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ABSTRACT

The lithium-ion batteries (LIB) industry is rapidly growing
and is expected to continue expanding exponentially in the
next decade. LIBs are already widely used in everyday life,
and their demand is expected to increase further, particularly
in the automotive sector. The European Union has introduced
a new law to ban internal combustion engines from 2035,
pushing for the adoption of electric vehicles and increasing
the need for more efficient and reliable energy storage so-
lutions such as LIBs. As a result, the establishment of Gi-
gafactories in Europe and the United States is accelerating to
meet the growing demand and partially reduce dependencies
on China, which is currently the main producer of LIBs.

To fully realize the potential of LIBs and ensure their safe
and sustainable use, it is crucial to optimize their useful life
and develop reliable and robust methodologies for estimat-
ing their state of health and predicting their remaining use-
ful life. This requires a comprehensive understanding of LIB
behaviour and the development of effective prognostic and
health management approaches that can accurately predict
battery degradation, plan for maintenance and replacements,
and improve battery performance and lifespan.

This work, funded by the GREYDIENT project, a European
consortium aiming to advance the state of the art in the grey-
box approach, combines physical modeling (white box) and
machine learning (black box) techniques to demonstrate the
grey-box effectiveness in the prognostic and health manage-
ment. The grey-box approach here proposed consists of a
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combination of a physical battery model whose degradation
parameters are estimated online at every cycle by a multi-
layer perceptron particle filter (MLP-PF).

An electrochemical degradation model of a Lithium-Ion bat-
tery cell has been derived by use of Modelica. The model
simulates the output voltage of the cell, while the degrada-
tion over time is simulated through the variation of 3 parame-
ters: qMax (maximum number of lithium-ions available), R0

(internal resistance) and D (diffusion coefficient). To vali-
date the model we resort to the well-known NASA Battery
dataset, which has also been used to infer the optimal values
of the three hidden degradation parameters at every cycle, to
obtain their run-to-failure history.

Then, the physical model is combined with the MLP-PF: an
MLP artificial neural network is firstly trained on the run-
to-failure degradation processes of the model parameters, al-
lowing the propagation of the parameters in the future and
the corresponding estimation of the battery remaining use-
ful life (RUL). The MLP is then updated online by a particle
filter every time a new measurement is available from the bat-
tery management system (BMS), providing flexibility to this
method, needed for the electrochemical nature of the batter-
ies, and allowing the propagation of uncertainties.

1. INTRODUCTION

Electric vehicles increased their market share constantly in
the last 10 years, with their number tripled in the last 3 (IEA,
2022). Their success is driven by multiple factors: (i) the
number of models present on the market is constantly increas-
ing, with more than 400 EV types available in 2021, (ii) the
political support, expressed through incentives and subsidies,
to phase out from the internal combustion engine (ICE) (in
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this regard, the European Union approved a law forbidding
the selling of combustion engine vehicles starting from 2035)
to contrast air pollution and climate change; (iii) the use of
more efficient batteries, allowing the use of EV for compara-
ble driving range with respect to the ICE vehicles.

Lithium-Ion Batteries (LIBs) are the preferred solution for
EVs, due to their longevity and efficiency with respect to
other batteries’ typologies. Moreover, LIBs prices have con-
tinuously decreased during the last few years, leading to more
affordable vehicles, hence contributing to their development.
However, due to the shortage in the supply chain and the ris-
ing cost of metals, in 2022 the price for the battery packs in-
creased for the first time since 2010 (BloombergNEF, 2022).
Despite this, the demand for Li-Ion batteries is predicted to
grow in all regions: China remains the first manufacturer, but
numerous projects are aiming to exponentially increase pro-
duction in Europe and the United States to loosen their depen-
dence. The projects involve the construction of Lithium-Ion
batteries gigafactories, with an expected total production of
about 900 Gwh in 2030 (Heiner, Heimes, 2022).

In this context, the research of novel and more efficient meth-
ods for the optimisation of the usage of batteries is of crucial
importance. The implementation of effective maintenance
strategies can lead to an improvement in battery longevity, re-
sulting in a decrease in battery operating costs. Indeed, LIB
performances degrade with usage and over time. This will
eventually lead to the inability to supply the required amount
of power, with the need to replace the battery to guarantee the
right performance for the vehicle. On the other side, if used
improperly the failure can be sudden, and lead to the thermal
runaway of the battery, with consequences ranging greatly,
including the possible complete burning of the vehicle (Sun,
Bisschop, Niu, & Huang, 2020).

To avoid this, EVs are equipped with a battery management
system (BMS), which monitors and controls the parameters
of the battery to maintain safe and efficient operations. The
data collected by the battery sensors offer opportunities to
develop diagnosis and prognosis strategies to further improve
the safety and optimize and maximize the remaining useful
life (RUL) of the battery. This consequently allows for deriv-
ing smarter strategies for the batteries’ recharge, replacement
and maintenance, as shown in (Dickerson, Rajamani, Boost,
& Jackson, 2015).

Given the strategic importance of the matter, many works
have been dedicated to the prognosis and diagnosis of LIBs
in literature. However, given the complicated internal electro-
chemical mechanism that leads to strong non-linear degrada-
tion behaviour, these remain extremely complex challenges.
(Hu, Xu, Lin, & Pecht, 2020) provide an overview of the
methods for the prognostic and health management (PHM)
of the batteries, clustered in model-based, data-driven and hy-
brid methods.

A model-based approach relies on the physical modelling of
the degradation processes of the battery to describe its tra-
jectory, while data-driven methods use statistical or machine
learning techniques as a surrogate for the physical model.
Model-based approaches allow for deeply characterised be-
haviour at different levels of precisions, from relatively sim-
ple equivalent circuit models, as in (Zou, Hu, Ma, & Li,
2015), to more complex complete electrochemical ones (Lyu
et al., 2017). They also allow to focus on a specific phe-
nomenon, for example in (Tran et al., 2022) various methods
are reviewed, focusing on the diagnosis of the thermal run-
away of the battery.

Data-driven methods use historical monitoring data to build
a surrogate of the battery and predict its performance and
RUL. These methods focus on the degradation trend, while
completely ignoring the propagation and internal mechanism.
Given their flexibility and the worldwide interest in machine
learning, and in particular artificial neural networks (ANN),
many works proposed this approach in the last years (Zhang,
Xiong, He, & Pecht, 2018; Khaleghi et al., 2022; Wang et al.,
2021). If the results are often acceptable in terms of predic-
tion error and computational costs, concerns remain on the
lack of interpretability, and on the availability of the neces-
sary amount of historical data for the particular application.

To overcome the limitations of model-based (computational
costs, expert knowledge of the phenomena involved) and
data-driven (interpretability, amount of data), many hybrid
approaches have been proposed. The most promising one
is based on physics-informed neural network (PINN). (Li et
al., 2021) focused on the estimation of the internal hidden
states of the battery by combining an electrochemical-thermal
model and a deep neural network, while (Shi, Rivera, & Wu,
2022) included physics in a long-short term memory (LSTM)
model. Finally, in (Nascimento, Corbetta, Kulkarni, & Viana,
2021) an electrochemical model of the battery is combined
with a deep neural network for uncertainty quantification to
improve the agreement with experimental data.

This work proposes a different hybrid approach, consisting of
the combination of a physics-based battery model in which
the degradation parameters are estimated online with a data-
driven approach, resulting in a so-called grey-box methodol-
ogy. To do so, it is defined a framework composed of three
main areas: calibration, propagation and prognostic. The
first, calibration, is needed to calibrate the physical model,
which evolves over time due to the electrochemical nature of
the problem. The battery electrochemical degradation model
has been developed based on (Daigle & Kulkarni, 2013) by
means of Modelica language (OpenModelica, 2007). The
model simulates the output voltage of the battery and resorts
to 3 parameters (maximum number of lithium-ions available
qMax, internal resistance R0 and diffusion coefficient D) to
describe its degradation over time. These hidden model pa-
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Figure 1. Illustration of the framework for the Prognostic of the battery RUL.

rameters are inferred and updated every time a new mea-
surement is available from the BMS through the COBYLA
(Michael James, 1994) optimisation algorithm. The second
area, propagation, resorts to a multi-layer perceptron particle
filter (MLP-PF) (Cadini, Sbarufatti, Cancelliere, & Giglio,
2019) to propagate the three hidden parameters in the future.
This methodology allows to compute the probabilities den-
sity functions of the parameters in each future instant of time,
allowing the estimation of the battery RUL and the evalua-
tion of the model in a Monte-Carlo fashion, in the prognostic
phase.

This paper is organized as follows: Section 2 describes the
proposed PHM framework. In Section 2.1 the model is de-
scribed and the optimisation process used to infer the param-
eters is proposed. Then Section 2.2 introduces the concept of
the MLP-PF, and the results obtained with the proposed ap-
proach are shown in Section 2.3. Finally, Section 3 derives
some conclusions and future developments on this work.

2. PHM FRAMEWORK

The final goal of the proposed work is to derive an easy-to-
understand indicator for the final customer to allow decision
making, which can be an indication for when to replace the
battery in the case of a private vehicle or planning mainte-
nance strategies in the case of a fleet. To do so, we resort
to the online framework illustrated in Figure 1. It is char-
acterised by three main areas: calibration, propagation and
prognostic.

The first area concerns the calibration of the battery during
usage: due to the electrochemical properties of the LIBs, bat-
teries with the same physical characteristics can behave and

degrade very differently one from another, depending on the
external conditions, usage and possible inner defects. To ac-
count for that, the model needs to be calibrated with respect
to the measurement coming from the BMS: every time a mea-
surement is available, the parameters responsible for the bat-
tery degradation are updated, allowing a better simulation of
the battery performances.

The second area is about the propagation of the degrada-
tion parameters. In this phase, the run-to-failure history of
a known battery is cooped with the new hidden parameters,
identified at each cycle during the calibration phase, in the
MLP-PF, whose details are described in Section 2.2. The hid-
den parameters are hence propagated in time and their Prob-
ability Density Functions can be computed (PDF) in each fu-
ture instant of time.

Finally, in the last phase, the PDFs are used to determine the
RUL of the battery, defined as the number of cycles in which
the battery can provide the required power, and to estimate its
future performances, simulating the model in a Monte Carlo
approach.

2.1. Battery electrochemical model

The electrochemical behaviour of the battery has been de-
rived following (Daigle & Kulkarni, 2015), with the goal of
simulating the output voltage of a cylindrical cell with a nom-
inal voltage of 4.2V. The model is built by use of Model-
ica (Modelica, 1996), a language well suited for designing
0D/1D models which, through the functional mock-up inter-
face (FMI) standard (FMI, 2010), allows the easy integration
with other programming languages for the statistical analysis
and the quantification of uncertainties; This offers two ad-
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vantages: first write directly the equations, in contrast with
the typical variable assignment of a programming language,
and secondly to use the model as a function, defining inputs
and obtaining the corresponding outputs as results of the sim-
ulation.

The interested reader can refer to (Daigle & Kulkarni, 2013)
and (Cancelliere & Girard, 2022) for a deeper description of
the model and its equations. The main processes leading to
the degradation of the cell over time are:

1. solid electrolyte interface (SEI) growth: formation of a
solid layer on the surface of active material, which can
happen both during cycling and storage at high tempera-
tures.

2. lithium corrosion: lithium corrodes, leading to an irre-
versible loss of mobile ions.

In our model these processes are governed by the parame-
ters qMax, the number of lithium ions moving through the
electrolytes during charges and discharges, and R0, the inter-
nal resistance. The variation of these parameters, as well as
the diffusion coefficient D, allows us to describe the perfor-
mances of the cell during its lifetime.

However, these parameters are not directly measurable during
usage. Hence, we need a method to infer them from the mea-
surements available from the BMS. This work uses the NASA
battery dataset (Saha & Goebel, 2007) to calibrate the model.
In particular the battery denominated ”B0005” is used as the
training set. To obtain the parameters at the beginning of the
battery’s life, the output voltage of the first cycle is taken as
a reference. To minimize the error between the actual curve
and the model, we apply COBYLA, a numerical optimisation
method for constrained problems. In this way, we obtain the
optimal parameters that describe the behaviour of the battery
at the beginning of its life.

This same algorithm, as can be appreciated in Figure 1 in the
calibration area, is also used online to infer the degradation
parameters during usage. Indeed, to account for the exter-
nal changing condition and different usage modes, the pa-
rameters are updated online every time a new measurement
is available. This enhances the reliability of the model and
the accuracy of the predictions, which in turn improves the
effectiveness of the maintenance strategy. Figure 2 shows the
results of the calibration of the model at the beginning and at
the end of the battery’s life.

2.2. Multi layer perceptron particle filter

The electrochemical model developed, in combination with
the methodology used to update online the degradation pa-
rameters, is a useful tool in monitoring the battery perfor-
mances and identifying possible faults, hence aiding in the
diagnostic. However, it still lacks information regarding the
prediction of the RUL, which is defined as the remaining

Figure 2. Calibration of the model degradation parameters
at the beginning and end of battery’s life. The variation of
the degradation parameters produces a decrease in the time to
discharge and an increase of the equilibrium potential, which
the model is able to simulate.

number of cycles at which the battery can provide the re-
quested power. To do so, it is necessary to evaluate the model
with a prediction of the hidden degradation parameters, tak-
ing into account their variability due to the electrochemical
nature of the problem. As reference, a run-to-failure history
of the three parameters can be derived inferring them with the
COBYLA algorithm on the entire life of the reference battery
”B0005”, as plotted in Figure 3.

However, as already pointed out, the specific battery can
evolve very differently from the reference one. To account
for that, the parameters are propagated with a multi-layer per-
ceptron particle filter (Cadini et al., 2019), a methodology in
which the weights and biases of an MLP are recurrently iden-
tified by a PF based on the online measurement coming from
the BMS. A brief description of this methodology is now re-
ported. For a thorough investigation of the functioning of an
MLP and PF respectively, the reader can refer to (Doucet,

Figure 3. Run-to-failure behaviour of the three parameters
for the battery ”B0005”. Each triple of values represents the
optimal parameters found for each cycle.
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Figure 4. Left graph: propagation of the qMax parameters through the MLP networks. Each green line represents a particle, the
grey area contains the 95 percentiles of the overall particles. The red dot represent the available observation, the blue circles
the future ones, not known to the algorithm. Right graph: PDF of the parameter at future cycle 143 (grey dotted line in the left
graph). The blue circle represent the true value, the red star the mean of the PDF.

Godsill, & Andrieu, 2000) and (Arulampalam, Maskell, Gor-
don, & Clapp, 2002), while the particle filtering-based neural
network training is detailed in (Sbarufatti, Corbetta, Giglio,
& Cadini, 2018).

The three degradation parameters to be propagated are as-
sumed to be independent, hence the methodology is applied
to each of them separately. For brevity’s sake, the methodol-
ogy applied to qMax is here shown, but the same reasoning
holds for the other degradation parameters.

The structure of the MLP used in this work consists of a net-
work with 1 input node, 1 hidden layer with 3 neurons and a
single output node, thus with a total of 10 weights and biases.
The use of a simple network is motivated by the necessity of
having a relatively small number of weights and biases, which
will have to be identified online by the PF. A bigger number
of layers, and/or neurons per layer, from one point of view
can improve the accuracy of the prediction, but on the other
hand its cost is too high for the online purpose of this work.

The neural network is first trained on the historical data of
qMax, shown in Figure 3, which represent the expected tra-
jectory. The network weights and biases are organized in a
vector x0 = [x1, x2, ..., x10], which represents the starting
point of the process. Assuming the observation zk, which
in this case is the parameter qkMax, is available at the discrete
time step k, we can describe the process and the measurement
equations as:

xk = xk−1 + ωk−1 (1)

zk = g(xk, k) + ηk (2)

where g(xk, k) is the MLP network, taken as the model mea-
surement equation, i.e. the relationship between the hidden
states xk and the observation zk. ωk−1 and ηk represent the
process and measurement noises respectively, both assumed
Gaussian.

The task of the particle filter is to recursively estimate
the probability density function p(xk|z0:k) which, from a
Bayesian perspective, provides the degree of belief in the hid-
den degradation state xk based on the previous knowledge,
which are the measurements z0:k. To estimate this PDF we
recur to the sampling importance resampling (SIR) PF al-
gorithm, in which Ns random state trajectory (particles) are
generated on the basis of 1. To every particle is then as-
signed a weight based on its likelihood p(zk|x(i)

k ) every time
a new observation zk is available, representing the probability
of observing zk given the particle x

(i)
k . Finally the particles

are re-sampled to avoid the sample impoverishment problem
(Doucet et al., 2000): the particles with lower weights are
more likely to be discarded, thus converging through the par-
ticles with higher weights.

This approach guarantees the adaptability to the real trend of
the measurements and allows to compute the PDF in each
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Figure 5. Correlation between time to discharge and the opti-
mal parameter qMax for battery B0005

future instant of time, as shown in the left graph in Figure
4: the red dots represent the available observations, while the
blue dot the future trend (not known to the algorithm). Each
green line represents a particle, hence one of the Ns = 500
MLP network prediction of qMax. With this approach it is
possible to compute the posterior PDF of the parameter at
each future cycle k, as illustrated in the right graph of Figure
4.

2.3. Remaining useful life estimation

In order to predict the RUL of the battery, we need to define
a criterion for its end of life (EOL). A battery is usually said
to reach the EOL when its capacity drops below 80% of the
initial one, which is strictly correlated in our case (meaning
constant discharge current) to the time to discharge (TTD). In
order to exploit in the best possible way the available dataset,
the authors decided to fix the threshold at 2400s, hence with
a remaining capacity of about 70%.

Moreover, as already stated in (Nascimento et al., 2021) and
shown in Figure 5, there is an almost perfect correlation be-
tween the TTD and qMax. This means that is possible to shift
the threshold directly to this parameter, thus greatly simpli-
fying the task of estimating the RUL, since there is no need
to evaluate the physical model in order to obtain the TTD.
Hence, for the purpose of our work, the EOL is defined as the
cycle at which the parameter qMax drops below the value of
8300 C.

Hence it is possible to compute the EOLi
k for each MLP pre-

diction i at the current cycle k, and consequently the RULi
k

as:
RULi

k = EODki− k (3)

which are used to build the posterior probability density func-
tion of the RULk, p̂(RULk|z1:k). Figure 6 shows the results
of a simulation in which is reported the expected value of the
RUL with respect to the true battery RUL (solid blue line).
Initially, the RUL is overestimated, since the first predictions,

Figure 6. Remaining useful life prediction for the battery at
each cycle k. The blue line represent the true battery RUL.
The dotted lines represent the algorithm predictions, where
the red line is the mean value and the green lines are the 5th

and 95th percentiles.

having just one observation available, are strongly based on
the training dataset. The algorithm then rapidly adapts to the
new observations. Examining the shape of the data in Fig-
ure 5, it can be explained why the predictions between cy-
cles 50 and 90 underestimate the RUL: during this phase,
battery degradation seems to be more pronounced, with a
steeper slope in the TTD curve. This would naturally lead
to a quicker approach to the failure threshold. However, the
presence of a peak in the TTD curve around cycle 90 signifi-
cantly extends the battery’s lifetime. The algorithm captures
this behaviour, adjusts its predictions accordingly, and ulti-
mately converges to the accurate RUL estimation.

Once identified the ˆEOL, representing the mean value of the
posterior PDF p̂(EOLk|z1:k), it is possible to compute the
PDFs for each degradation parameters at k = ˆEOL. These
PDFs are used to sample the degradation parameters to feed
the electrochemical model in a classic Monte-Carlo fashion,
allowing the evaluation of the performances of the battery at
its EOL. Figure 7 shows the results of a Monte-Carlo simu-
lation: the red dotted line represents the true battery output
voltage, while each grey line is a Monte-Carlo simulation.
The blue line represents the average value, the green line its
variance.

3. CONCLUSIONS

This paper proposes a combination of a physical model with
a data-driven approach for the prognosis of lithium-ion bat-
teries. The use of the physical model guarantees a better un-
derstanding of the underlying degradation dynamics, which
is usually the main drawback of the pure black-boxes ap-
proaches. On the other hand, the integration with the data-
driven algorithm allows for the propagation of the model pa-
rameters and the quantification of the uncertainties involved.
The use of Modelica, with its declarative approach in defin-
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Figure 7. Monte-Carlo simulation of the battery perfor-
mances at the EOL with the parameters estimated at cycle
k = 125 for future cycle k = 143, identified as battery EOL.

ing the physical model, provides a more intuitive description
of the physics and simplifies the modelling process. More-
over, the integration through the functional mock-up inter-
face in Python provides a powerful and flexible platform for
parameter optimisation, sensitivity analysis, and other anal-
ysis tasks, as evidenced in this work with the optimisation
of the degradation parameters. The results of the simulations
show good agreement with the actual battery performance, in-
dicating that the proposed approach could be a useful tool for
predicting RUL and evaluating battery health in real-world
applications.

Future work on this matter will include the use of different
discharging profiles, closer to a real-life application, and the
relaxation of the hypothesis on the independence between the
degradation parameters.
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