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ABSTRACT

This study introduces a data-driven model for anomaly detec-
tion in hydroelectric generating units. After an initial course
of training, a monitoring stream is deployed that compares as-
set behaviour to the expected behaviour. Training and mon-
itoring coexist for some time, allowing early monitoring of
the asset. Efforts were made to extract as much statistical
explainability as possible during development of the model.
This renders the approach more reliable and consistent for
decision-making support and helps to reduce false positive
alerts. Examples of how this tool can be used in industry to
make a step toward asset diagnosis are given.

1. INTRODUCTION

Anomaly detection has become a critical task in industry and
serves various purposes, including reliability analysis, safety
assurance and asset health monitoring. Data-driven models
are often used for anomaly detection given their ability to
learn patterns from data and identify behaviours that deviate
from the learned patterns (Sutharssan, Stoyanov, Bailey, &
Yin, 2015; Tsui, Chen, Zhou, Hai, & Wang, 2015). They are
also simple to implement since they do not rely on complex
physical models to make predictions. A major limitation of
these models, however, is their lack of explainability, which
hinders the diagnosis of detected anomalies.

Explainability provides transparency and interpretability, al-
lowing stakeholders to understand the reasons for detected
deviations from normal behaviour. In the absence of explain-
ability, it is challenging to determine why a particular real-
ization was classified as abnormal. Without an understand-
ing of the underlying reason for an anomaly, it is difficult to
make a reliable diagnosis, which can result in missed oppor-
tunities for preventing or mitigating damage caused by the
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anomaly. Explainability can also help in detecting false posi-
tives and false negatives, especially in distinguishing between
abnormal behaviours and sensor failures or unseen operating
regimes.

Hydro-Quebec is Canada’s largest power utility and a ma-
jor player in the global hydropower industry. Hydro-Québec
generates more than 99% of its electricity from hydroelec-
tric generating units. Power grid sustainability thus depends
heavily on effective health monitoring of these assets. This
paper introduces a data-driven semi-supervised algorithm for
anomaly detection with emphasis on statistical explainabil-
ity. This explainability differs from that of traditional ex-
plainable models, which build on physics to interpret obser-
vations. Here, the goal is to track sources of deviation through
statistics to explain why the software believes that an anomaly
has occurred. This semi-supervised model is not a diagnostic
tool, however, because its sole output is insufficient for de-
termining the root causes of a problem. It does nonetheless
offer a bridge toward such tools by providing clues about the
origin of failures. In addition, the proposed model is able to
start monitoring after a very short initial training using a lim-
ited dataset. As more data is incorporated in the algorithm,
confidence increases and so does sensitivity.

In the following section, data preparation and pipeline con-
struction (including relevant feature extraction, curation, and
scaling) are described. Next, the data-driven approach used to
model asset behaviour is presented (Léonard, Merleau, Tap-
soba, & Gagnon, 2019), focusing on its adaptivity, that is,
its ability to evolve as data is fed to the algorithm. The de-
tection metric is then introduced as a multidimensional sta-
tistical deviation called Hypersphere Realization Deviation
(HRD). HRD can be seen as a measure of the multidimen-
sional distance between a realization and model predictions.
The expected distance is not zero: a probability shell devel-
ops around predictions within which most normal observa-
tions lie. This is due to the presence of noise in the data.
Lastly, the explainability features of the algorithm are high-
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lighted and some practical examples are given to demonstrate
the algorithm’s versatility and performance.

2. DATA PREPARATION

An in house Extract-Transform-Load (ETL) pipeline was
constructed to prepare the data, which consists mainly of
asynchronous time series extracted from OSIsoft’s PI system,
SCADA and other databases. The series are deemed asyn-
chronous because the time delay between successive mea-
surements is positive but random. Certain features of interest,
such mean values, RMS, peak-to-peak and spectral compo-
nents, are pre-computed during data acquisition and are read-
ily extracted when available. The pipeline can then compute
additional user defined features of interest from extracted data
before creating a synchronised data frame from selected time
series. The pipeline can then construct additional columns by
applying user defined operators on existing columns before
user defined filters are applied to remove rows from the data
frame.

In particular, the pipeline needs to filter out transients and
dead times since the algorithm is trained on steady states be-
cause these states establish the normal behaviour of the asset.
Transient states are identified by measuring the deviation to
time averaged values prior to the synchronisation step. Tran-
sients and dead times are then simply filtered out in the last
step.

The rows of the synchronised data frame can be seen as a
series of snapshots, each representing the state of the asset
at a given time. At time m, snapshot zm contains two types
of information: the independent variables xm ∈ RI that form
the operating condition domain and the independent variables
ym ∈ RD inducing the asset response manifold. The data is
scaled using a Min-Max scaler. For a new realization, this
transform is updated as:

{
zmj max = max

(
zm−1
j max, z

m
j

)
zmj min = min

(
zm−1
j min , z

m
j

) ,∀j ∈ J1, I +DK (1)

3. CLUSTER-BASED KRIGING

The model used to predict asset behaviour takes a two-stage
approach. A clustering algorithm is deployed to parcel out
the operating condition domain dynamically. Once the data
are reduced, kriging is used to interpolate between clusters
and predict expected behaviour at a specific position in the
operating domain.

3.1. Stream Clustering

Clustering is an unsupervised machine-learning technique
used to organize a cloud of points into a limited number of
collections, called clusters. A cluster represents asset be-

haviour in the vicinity of a given operating condition. Stream
clustering is a variant used in monitoring that is able to pro-
cess data continuously without needing the entire dataset be-
fore the domain is partitioned (Zubaroglu & Atalay, 2021).

Because we want to group data with similar operating
regimes, asset response is ignored during clustering and only
independent variables are provided to the algorithm. Cluster-
ing provides a set of clusters {Cl, l ∈ J1, LK} characterized by
population |Cl|, centroid coordinates xl,yl ∈ RI × RD and
by associated deviations σx,l,σy,l ∈ RI × RD (assuming
uncorrelated dimensions). Since we relied solely on first and
second statistical moments, we implicitly model the empirical
distribution with Gaussian families. This is justified by maxi-
mum entropy theory, giving Gaussian family of probability as
the Shannon information maximizer (Jaynes, 1978). To avoid
indefinite creation of clusters and ensure sufficient statistical
information (population) in each cluster, a limit Lmax was im-
posed on the number of clusters. In the authors’ experience,
30 to 70 clusters are generally sufficient to obtain accurate
modelling. As L ≪ M (M being the length of the time
history), clustering allows a significant reduction of compu-
tational burden.

The preliminary stage of training consists in seeding the
model. Seeding is a two-step process. During inflation, the
αinit first realizations are allocated to a unit cluster. A de-
flation step is then applied during which αmerged clusters are
merged together. At the end of the seeding, the operating
condition domain is partitioned into αinit − αmerged regions.

After initialization, cruise training starts. During this phase,
realizations are incorporated into the model using the work-
flow depicted in Figure 1. At each iteration, the characteristic
average square radius of the clusters needs to be computed
using equation (2). This represents the average dispersion of
clusters in the operating domain, and is used during data as-
similation.

r2 =
1∑L

l=1 |Cl| − 1

L∑
l=1

(|Cl| − 1)σT
x,lσx,l (2)

For any inbound realization zm, the following operations are
allowed on clusters (Leonard, 2011):

• Merge a realization to a cluster using Welford’s algo-
rithm (Welford, 1962). Merging is completed when the
squared distance of the realization to its closest cluster,
d2m,min, is less than αinclr

2, where αincl is a truncation
factor (generally set to 2) excluding unlikely candidates.

• Reject a realization from the training circuit. It is cru-
cial for clustering to not learn abnormal behaviours. For
this reason, any realization that violates equation (16) is
rejected. A realization assigned to a saturated cluster is
rejected as well (next bullet).
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Figure 1. Clustering workflow.

• Saturate a cluster, meaning that we stop training one
densely populated cluster. A maximum population is
allowed because assets get progressively damaged dur-
ing operation, resulting in slight but continuous deviation
from healthy behaviour. To detect such slow changes,
they must not be learnt, and cluster saturation prevents
assimilation of such slow drifts over time.

• Open a new cluster. When L < Lmax and the realization
is far from any other cluster, d2m,l > αnewr

2 for all l ∈
J1, LK, a new cluster is opened for these unseen operating
conditions.

• Merge two clusters using Parallel algorithm (Chen,
Golub, & Leveque, 1979). When a new realization needs
a cluster to be opened but L = Lmax, the algorithm tries
to merge two adjacent clusters if their distance is less
than αinclr

2.

• Discard cluster outliers. Any cluster with a very small
population that is not used during a given number of it-
erations is automatically discarded.

In sum, centroids and dispersions in the independent domain
are used to decide whether a realization should be incorpo-
rated in the cluster or not. Later, independent and dependent
centroids are used to predict ”normal” asset behaviour when
kriging. The dispersion in the dependent domain represents
the behaviour reproducibility and is used in calculating the
detection threshold.

3.2. Dual Kriging

Kriging models are used to interpolate between clusters to
obtain predictions in each dependent dimension at the current
operating point. Kriging is known to be the best linear un-
biased predictor (BLUP) (Smith, 2001). Universal kriging is
a variant used to model weak stationarities with deterministic
trends. The trend is modelled as a linear combination of oper-
ating conditions using a monomial basis. Let yj ∈ RL be the
L cluster centroid positions in the jth dependent dimension.
The kriging model is formulated as

yj =Xβj + ηj + δj , X =

1 xT
1

...
...

1 xT
L

 ∈ RL×I+1 (3)

where ηj is a random variable used to capture spatially corre-
lated aleatory effects, and δj is independent exogenous white
noise that is known as nugget and used to smooth interpola-
tions. Coefficients βj ∈ RI+1 are used to model the deter-
ministic drift. At an unseen operating condition xm, the krig-
ing model expresses as yj(xm) = (1 xm T )βj + ηmj + δmj .
The covariance matrices of the random variables are given by

C
(
ηj
ηmj

)
=

(
Γ γ
γT σ2

0

)
, C

(
δj
δmj

)
=

(
Gj 0
0 g20j

)
(4)

Quantities Γ, γ, σ2
0 ∈ RL×L × RL × R+ are obtained us-

ing the so-called semi-variogram and implicitly depend on
certain parameters θ. The semi-variogram models the evo-
lution of a dependent variable in the independent domain.
The experimental variogram must be fitted with an analyti-
cal “authorized” model used to calculate covariance matrices.
Nugget covariances Gj , g

2
0j ∈ RL×L × R+ have diagonal

structures and represent the reproducibility error at a given
location. They are different for each dependent variable. For
prediction, kriging assumes a linear structure of the following
form:
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ŷj(x
m) = λT

jmyj (5)

To prevent propagation of deterministic weights βj in the se-
quel, the following constraint is imposed:

λT
jmX = (1 xm T ) (6)

Hence, prediction error writes as ϵmj = ηmj +δmj −λT
jm(ηj +

δj), from which prediction variance (7) is derived. Predic-
tor ŷj(xm) is found by minimizing prediction variance under
constraint (6):

σ2
jm = σ2

0 + g20j − λT
jmγ + λT

jm(Γ+Gj)λjm (7)

Constrained minimization is performed by introducing La-
grange multipliers νjm ∈ RI+1. Eventually, λjm satisfies

(
Γ+Gj X
XT 0

)(
λjm

νjm

)
=

 γ(
1
xm

) (8)

The right-hand term in equation (8) depends on current op-
erating conditions; the system must then be solved for any
new operating conditions. Dual kriging is a computational
efficient variant that reparametrizes the problem in a spatially
independent way (Journel & C.J., 1979). It is a global inter-
polator where all clusters are used regardless of their distance
from the regression point. The simplest way to obtain the
dual representation of kriging is to submit equation (8) in (5).
The dual regression is obtained as:

ŷj(x
m) =

(
γT

(
1 xm T

))(ψj

ϕj

)
(9)

where the dual coefficients ψj and ϕj are obtained from the
dual kriging system,

(
Γ+Gj X
XT 0

)(
ψj

ϕj

)
=

(
yj
0

)
(10)

The main advantage of dual reformulation is that dual co-
efficients ψj ,ϕj can be calculated once and for all and then
used for any operating condition. In primal kriging regression
complexity is O

(
L2(I + 2)2

)
, while in dual kriging it is re-

duced to O (L). This allows almost instantaneous estimation
of normal behaviours. However, obtaining the kriging error
with low computational burden can be tedious (discussed lat-
ter in section 4.3.2).

Figure 2. Shell of realizations around the kriging prediction.

4. HYPERSPHERE REALIZATION DEVIATION

Predictions need to be compared to actual observations
through an appropriate metric. We use a Hypersphere Re-
alization Deviation metric (HRD). This statistical measure
synthesizes the multidimensional residual into a single scalar
value. The concept of shell of observations, which arose nat-
urally when deriving the metric, is introduced first below.
Next, the HRD is described as well as an adaptive method for
determining a responsive detection threshold above which an
anomaly is suspected.

4.1. Shell of observations

The shell of observations is closely connected to the notion
of Euclidean distance between a random variable and its ex-
pected value. Consider a multidimensional stochastic process
with zero mean and a given positive semi-definite covariance
matrix. The expected value of the Euclidean distance of re-
alizations is then non-zero1. For instance, it is well known
that the Euclidean distance of an uncorrelated n-dimensional
Gaussian random vector follows a chi distribution with n de-
grees of freedom. The expected value of such a distribution
is
√
2Γ((n+1)/2)/Γ(n/2), which is strictly positive for any

n ≥ 1.

The concept of shell of observations states that the Euclidean
distance between a realization ym

j and its kriging prediction
ŷj(x

m) always deviates by a characteristic length δ, as shown
in Figure 2. It is possible to evaluate δ experimentally. The
residual vector between realizations and predictions is de-
fined as

∆ŷ(xm) =

 ŷ1(x
m)− ym1

...
ŷD(xm)− ymD

 (11)

1Since a distance is always positive, the only way the expected distance could
be null is if all realization distances were null, meaning the distribution
is a delta function. This is inconsistent with the existence of a dispersion
imposed by the covariance matrix.
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The residual Euclidean distance is obtained as

dm =
√
∆ŷT (xm)∆ŷ(xm) (12)

By averaging these deviations in equation (13), quantity δ̂m
is obtained as an estimate of δ, the expected distance between
realizations and predictions. This quantity can be seen as a
measure of the noise corrupting the data. Set Sm is the sam-
pling subset and contains indices of the realizations used to
compute statistics. It is obtained from equation (16) and used
to prevent learning of abnormal behaviours.

δ̂m =
1

|Sm|
∑
i∈Sm

di (13)

4.2. HRD Indicator

The idea behind the HRD is to have a way of comparing de-
viations from expected distance δ (Leonard, 2021). For the
mth realization, the HRD metric ρm is defined as

ρm = dm − δ̂m−1 (14)

In concise terms, the HRD analyses the variation of the real-
ization deviation to the expected distance. It is a geometrical
interpretation of the multidimensional information. HRD fol-
lows a centered distribution whose variance gives the thick-
ness of the shell of observations. This variance will be calcu-
lated in the next section.

As defined in equation (14), HRD gives equal weight to in-
formation carried by each dimension of the dependent man-
ifold. However, this can result in overrepresentation of false
positives due to sensor failure. This is due to the common
source of certain features used as dependent variables. In
fact, if one extracts mean value, RMS, peak-to-peak and the
three most significant spectral components (frequency, am-
plitude, phase) from one sensor, there are then 12 dependent
variables fed by the same device. This means the weight as-
sociated with failure of the sensor will be 12 times higher
than it should be. To correct this bias, a redundancy factor
was introduced in the analysis to balance the weight of each
channel so that total information weight for each sensor used
for feature extraction is 1.

4.3. Responsive Detection Threshold

The detection threshold ρlim in equation (15) represents the
upper limit for the HRD before an alert is sounded. It is up-
dated with each new iteration to adapt to the confidence of the
current prediction, increasing when HRD uncertainty grows
and decreasing when it diminishes. Constructing this cutoff
requires proper quantification of uncertainties throughout the
model. There are two types of uncertainties: asset response

Figure 3. Prediction and observation variances in the model.

Figure 4. HRD bounds used in the model.

reproducibility σ2
rep and kriging error σ2

ck, as shown in Figure
3. For the mth realization

ρlim(m) =
√

α2σ2
rep(m) + σ2

ck(m) (15)

where α determines the reproducibility confidence interval
and is generally set to 4. A more exclusive threshold is used to
determine which realizations should be used in the statistical
estimates, i.e., to build subset Sm:

ρexcl(m) = βσrep(m) (16)

Usually, β = 2. Relations between these different bounds is
illustrated in Figure 4.

4.3.1. Reproducibility error

Variance σ2
rep is determined experimentally:

σ̂2
rep =

1

|Sm| − 1

∑
i∈Sm

ρi (17)

This is an underestimate, however, because rejection of ab-
normal realizations is equivalent to truncating the distribu-
tion. Underestimating the variance results in lowering ρlim
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and ρexcl, which in turn leads to smaller variances and so on.
The estimated variance needs to be corrected using a factor
γ(β) > 1

σ̂2
rep(m) =

γ(β)

|Sm| − 1

∑
i∈Sm

ρi (18)

At greater dimensions, the HRD distribution tends to Gaus-
sian. With Gaussian distributions, this correction is given by

γ(β) =
erf

(
β/

√
2
)

erf
(
β/

√
2
)
− 2βφ(β)

(19)

where φ is the standard Gaussian probability density function
and erf is the error function. With β = 2, one has γ(2) ≈
1.14. The uncorrected variance is underestimated by 14%.

4.3.2. Model error

Reproducibility error accounts for uncertainties due to inter-
polation and model error in previous realizations. However,
it does not address current interpolation conditions. For in-
stance, if interpolation is done near a widespread cluster, or
worse far away from any cluster, uncertainty will be consid-
erable. Theoretically, this uncertainty is encapsulated in the
kriging variance given in equation (7). However, dual kriging
does not provide this value, and variance must be recovered
differently. In this section, some conservative rules are pro-
posed to obtain a reasonable estimation of σ2

ck(m) in equation
(15). Two terms must be distinguished in the model variance:

σ2
ck(m) = σ2

c (m) + σ2
k (m) (20)

The term σ2
k (m) is due to interpolation between clusters,

while σ2
c (m) is associated with spatial discretization of the

clustering. The formulae shown below result from extensive
empirical studies and years of trial and error. These devel-
opments proved that the following formulae yield acceptable
measures of sensitivity with respect to clustering:

σ2
c (m) = r2ε2c (m;κ) (21)

where r2 is defined in equation (2) and

ε2c (m;κ) =

∑L
l=1 |Cl| − 1∑L

l=1 (|Cl| − 1)w2
l (m;κ)

(22)

The term wl(m;κ) gives a weight for each cluster to the total
variance:

wl(m;κ) =
r

max (dm,l − κr; 10−5)
(23)

This uncertainty is solely dependant on information about
the operating condition domain. When the distance between
a non-unitary cluster and the realization exceeds κr, then
wl(m;κ) starts decreasing and σ2

c (m) increases. Conversely,
when this distance drops below κr for one cluster, the related
uncertainty becomes negligible. A floor of 10−5 is imposed
to not singularize the error. For sensitivity with respect to the
kriging process, the following measure performs well:

σ2
k (m) = r2

D∑
j=1

ε2kj(m) (24)

where ε2kj(m) is the contribution of the jth dependent vari-
able, expressed as

ε2kj(m) =
2

γT1

(
γTGjψj

)2
γT (Gjψj)

2 (25)

5. EXPLAINABILITY FEATURES OF THE ALGORITHM

5.1. Algorithmic reversibility

Algorithmic reversibility refers to the ability to trace data
used in predictions back to their source. The proposed metric
compares each inbound realization to the model, which was
trained on a data history. When analyzing global deviation of
asset behaviour, the user naturally wonders which periods of
the data history were used to build predictions. For instance,
are the data involved recent or do they date back to earlier
years during the same season? Do the historical segments
used concentrate on specific dates or are they spread out over
time? Are these segments numerous or very limited?

In the data reduction step, clusters accumulate data from dif-
ferent time periods. Each cluster then has a temporal distribu-
tion of the incorporated realizations. This distribution is dis-
crete to save memory. The temporal distribution associated
with a prediction corresponds to the sum of all the temporal
distributions over clusters weighted by their kriging influence
(weights ϕj in the interpolation). When interpolating near a
cluster, there is almost no influence from other clusters and
the temporal distribution corresponds to that of the cluster.
On the other hand, when studying new operating conditions,
the time history is based on the contribution of neighbouring
clusters.

5.2. Adaptive detection threshold

As explained in section 4.3, the detection threshold is not
static but is set according to model confidence. When the
model is confident, i.e., makes predictions near a cluster
(well-known operating region) or in high reproducibility re-
gions, then the confidence interval becomes very narrow and
the metric very sensitive. Conversely, when the model makes
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predictions in unknown operating conditions or in regions
with weak reproducibility, the confidence interval increases
to not capture false positives. This behaviour is easy to ob-
serve in practical cases like those described in the following
section.

This adaptive threshold is crucial for early monitoring. Early
monitoring refers to the period when monitoring starts while
training is still ongoing. We do this because operating con-
ditions strongly depend on the season (water levels, temper-
atures), and passing through all operating conditions takes at
least a year, which is too long. At the beginning of mon-
itoring, clusters are sparse and realizations often show new
operating conditions, making model confidence low. But as
clusters get denser and the operating domain better known,
confidence increases and the HRD becomes more sensitive
(see Figures 6 and 8).

5.3. Feature importance analysis

Feature importance analysis aims at determining a score for
each element of the realization. More precisely, it makes it
possible to quantify how much each feature contributes to
an observed deviation. This performance analysis is easy to
incorporate in the approach we propose, as HRD construc-
tion involves a preliminary multidimensional distribution that
compares the current realization to expected values. Statis-
tical distance of the realization from the prediction in each
dimension is computed. This quantity, called the z-score, is
obtained as a Mahalanobis distance, giving a measure of the
distance in number of standard deviations. The z-score is then
scaled to give relative contributions to HRD. When the algo-
rithm raises an anomaly, the participating features are deter-
mined as those above the z-score threshold, and their degree
of contribution is used for diagnosis. The z-score threshold
used to characterize a feature as out-of-distribution is gener-
ally fixed at 3.

Feature importance analysis is undoubtedly the most impor-
tant explainability feature of the model and the one most used
in practice. It can be used to detect sensor failure (not found
by redundancy analysis) if a deviation is entirely triggered by
features of one sensor or to identify the set of incriminated
sensors and spatially locate the anomaly. It can also be used,
when relevant, to determine the operating conditions under
which an anomaly occurs.

6. EXAMPLES FROM INDUSTRY

The model is currently being deployed on the Hydro-Quebec
hydro generating unit fleet. In this section, examples are
given of HRD use with actual cases encountered in recent
years. The assets studied are hydro generating units located
in Québec, Canada. A schematic diagram of such a unit with
its main components is illustrated in Figure 5.

Figure 5. Schematic of a hydroelectric generating unit.

We generally use four features to represent the operating con-
ditions of a generating unit: upstream and downstream wa-
ter levels, guide vane opening and ambient temperature. The
dependent features are extracted from row sensor measure-
ments, including two orthogonal displacements at each guide
bearing (UGB, LGB and TGB), stator temperature, oil and
babbit temperature for the bearing cooling systems, thrust
bearing acceleration and output power. Generally, the depen-
dent features extracted are RMS (A), spectral RMS (B), syn-
chronous response (C), second harmonic (D), peak-to-peak
(E) and mean value (F) or instantaneous value (G).

6.1. Case 1: When everything goes well

The first hydro generating unit studied was a low-head pro-
peller turbine that generally outputs 120 MW to the grid. The
low head of around 25m is compensated by high water inflow.
The unit has two guide bearings but no upper guide bearing.
This unit is healthy and faces no particular problems when
operating.

The metric was first used to study the behaviour of this non-
problematic unit. Results are shown in Figure 6, where three
regions are distinguished. No HRD was calculated for the
initiation region from January to the end of February 2019
because there were not enough realizations to compute reli-
able statistics. This period was followed by the early moni-
toring phase, during which clusters are sparse. Given the data
scarcity, the model is not confident and the detection thresh-
old was raised accordingly. With time, clusters become pop-
ulated, asset response becomes better known and the detec-
tion threshold drops accordingly. During steady-state opera-
tion, detection levels remain frozen for most monitoring. This
is because units generally operate at similar operating points
and these regions are well represented by the model.

Sometimes, however, grid stability requires the unit to operate
under exotic conditions. As shown in 6, these unseen regions
are reflected by a loss of confidence and a threshold peak.
Weak overshoots of the HRD appeared in June 2020 and Au-
gust 2021. We focus here on the June 2020 event. When the
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Figure 6. Example of HRD metric behaviour when an asset works normally.

Figure 7. Radar plot of out-of-distribution features for de-
tected deviation.

metric exceeds the threshold, it means a statistically signif-
icant number of features are out-of-distribution. These fea-
tures and their relative contribution can be plotted, as shown
in Figure 7. This radar plot brings explainability and reveals
that the anomaly in this case was due to a small increase in
lower guide bearing (LGB) vibrations. The x-direction and y-
direction sensors at the LGB contributed to the deviation by
26.9% and 20.6% respectively. Such corroboration from two
closely correlated sensors gives confidence in the measured
vibration level. As there is no UGB, the information from the
LGB suggests a minor unbalance at the stator. This stealth
anomaly disappeared in June after routine maintenance when,
among other things, the stator was cleaned.

6.2. Case 2: Early failure detection

In July 2018, a failure alarm triggered by the protection sys-
tem resulted in emergency shutdown of one of our hydro gen-
erating units after only a few years of operation. Inspection
revealed major damage to the runner blade orientation sys-
tem, with fractured stoppers and pivots and a cracked hous-
ing structure. This was mainly due to an inappropriate runner
design. The repairs requiredimmobilization of the asset for
nearly two years, which meant nearly two years of generation
loss as well. The HRD was used to conduct an a posteriori
analysis of the power plant’s data history, the aim to evalu-
ate its anomaly detection performance. Indeed, earlier de-
tection of the machine malfunction would have meant more
cost-effective repairs, a shorter downtime and the possibility
of planning maintenance during energy demand gaps.

Figure 8 shows the HRD metric calculated for a dataset span-
ning January 2016 to July 2018. Figure 9 shows a radar plot
of out-of-distribution features on specific dates, numbered
from (1) to (4) in Figure 8. The most significant damage
occurred in mid-July, when the HRD was 15 times the de-
tection threshold. However, the first signs of abnormal be-
haviour date back to August 2017 (see (1) in Figures 8 and 9),
one year before the emergency shutdown. The anomaly was
mainly indicated by disproportionately high acceleration at
the thrust bearing, which explained 40% of the observed devi-
ation. Synchronous responses at the TGB and the LGB were
also out-of-distribution, but their contribution to the HRD was
marginal (around 5%).

Another period of anomaly began at the end of October 2017
and lasted for over five months. During this time, a large
number of features were out-of-distribution: 20 features are
abnormal on the radar plot in Figure 9 (see (2)), contributing
to 87% of the total deviation. The abnormalities were mainly
related to measured TGB and LGB displacements, but output
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Figure 8. Example of HRD metric behaviour when an asset is suffering from a worsening failure: emergency unit shutdown
triggered by ultimate safety protocol protection system in August 2017.

Figure 9. Radar plot of out-of-distribution features for dates
when failure progressed.

power was also unusual. UGB vibrations, on the other hand,
were normal and did not raise any issues. The multisenso-
rial analysis showed that the lower part of the shaft line was
vibrating abnormally. The global deviation gathers contribu-
tions from six sensors, so the possibility of a sensor failure

could be discounted. The HRD rose above detection thresh-
old once again in April 2018, when blade position was found
to be out-of-distribution in addition to the earlier contribut-
ing features, suggesting even more strongly that there was a
runner blade issue. Finally, in July 2018, the loads on the
structure became intolerable and the machine broke down. It
is interesting to note that as the damage propagated, the out-
of-distribution features became the only sources of deviation,
meaning they moved farther and farther away from their ex-
pected distributions.

Our conclusion from this synthetic analysis is that our mon-
itoring model was able to detect the first signs of failure a
full year before this major accident. Four periods of anomaly
ranging from one week to five months over the course of the
year preceding the failure indicated a gradual degradation of
performance. Was there enough information to predict the
exact failure and the remaining useful life? Of course not.
However, the evidence provided by the model was more than
sufficient to instigate a visual inspection of the runner that
would have undoubtedly led to discovery of damage.

6.3. Case 3: Dealing with unexplored regimes

To illustrate how the model deals with unexplored regimes,
a unit that had to operate with an abnormally low upstream
water level during winter 2023 (see Figure 10) was selected.
Upstream water level was relatively constant with an average
value of 31.75m from the start of training in October 2020
until January 2023, when it dropped rapidly to 31m and re-
mained there until March 2023. This difference might seem
insignificant to a neophyte, but change in head (potential en-
ergy of water flow) has a major impact on fluid configuration
and affects not only the mechanical behaviour of the runner
but also the power produced.

When an asset starts operating in new regimes, the metric

9



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

Figure 10. Upstream level defining one independent variable
during training: level dropped by 1m during winter 2023.

can have two distinct behaviours. If the model is still being
trained, an unseen operating condition raises a stealth loss of
confidence but the new regime is rapidly clusterized in the
model, which rapidly recovers confidence. This is shown
in the upper part of Figure 11. However, when the model
stops being trained, the unseen operating conditions remain
unknown to the model and the confidence interval grows dra-
matically, as shown in the lower part of Figure 11.

When investigating asset behaviour under operating condi-
tions far from any cluster, the model error proposed in section
4.3.2 is crucial to prevent false alarms. The red line in Figure
(11) represents the reproducibility error of the realizations.
If this variance alone is considered, the HRD would clearly
exceed the threshold when no anomaly should be reported.
When model error is taken into account, however, the HRD
remains within the confidence interval.

7. CONCLUSION

This paper describes the development of a data-driven algo-
rithm for asset health monitoring with emphasis on explain-
ability. Explainability strengthens software reliability and
provides a bridge to diagnosis. It also enables automatic re-
moval of false positives due to loss of confidence or sensor
failures, an essential aspect of any failure detection metric
as failures are rare in industrial systems. It would be detri-
mental to introduce a monitoring system that triggers more
false alarms than real failure alarms. Thanks to the proposed
metric, an early monitoring of assets is permitted, albeit with
lower sensitivity.

As the examples show, the HRD metric is currently being
used to monitor rotor dynamics of generating units. There
is little electrical or hydraulic input to the realizations. Most

Figure 11. Metric behaviour when dealing with new operat-
ing regimes. Upper figure: training and monitoring coexist
and new regime becomes new cluster, restoring confidence.
Lower figure: training is stopped and model loses confidence.
Red line represents detection threshold without consideration
of model error.

features come from displacement sensors located on bearing
housings. Including a broader spectrum of feature types is
an ongoing development which could lead to a richer asset
health condition panel.
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turbines at Hydro-Québec’s research insti-
tute as a specialist in instrumentation and
signal processing. Among other achieve-
ments, he developed a special modal tool,

the ”Zmodal”, for estimating the low damping modes of
wind turbines. From 1987 to 1989, he wrote the code for
a monitoring system now used for every large hydraulic tur-
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