activation events for this
unit can provide input to higher-level units, and so on.
Among the many deep neural network models, CNNs are
commonly applied to analyze imagery data and have
achieved great success in computer vision applications (Wu
et al., 2019).

The typical CNN architecture shown in Figure 1 contains a
set of elementary consecutive blocks, namely, one input
layer, multiple convolutional and pooling layers, several fully
connected layers and one output layer. The input layer
defines the data structure of the input used. A convolutional
layer follows the input layer and performs the convolution
operation over the input data. The size of the filters (also

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

3

known as kernels) depends on the input data structure. Two-
dimensional filters are used for grid-like inputs such as
imagery data, whereas one-dimensional filters are used for
time-series data. The size of each filter defines its receptive
field. As part of the convolutional layer, a point-wise
nonlinear activation function (such as sigmoid or ReLU) is
applied. The convolutional layer is then followed by a so-
called pooling layer, whose role is to reduce the number of
parameters by sub-sampling the filtered signals. One
common strategy to perform this operation is called max-
pooling and consists of extracting only the maximum value
of a fixed-sized batch of consecutive inputs. The CNN
architecture is formed by stacking several instances of
convolutional and pooling layers alternately through the
network. The final filtered signals are then flattened and fed
into a sequence of fully connected (FC) layers that map them
into the output layer.

Figure 1. Typical convolutional neural network architecture.

In this study, a direct approach for RUL prediction is
investigated by exploring CNN regression models to map the
relationship between a set of input features and the associated
target RUL value extracted from the run-to-failure
trajectories of aircraft engines. For on-line prediction, RUL
is estimated using the trained CNN model and the features
extracted online. This direct approach for RUL prediction has
the advantage of avoiding the setting of a failure threshold.

CNNs are able to extract representation information from raw
input signals through multiple nonlinear transformations and
approximate complex nonlinear functions and are used as the
main architecture in this study. For RUL prediction, the
adapted CNN regression models consist of multiple
convolution and pooling layers followed by a fully connected
layer. After identifying relevant input features, we employ
the following two distinct CNN model architectures for RUL
prediction: 2D CNN and 1D CNN with multiple channels as
described below.

2.2. 2D CNN Models for RUL Prediction

For 2D CNN models, the time-series input data sample is
prepared in 2D format, that facilitates the application of
convolution operation. The dimension of the 2D input is Ltw
x nf where Ltw denotes the length of time sequence window
and nf is the number of selected features. This input data
preparation involves grouping of sensor measurements from
time t-Ltw+1 to t to create Ltw x nf dimensional matrices as
inputs for training. The raw features are usually obtained

from multiple sensor measurements. The target value for each
matrix was determined by the remaining useful life at the last
time instance in the window. More details of this 2D input
data preparation for 2D CNN models will be discussed in
Section 4.

Various 2D CNN model architectures for RUL prediction can
be experimented using the flexibility provided by the
hyperparameters such as type and number of layers, neurons,
and activation functions, etc. as described above in Section
2.1.

For these 2D CNN models, a 1D array is used as the kernel
or filter. This choice is made to avoid filtering along the
dimension that contains various features in the input matrices.
CNNs are particularly effective in processing time-series
data. Left plot of Figure 2 (left) illustrates the shape of the
inputs and the kernels applied to the 2D CNN models.

Figure 2. 2D input with 1D kernel applied to 2D CNN
model (left) and 1D input with 1D kernel applied to 1D

CNN model (right).

2.3. 1D CNN Models for RUL Prediction

An issue with the 2D CNN model is its use of the same kernel
for all the features, disregarding their unique patterns. To
address this, we propose a 1D CNN model with multiple
channels for RUL prediction. This architecture treats
different features independently by assigning them to
separate channels available with CNN.

In the 1D CNN model with multiple channels, the input
consists of nf number of different Ltf x 1 dimensional vectors,
each representing the time window of a feature and assigned
to an individual channel. Right plot of Figure 2 (right) depicts
the shape of the 1D input data and their assignment to
separate channels along with the application of a 1D kernel
in the 1D CNN model.

2.4. Performance Metrics and Model Validation

After building the CNN models for RUL prediction, it is
important to evaluate their prediction performance on the test
dataset. In this study, two performance metrics, namely
RMSE and score function are used to evaluate the
performance of the CNN models. Root mean square error
(RMSE) is a very common metric widely used to evaluate the
performance of regression models. The expression for

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

4

computing RMSE of RUL models can be given in (1), where
N is the total number of engines in the test dataset.

ℎ = (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑈𝐿 − 𝑇𝑟𝑢𝑒 𝑅𝑈𝐿)

(1)

Score function is a metric that is particularly suitable for
evaluating RUL models in PHM context as suggested in
(Saxena & Goebel, 2008). This score function (S) can be
computed using (2), where N is the total number of engines
in the test dataset and S is the score.

ℎ = (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑈𝐿 − 𝑇𝑟𝑢𝑒 𝑅𝑈𝐿)

 𝑆 𝑜𝑟 𝑠𝑐𝑜𝑟𝑒 =

⎩
⎪
⎨

⎪
⎧ 𝑒 − 1 𝑓𝑜𝑟 ℎ < 0

𝑒 − 1 𝑓𝑜𝑟 ℎ > 0

(2)

The desirable characteristic of this score metric is that it
penalizes late predictions harder than the early prediction.
This aligns with the risk adverse mindset because late
predictions could possibly result in catastrophes while early
predictions can only lead to the wastage of resources.

For validating CNN based RUL prediction models, data can
be split three ways as a training set, a validation set, and a
test set. In this study, a bootstrapping-like approach is
adopted for holdout cross-validation (CV) by selecting
randomly a small percentage of the overall training dataset as
validation data samples without replacement. The remaining
data samples will be used as the training dataset. This
provides us with a non-overlapping division of the original
training dataset into training and validation datasets. This
procedure is also known as a holdout CV. To reduce the
influence of randomness introduced by the data split this
bootstrapping procedure is repeated q times. Over these q
times repeated runs, model performance measures are
computed using the validation dataset and the average of
these performance measures are outputted as the model
performance measures based on the holdout CV.

3. ENSEMBLE LEARNING BASED RUL PREDICTION

Ensemble learning is a process of combining multiple models
using some model combination strategies to form a final
ensemble model. Typical ML/DL approaches try to generate
a single best model from given training data, whereas
ensemble learning methods try to generate multiple models
to solve the same problem. Ensemble learning generally
provides ensemble models with improved accuracy and/or
robustness in most applications due to the availability of
accurate and diverse multiple models for combining them
into a single ensemble model. Well known ensemble learning

algorithms studied in the literature include stacking (Wolpert,
1992; Breiman, 1996a), bagging (Breiman, 1996b), and
boosting (Freund & Schapire, 1996) algorithms.

3.1. Parallel Ensemble Learning Methods

In parallel ensemble learning methods, the base models are
generated in parallel. The basic motivation of parallel
ensemble methods is to exploit the independence between the
base models since the error can be reduced dramatically by
combining independent base models. After generating a set
of base models, rather than trying to find the best single best
model, ensemble learning resorts to model combination to
achieve a better generalization ability, where the combination
method plays a crucial role.

The parallel ensemble learning process studied in this paper
for developing ensemble CNN models can be implemented
in three phases as shown in Figure 3: 1) generation of base
CNN models, 2) selection of base CNN models, and 3)
aggregation of the selected base CNN models using some
combination methods. In the first phase, a pool of base CNN
models is generated. In the second phase, a subset of base
CNN models is selected. Finally, an ensemble CNN model is
formed by combining the selected base CNN models using a
model combination method. To get a final ensemble model
with improved generalization, it is essential that the base
CNN models should be as accurate as possible, and as diverse
as possible.

It is worth noting here that generally the computational cost
of developing an ensemble of models is not much larger than
generating a single model. This is because typically one need
to generate multiple models when developing a single model
using ML/DL techniques due to the requirement of multiple
cross-validation and hyperparameter optimization, and this is
comparable to generating base models in ensemble learning,
while the computational cost for combining base models is
often small.

Figure 3. Proposed ensemble learning of CNN models.

Generation of
CNN Model
Candidates

C-MAPSS Training Data

Model
Selection

Model
Combination

Strategy

Model 1

Model 2

Model m

Combination
Weights

Test
Data
Input

Predicted
RUL

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

5

3.2. Generation of Diverse Base Models

As stated before, diversity among base models is a very
important factor contributing to the success of ensemble
learning in general and the multistage ensemble formulation
adopted here in particular. Generating diverse base models is
not easy due to the fact that the individual models are trained
for the same task from the same training data, and thus they
are usually highly correlated.

There is no generally accepted formal definitions and
measures for ensemble diversity, however, there are few
effective heuristic mechanisms one can use to generate base
model candidates with diversity for multistage ensemble
construction. Most widely used diversity generation
mechanism include: (i) data sample manipulation, (ii) input
feature manipulation, and (iii) learning parameter
manipulation among other things. In this study, to generate
diverse CNN models in Section 2, all of these three diversity
generation mechanisms are used together. Data sample
manipulation is used in repeated holdout CV. Input feature
manipulation is utilized in devising 2D and 1D input layers,
and learning parameter manipulation is used in optimizing
both 2D and 1D CNN model architectures.

3.3. Ensemble Model Combination

In this section, three different model combination methods,
namely simple average, weighted average, and the stacking
scheme implemented using the nonnegative least squares
(NNLS) method, are described.

 Simple Average (SA)

Due to its simplicity and effectiveness, simple average (SA)
method is the most popular model combination method for
regression problems. SA obtains the combined output by
averaging the outputs of individual learners directly. Suppose
we are given a set of m individual learners {h1, . . . , hM} and
the output of individual base model hi for the data instance x
(of CV data) is hi(x) ∈ R, then the final prediction is given as

ℎ (𝒙) =
1

𝑚
ℎ (𝒙) (3)

 Weighted Average (WA)

Weighted average (WA) method obtains the combined output
by averaging the outputs of individual models with different
weights implying different importance. Specifically, WA
gives the combined output hen(x) as

ℎ (𝒙) = 𝑤 ℎ (𝒙) (4)

where 𝑤 ≥ 0 is the non-negative weight for hi, and these
weights are usually assumed to be constrained by

𝑤 = 1 (5)

In this study, we adopted the following accuracy-based
weighting (AW) method as the weighted average (WA)
method. In this accuracy-based weighting method, the weight
wi of ith base model in (4) can be defined as the normalization
of the corresponding inverse of cross-validation RMSE:

𝑤 =
(𝑅𝑀𝑆𝐸)

∑ (𝑅𝑀𝑆𝐸)
 (6)

It can be noted from (6) that a base model with better
accuracy has more influence on the predicted output of the
ensemble model.

 Ensemble Model Combination by Learning:
Stacking

The parallel ensemble learning process shown in Figure 3 can
use the stacked regression method (Breiman, 1996a) for
determining model combination weights. Stacked regression
is a model combination strategy using linear combinations of
base models (also known as level-1 models) to give improved
prediction accuracy. Here, the model combiner is called a
level-2 model. In other words, stacked regression performs a
weighted average (WA) type model combination as given (4)
for parallel ensemble learning-based regression applications.
In stacked regression, the basic idea is to train the base (level-
1) models using the original training data, and then use CV
data and any typical regression method to determine the
coefficients for the level-2 model. However, for training the
level-2 model, generally least squares methods under non-
negativity constraints are used. The non-negativity constraint
is needed to guarantee that the generalization performance of
the stacked ensemble will be better than selecting the single
best model (Breiman, 1996a). It can be noted here that the SA
strategy for model combination can be considered as a special
case of the stacked regression which is a WA strategy with
specific constraints on the weights.

 Nonnegative Least Squares (NNLS) Method for
Model Combination Learning

To efficiently implement the training of the level-2 model
with the least squares algorithm under non-negativity
constraints, there is one dedicated algorithm available. This
algorithm is called the nonnegative least squares (NNLS)
method (Lawson & Hanson, 1974) which is briefly described
here as a technique for model combination learning.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

6

The problem of nonnegative least squares (NNLS) can be
formulated as a constrained least squares problem where the
coefficients are not allowed to become negative. That is,
given a data matrix X and a target (output) y vector, the goal
is to solve the following nonnegative least squares problem
to determine the nonnegative parameter or weight vector b:

Nonnegative Least Squares (NNLS)

Minimize || Xb – y ||2 subject to b ≥ 0

Here b ≥ 0 means that each component of the parameter
vector b should be non-negative, and ||.||2 denotes the
Euclidean norm of a real vector. In the context of the
multistage ensemble learning, the data matrix X refers to the
CV data generated by base models/learners, and the target y
vector is approximated by the final output of the ensemble
model which is the combined output of all the base
models/learners. This algorithm can be readily implemented
using the Matlab function lsqnonneg.

3.4. Ensemble Model Selection

Given a pool of base models, rather than combining all of
them, ensemble model selection tries to select a subset of
these base models to form the final ensemble model. Hence,
this ensemble model selection process will promote sparsity
of base models contributing to the final ensemble model thus
improving the overall generalization performance. In this
section, three different ensemble model selection methods,
namely all possible subsets of combinations (APS), NNLS,
and ordering-based selection (OBS), are described.

 Ensemble Model Selection using All Possible
Subsets of Combinations (APS)

For this ensemble model selection approach, a method similar
to the all possible subsets regression technique is adopted by
exhaustively exploring all the possible combinations of
subsets of m base models (Miller, 2002). It is well known that
for the case when m is more than 40 or 50, it is
computationally very challenging to apply this approach
without making special arrangements in terms of algorithm
modification and parallel implementation. Accordingly, we
limit the model subset search to generate model combinations
each having at the most p < m diverse models given the total
number of diverse base models (m).

 Ensemble Model Selection using Nonnegative
Least Squares (NNLS)

For the purpose of model selection, this method uses the
above-described nonnegative least squares method by
exploiting its biggest strength in choosing zero coefficients
for the model terms not required for ensemble formulation.

This is possible due to the fact that the NNLS method is
known to have a sparsity promoting attribute (Foucart &
Koslicki, 2014), and hence it can be used simultaneously for
model selection and weight learning tasks of the proposed
multistage ensemble learning of CNN models resulting in the
selection of fewer models as the base models when forming
the final ensemble CNN model. This is demonstrated later in
Section 4.3.

 Ordering-Based Selection (OBS)

In this base model selection method, the base models are
ordered according to some performance criterion, and only
the base models in the front part are selected for the ensemble
formation. In this study, we choose RMSE as the criterion to
order the base models and select the top 50% of these models
to form the final ensemble.

3.5. Multistage Ensemble Learning Procedure

Using the above major components of the ensemble learning
process, we outline below the proposed multistage ensemble
learning procedure required for developing the ensemble of
CNN based RUL prediction models. Here, to effectively form
the ensemble of many CNN models generated during the
process of deep learning based RUL prediction model
development, a multistage ensemble learning as described
below is utilized. In STAGE 1, CNN models with different
architectures but trained using the same division of training
and validation data, are combined using various weight
learning and model selection techniques described above. In
STAGE 2, ensemble models formed during STAGE 1 are
combined using SA and WA weight learning methods
(without model selection), and SA with ordering-based
selection. The workflow of this multistage ensemble learning
process is given in Figure 4.

STAGE 0:
Step 1: Generate diverse CNN models using both 2D and 1D
model architectures employing offline training and holdout
CV procedures as described in Section 2. If we train M
different CNN model architectures with K times repeat of
holdout CV, we will have M x K diverse CNN base models
from this step.

STAGE 1:
Step 2: From each holdout CV (for k = 1:K), collect M CNN
base models and perform the following steps:
Step 2a: Determine STAGE 1 ensemble model weights using
(i) SA and (ii) WA weight learning methods but without
applying any ensemble model selection.
Step 2b: Perform ensemble model selection and determine
STAGE 1 ensemble model weights using (iii) all possible
subsets selection (APS) with SA weight learning, (iv)
ordering-based selection (OBS) with SA weight learning, and
(v) NNLS based ensemble model selection and weight
learning.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

7

Step 2c: Collect the selected models and their ensemble
weights from each holdout CV.

STAGE 2:
Step 3: Form K ensemble outputs using selected models and
their ensemble weights from STAGE 1 (Step 2c) and perform
the following steps:
Step 3a: Determine STAGE 2 ensemble model weights using
SA and WA weight learning methods but without using any
ensemble model selection.
Step 3b: Perform ensemble model selection and determine
STAGE 2 ensemble model weights using ordering-based
selection (OBS) with SA weight learning.
Step 3c: Form the final multistage ensemble output on the test
data using selected models and their ensemble weights from
STAGE 2 (Step 3a and Step 3b).

Figure 4. Multistage ensemble learning workflow

4. CASE STUDY AND EXPERIMENTAL RESULTS

4.1. NASA C-MAPSS Dataset and Data Preprocessing

 NASA C-MAPSS Dataset

In this study, a simulated dataset of run-to-failure trajectories
for a small fleet of aircraft engines under realistic flight
conditions issued by the NASA Ames Prognostics Center of
Excellence (PCoE) (Saxena & Goebel, 2008) is considered
for developing RUL prediction models. This dataset was
generated using the Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) dynamic model (Saxena et
al., 2008) and is referred to as the NASA C-MAPSS dataset
which is widely used for studying prognostics problems in
aircraft engines.

The NASA C-MAPSS dataset consists of four sub-datasets,
and for demonstrating the proposed ensemble learning based
CNN models for RUL prediction aircraft engines, we
consider the first sub-dataset, namely FD001 which consists
of 26 columns, including trajectory number (or engine #),
time (number of cycles already completed), 3 operational
conditions, and 21 sensor measurements. However, some
sensor readings have constant values during the lifetime of
the engine, and they do not provide valuable information for
RUL prediction. Therefore, in this study, only 14 sensor
measurements with indices 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15,
17, 20 and 21 are used as the raw input features as suggested
in the literature (Zhang et al., 2017).

 Data Preprocessing

Data preprocessing involves preparing raw data to make it
suitable for a machine-learning model. Before we can feed
the NASA C-MAPSS dataset into our deep learning models,
it is crucial to clean up and transform the data into an
appropriate format employing two essential aspects of data
preprocessing: smoothing and normalization.

Normalization is the procedure of adjusting feature columns
to have a similar scale when different features vary
significantly in their scales. There are two commonly used
normalization techniques in machine learning: Min-Max
normalization and Standardization (Z-score) normalization.
For this research, the Min-Max scaling method has been
utilized.

Smoothing plays a crucial role in reducing the noise present
in the dataset, thereby enhancing the potential accuracy of
RUL predictions. The smoothing technique employed in this
research is the Savitzky-Golay filter (Schafer, 2011). By
considering 2M + 1 inputs (M previous adjacent data points,
the current data point, and M future adjacent data points), the
filter calculates the smoothed data by fitting an N-degree
polynomial. For this research, M has been set to 10, and N
has been set to 3 to obtain the desired smoothing results.

STAGE 0: Generate M x K diverse CNN models using both
2D and 1D model architectures employing and holdout CV.

STAGE 1: From each holdout CV (for k = 1:K), collect M
CNN base models and perform the following steps:
(a) Determine STAGE 1 ensemble weights using (i) SA and

(ii) WA methods without ensemble model selection.
(b) Perform model selection and weight learning using (iii)

APS with SA, (iv) OBS with SA, and (v) NNLS.

STAGE 2: Using STAGE 1 K ensemble outputs, perform the
following steps:
(a) Determine STAGE 2 ensemble weights using (i) SA and

(ii) WA methods without ensemble model selection.
(b) Perform model selection and weight learning using (iii)

OBS with SA.

 C-MAPSS Training and Test Datasets

Form final multistage ensemble output on the test data
using selected models and their weights from STAGE 1
and STAGE 2.

K sets of M base CNN
model outputs generated
on validation & test data

K ensemble model
outputs generated on
validation & test data

Selected base CNN models
and their ensemble weights
from STAGE 1 & STAGE 2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

8

 Target RUL Calculation

Since the NASA C-MAPSS dataset doesn’t provide target
RUL values for the training data, we have to calculate the
target RUL for each row to obtain complete training and
testing datasets for developing RUL prediction models using
the supervised learning procedure. The piecewise linear
degradation model approach is adopted in this research to
calculate the target RUL. In this method, the RUL for the
early phase is set to a constant value 125 (all RUL values
larger than 125 is set to 125 in this method). Compared to the
method based on the linear degradation model, this method is
more likely to generate more realistic RUL target values for
developing RUL prediction models using supervised
learning.

4.2. CNN Based RUL Prediction Results

The NASA C-MAPSS dataset was prepared for 2D CNN by
applying the sliding time-windowing approach as discussed
in Section 2.2. This involved grouping sensor measurements
from time t-Ltw+1 to t (where t >= Ltw = 30) to create 30x14
dimensional matrices as inputs for training. The target value
for each matrix was determined by the remaining useful life
at the last time instance in the window. This 2D input data
preparation yielded 17,731 input matrices from the training
FD001 file, consisting of 20,631 rows and 100 engines.
Figure 5 illustrates two 2D input matrices, with the red box
representing the first matrix and its target value at t = 30, and
the green box representing the second matrix with its target
value at t = 31.

Figure 5. Sliding time-windowing approach

For training CNN models for RUL prediction, the training
file was divided into a training dataset of 80 randomly
selected engines and a validation dataset of the remaining 20
engines. The maximum number of epochs was set to 300, and
the batch size was chosen as 32.

 2D CNN Model Experiments

Given the numerous hyperparameters available for tuning
CNN models and the difficulty of pre-identifying the optimal
model, we conducted various experiments on 2D CNN
models, and the following four 2D CNN architectures yielded
better performance among those multiple experiments. To
reduce the influence of randomness introduced by the train-
validation data split, we ran each 2D CNN model
architecture10 times using different random seeds.

For the description of 2D CNN model architectures in this
section, we use the following notation to give the parameters
associated with each type of layers: the parameters for the
convolutional layer are given by (# of filters, filter size,
activation function), the max pooling layer parameter is the
pool size, and the parameters for the dense layers are given
by (# of nodes, activation function).

2D-CNN-Architecture 1: In the initial 2D CNN architecture
using the 2D input data and 1D kernel, we used three Conv2D
layers with parameters (64, (10, 1), relu), (32, (8, 1), relu),
and (16, (5, 1), relu), respectively, and two MaxPooling2D
layers with a pool size of 2 for down-sampling, followed by
a flatten layer and two dense layers with parameters (32, relu)
and (1, linear), respectively.

2D-CNN-Architecture 2: In this 2D CNN architecture, we
utilized a higher number of kernels in the convolutional
layers compared to the 2D CNN architecture 1. Specifically,
we used three Conv2D layers with parameters (128, (10, 1),
relu), (64, (8, 1), relu), and (32, (5, 1), relu), respectively, and
two MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers
with parameters (32, relu) and (1, linear), respectively.

2D-CNN-Architecture 3: This 2D CNN model architecture
is similar to the 2D CNN model architecture 1 except it
includes an additional convolutional layer just after the third
convolutional layer. It consists of four Conv2D layers with
parameters (64, (10, 1), relu), (32, (8, 1), relu), (16, (5, 1),
relu), and (8, (5, 1), relu), respectively, and two
MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers
with parameters (16, relu) and (1, linear), respectively.

2D-CNN-Architecture 4: In this 2D CNN architecture, an
additional convolutional layer was added after the third
convolutional layer, making it similar to the 2D CNN model
architecture 2. It consists of four Conv2D layers with
parameters (128, (10, 1), relu), (64, (8, 1), relu), (32, (5, 1),
relu), and (16, (5, 1), relu), respectively, and two
MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers
with parameters (16, relu) and (1, linear), respectively.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

9

 1D CNN Model Experiments

Similarly in the case of 2D CNN models, we conducted
various experiments on 1D CNN models, and the following
four 1D CNN model architectures yielded better performance
among those multiple experiments.

1D-CNN-Architecture 1: In the initial 1D CNN architecture
using the 1D input data with multiple channels and 1D kernel,
we used three Conv1D layers with parameters (64, (10, 1),
relu), (32, (5, 1), relu), and (16, (5, 1), relu), respectively, and
two MaxPooling1D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers
with parameters (32, relu) and (1, linear), respectively.

1D-CNN-Architecture 2: This 1D CNN model architecture
is similar to the 1D CNN architecture 1, but with additional
kernels in the convolutional layers and more nodes in the
dense layers. We used three Conv1D layers with parameters
(256, (10, 1), relu), (64, (5, 1), relu), and (16, (5, 1), relu)
respectively, and two MaxPooling1D layers with a pool size
of 2 for down-sampling, followed by a flatten layer and two
dense layers with parameters (64, relu) and (1, linear),
respectively.

1D-CNN-Architecture 3: This 1D CNN model architecture
is similar to the 1D CNN model architecture 1, but with two
additional convolutional layers just after the third
convolutional layer. It consists of five Conv2D layers with
parameters (64, (10, 1), relu), (32, (8, 1), relu), (16, (5, 1),
relu), (8, (5, 1), relu), and (4, (5, 1), relu), respectively, and
two MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers
with parameters (32, relu) and (1, linear), respectively.

1D-CNN-Architecture 4: This 1D CNN model architecture
4 is comparable to the 1D CNN model architecture 2, as it
incorporates an additional convolutional layer after the third
convolutional layer. It includes four Conv2D layers with
parameters (128, (10, 1), relu), (64, (8, 1), relu), (32, (5, 1),
relu), and (16, (5, 1), relu), respectively, and two
MaxPooling2D layers with a pool size of 2 for down-
sampling, followed by a flatten layer and two dense layers
with parameters (16, relu) and (1, linear), respectively.

 Results of CNN Models

Table 1 presents the performance comparison of CNN model
architectures with varying numbers of kernels and layers on
test dataset using the average values from 10 CV runs. Figure
6 shows the box-plot performance comparison of the same.
These results indicate that increasing the number of kernels
in the CNN model architecture enhances performance for
both 2D and 1D CNN models. However, when it comes to
adding more layers, it only improves the results for 2D CNN
models, not for 1D CNN models. These findings suggest that
the number of kernels plays a crucial role in improving
performance across both model types, while the impact of
additional layers is limited to 2D CNN models.

Figure 6. Performance comparison of CNN models.

4.3. Ensemble Learning Based RUL Prediction

Based on 80 diverse CNN base models generated using 8
different CNN model architectures with 10 times repeat for
cross-validation in Section 4.2 (see Table 1 and Figure 6), we
conducted various ensemble learning experiments using the
multistage ensemble learning procedure given in Section 3.5.
In STAGE 1, using validation data from 20 engines randomly
selected during each run, ensemble learning was performed
using five different combinations of weight learning (WL1)
and model selection (MS1) methods as outlined in Section
3.5. Each of these WL1 and MS1 combination yields 10
ensemble models (one from each CV run) and their RMSE
and score performance values obtained using validation data.
In STAGE 2, these 10 ensemble models are further combined
using three different combinations of weight learning (WL2)
and model selection (MS2) methods as outlined in Section
3.5. It should be noted here that no data are used during
STAGE 2 weight learning and model selection.

The test data RMSE and score results from these multistage
ensemble learning experiments on CNN models are given in
Table 2 utilizing the abbreviations used for weight learning

2D1 2D2 2D3 2D4 1D1 1D2 1D3 1D4

12

13

14

R
M

S
E

Performance Comparison of 2D and 1D CNN Model Architectures

2D1 2D2 2D3 2D4 1D1 1D2 1D3 1D4

200

300

400

S
co

re

Table 1. Performance comparison of CNN models with
different architectures.

Models RMSE Score
2D-CNN-Architecture 1 12.76 285.2

2D-CNN-Architecture 2 12.61 269.4

2D-CNN-Architecture 3 12.63 272.6

2D-CNN-Architecture 4 12.51 254.3

1D-CNN-Architecture 1 12.91 287.3

1D-CNN-Architecture 2 12.78 274.0

1D-CNN-Architecture 3 13.23 314.4

1D-CNN-Architecture 4 12.95 277.9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

10

(WL1 & WL2) and model selection (MS1 & MS2) methods
in STAGE 1 and STAGE 2 as described in Section 3.5. The
last column of Table 2 indicates the overall number (#) of
base models that took part in each of the multistage ensemble
model learning experiments. Figure 7 shows the percentage
improvement in RMSE and score values of the best ensemble
CNN model (obtained with WL1-SA, MS1-APS, WL2-SA
and MS2-OBS yielding RMSE and score values of 11.28 and
207.6, respectively) compared to the base models used for
multistage ensemble learning illustrating an average
improvement of 11.7% and 23.6% for RMSE and score
values, respectively. It can be noted further from Table 2 that
when model selection is used in STAGE 1 and/or STAGE 2,
the resulting final ensemble model uses fewer base models
(sparse model selection) and at the same time improving the
generalization performance of the final ensemble CNN
model for RUL prediction. This finding is also in line with
the well-known observation in the ensemble learning
literature that ensemble pruning to avoid overfitting improves
generalization performance (Zhou et al., 2002) of ensemble
models. Figure 8 shows the relationship between the number
of base models used and the resulting accuracy of the
ensemble CNN models by displaying three clusters of
models. It is interesting to observe that in Figure 8 the best
performing Cluster 3 is obtained when both MS1 and MS2
model selections are used. Using model selection only in
either STAGE 1 or STAGE 2 results in moderately
performing Cluster 2 and not using any model selection in
both stages results in the least performing Cluster 1.

Figure 7. Performance improvement of the best ensemble
CNN model compared to 80 base CNN models.

Figure 8. Ensemble CNN model RMSE (left) and score
(right) performance versus number of base models.

Finally, the comparison of our proposed ensemble CNN with
other popular deep learning methods published in the last few
years is given in Table 3 which shows the RMSE and score
function values generated on the C-MAPSS FD001 test sub-
dataset. The proposed multistage ensemble learning based
CNN has achieved promising performance comparable to the
state-of-the-art results. Further improvements to the proposed
method can be made by making enhancements to diverse base
CNN models and also considering other deep learning
models as base models along with CNN models for RUL
prediction. Future work will consider these enhancements
and the evaluation of the proposed method on the other C-
MAPSS sub-datasets.

0 10 20 30 40 50 60 70 80

Base model index

0

5

10

15

20

R
M

S
E

 %
 im

p
ro

ve
m

e
n

t

% Improvement in RMSE and Score of Ensemble CNN Model

0 10 20 30 40 50 60 70 80

Base model index

0

20

40

60

S
co

re
 %

 im
p

ro
ve

m
e

n
t

R
M

S
E

S
co

re

Table 2. Performance comparison of ensemble learning
based CNN models for RUL prediction.

WL1 MS1 WL2 MS2 RMSE Score #
SA - SA - 11.85 230.9 80
WA - SA - 11.85 230.7 80
SA OBS SA - 11.58 215.2 40
SA APS SA - 11.55 218.7 35
NNLS NNLS SA - 11.58 221.1 48
SA - WA - 11.85 230.7 80
WA - WA - 11.84 230.4 80
SA OBS WA - 11.57 215.1 40
SA APS WA - 11.54 218.4 35
NNLS NNLS WA - 11.57 220.9 48
SA - SA OBS 11.72 226.3 40
WA - SA OBS 11.71 225.9 40
SA OBS SA OBS 11.37 208.6 20
SA APS SA OBS 11.28 207.6 15
NNLS NNLS SA OBS 11.31 209.8 23

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

11

5. CONCLUSION AND FUTURE WORK

In this paper, a new data-driven approach for RUL prediction
of aircraft engines has been investigated using multistage
ensemble learning based convolutional neural networks. To
generate diverse base models, two CNN model architectures,
namely 2D CNN and 1D CNN with multiple channels, were
explored. Various CNN model experiments were performed
to optimize their model architectures and hyperparameters,
and using these resulting optimal CNN models, a multistage
ensemble approach was investigated employing sparsity
promoting model selection and weight learning methods to
utilize only a subset of available models. The key findings of
this work along with future directions can be summarized as
follows:

 The effectiveness of the proposed approach was
validated using the NASA C-MAPSS dataset for aircraft
engines. The results showed that the average percentage
improvement of 11.7% and 23.6% for RMSE and score
values, respectively, of the best ensemble CNN model
compared to the base models used for ensemble learning.
Furthermore, the proposed multistage ensemble learning
based CNN has achieved promising performance
comparable to the state-of-the-art results. These results
demonstrate the effectiveness of the proposed ensemble
learning based CNN models in accurately predicting
RUL based on sensor data.

 It can also be observed from this study that when model
selection is used in both stages of the proposed
multistage ensemble learning process, the resulting final
ensemble CNN model uses fewer base models (sparse
model selection) and at the same time improving the

generalization performance of the ensemble CNN model
for RUL prediction.

 For future work, we will consider the evaluation of the
proposed method on the other C-MAPSS sub-datasets
and other PHM datasets. More weight learning and
model selection methods will be investigated to further
improve the proposed multistage ensemble learning
approach Also, further improvements to the proposed
method can be made by making enhancements to diverse
base CNN models and considering other deep learning
models as base models along with CNN models for RUL
prediction.

REFERENCES

Ali, J., Chebel-Morello, B., Saidi, L., Malinowski, S., &
Fnaiech, F. (2015). Accurate bearing remaining useful
life prediction based on Weibull distribution and
artificial neural network. Mechanical Systems and
Signal Processing, 56–57, 150–172.

Babu, G.S.; Zhao, P.; Li, X.L. Deep CNN Based Regression
Approach for Estimation of Remaining Useful Life. In
Proceedings of the International Conference on
Database Systems for Advanced Applications, Dallas,
TX, USA, 16–19 April 2016.

Breiman, L. (1996a). Bagging predictions. Machine
Learning, 24(2), 123–140.

Breiman, L. (1996b). Stacked regressions. Machine
Learning, 24(1), 49–64.

Freund, Y., & Schapire, R. E. (1996). Experiments with a
New Boosting Algorithm. Proceedings of the 13th
International Conference on Machine Learning, 148–
156.

Foucart, S., & Koslicki, D. (2014). Sparse recovery by means
of nonnegative least squares. IEEE Signal Processing
Letters, 21(4), 498–502.

Gebraeel, N. Z., Lawley, M. A., Liu, R., & Parmeshwaran,
V. (2004). Residual life predictions from vibration-
based degradation signals: a neural network approach.
IEEE Transactions on Industrial Electronics, 51, 694–
700.

Heimes, F. O. (2008). Recurrent neural networks for
remaining useful life estimation. 2008 International
Conference on Prognostics and Health Management,
1–6.

Heng, A., Zhan, S., Tan, A., & Mathew, J. (2009). Rotating
machinery prognostics: State of the art, challenges and
opportunities. Mechanical Systems and Signal
Processing, 23, 724–739.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly,
N., Vanhoucke, V., Nguyen, P., Sainath, T., &
Kingsbury, B. (2012). Deep Neural Networks for
Acoustic Modeling in Speech Recognition. Ieee Signal
Processing Magazine, 2(november), 1–27.

Hu, C., Youn, B. D., Wang, P., & Taek Yoon, J. (2012).
Ensemble of data-driven prognostic algorithms for

Table 3. Comparison of ensemble CNN results with
other deep learning methods for RUL prediction.

Method RMSE Score

First CNN for RUL (Babu, 2016) 18.44 1290

DCNN (Li et al, 2018) 12.61 273.7

CNN + LSTM (Kong et al., 2019) 16.16 303

CNN (Yang et al., 2019) 12.18 224.16

DAG (Li et al., 2019) 11.96 229

Ensemble ResCNN (Wen et al., 2019) 12.16 212.48

CNN + LSTM (Mo et al., 2020) 12.19 259

LSTM + FCLCNN (Peng et al., 2021) 11.17 204

BLS + TCN (Yu et al., 2021) 12.08 243

Proposed Method on Ensemble CNN 11.28 207.6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

12

robust prediction of remaining useful life. Reliability
Engineering and System Safety, 103, 120–135.

Jouin, M., Gouriveau, R., Hissel, D., & Zerhouni, N. (2015).
Particle filter-based prognostics : review , discussion
and perspectives Particle filters - Theory and
generalities.

Kalgren, P. W., Byington, C. S., Roemer, M. J., & Watson,
M. J. (2006). Defining PHM, A Lexical Evolution of
Maintenance and Logistics. 2006 IEEE Autotestcon,
353–358.

Khelif, R., Chebel-Morello, B., Malinowski, S., Laajili, E.,
Fnaiech, F., & Zerhouni, N. (2017). Direct Remaining
Useful Life Estimation Based on Support Vector
Regression. IEEE Transactions on Industrial
Electronics, 64(3), 2276–2285.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017).
ImageNet classification with deep convolutional neural
networks. Communications of the ACM, 60(6), 84–90.

Kong, Z., Cui, Y., Xia, Z., & He, L. (2019). Convolution and
long short-term memory hybrid deep neural networks
for remaining useful life prognostics. Applied Sciences
(Switzerland), 9(19).

Lawson, C. L., & Hanson, R. J. (1974). Solving Least Squares
Problems. Prentice-Hall, New York.

Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life
estimation in prognostics using deep convolution
neural networks. Reliability Engineering and System
Safety, 172(December 2017), 1–11.

Li, Z., Goebel, K., & Wu, D. (2019a). Degradation Modeling
and Remaining Useful Life Prediction of Aircraft
Engines Using Ensemble Learning. Journal of
Engineering for Gas Turbines and Power, 141(4), 1–
10.

Li, J., Li, X. and He, D. (2019b). A Directed Acyclic Graph
Network Combined With CNN and LSTM for
Remaining Useful Life Prediction. IEEE Access, 7, pp.
75464–75475.

Miller, A. (2002) Subset Selection in Regression. Second.
Boca Raton: Chapman & Hall.

Mo, H., Lucca, F., Malacarne, J., & Iacca, G. (2020).Multi-
Head CNN-LSTM with Prediction Error Analysis for
Remaining Useful Life Prediction. 2020 27th
Conference of Open Innovations Association
(FRUCT), pp. 164–171.

Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-
driven prognostic method based on Bayesian
approaches for direct remaining useful life prediction.
Journal of Intelligent Manufacturing, 27(5), 1037–
1048.

Pecht, M., & Jie Gu. (2009). Physics-of-failure-based
prognostics for electronic products. Transactions of the
Institute of Meas. and Control, 31(3–4), 309–322.

Peng, C., Chen, Y., Chen, Q., Tang, Z., Li, L., Gui, W.,
(2021). A remaining useful life prognosis of turbofan

engine using temporal and spatial feature fusion.
Sensors (Switzerland), 21(2), pp. 1–21.

Saxena, A., & Goebel, K. (2008). Turbofan Engine
Degradation Simulation Data Set. NASA Ames
Prognostics Data Repository.

Saxena, Aakanksha, Goebel, K., Simon, D., & Eklund, N. H.
W. (2008). Damage propagation modeling for aircraft
engine run-to-failure simulation. 2008 International
Conference on Prognostics and Health Management,
1–9.

Shi, J., Yu, T., Goebel, K., & Wu, D. (2021). Remaining
Useful Life Prediction of Bearings Using Ensemble
Learning: The Impact of Diversity in Base Learners
and Features. Journal of Computing and Information
Science in Engineering, 21(2), 1–12.

Schafer, R. (2011). What Is a Savitzky-Golay Filter? [Lecture
Notes]. IEEE Signal Processing Magazine - IEEE
SIGNAL PROCESS MAG, 28, 111–117.

Schmidhuber, J. (2015). Deep learning in neural networks :
An overview. Neural Networks, 61, 85–117.

Vollert, S., & Theissler, A. (2021). Challenges of machine
learning-based RUL prognosis: A review on NASA’s
C-MAPSS data set. 2021 26th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), 1–8.

Wen, L., Dong, Y., & Gao, L. (2019). A new ensemble
residual convolutional neural network for remaining
useful life estimation. Mathematical Biosciences and
Engineering, 16(2), 862–880.

Wolpert, D. H. (1992). Stacked generalization. Neural
Networks, 5(2), 241–259.

Wu, H., Fang, W. Z., Kang, Q., Tao, W. Q., & Qiao, R.
(2019). Predicting Effective Diffusivity of Porous
Media from Images by Deep Learning. Scientific
Reports, 9(1), 1–12.

Yang, H., Zhao, F., Jiang, G., Sun, Z., & Mei, X. (2019). A
novel deep learning approach for machinery
prognostics based on time windows. Applied Sciences
(Switzerland), 9(22).

Yu, K., Wang, D. and Li, H. (2021). A prediction model for
remaining useful life of turbofan engines by fusing
broad learning system and temporal convolutional
network. 8th Int. Conf. Inf., Cybern., Comput. Social
Syst. (ICCSS), pp. 134–142.

Zeng, J., & Cheng, Y. (2020). An ensemble learning-based
remaining useful life prediction method for aircraft
turbine engine. IFAC-PapersOnLine, 53(3), 48–5.

Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2017).
Multiobjective Deep Belief Networks Ensemble for
Remaining Useful Life Estimation in Prognostics.
IEEE Transactions on Neural Networks and Learning
Systems, 28(10), 2306–2318.

Zhou, Z. H., Wu, J. and Tang, W. (2002). Ensembling neural
networks: Many could be better than all. Artificial
Intelligence, 137(1–2), pp. 239–263

