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ABSTRACT 

Monitoring the railroad’s components is crucial to 

maintaining the safety of railway operations. This article 

proposes a novel, compact computational vision system that 

works on edge devices, designed to provide precise, 

instantaneous assessments of rail tracks. This model 

reconfigures the teacher-student guidance system inherent in 

NanoDet [1] by incorporating an innovative adaptively 

weighted loss (AWL) in the learning phase. The AWL 

assesses the caliber of the teacher and student models, 

establishes the weightage of the student's loss, and 

dynamically adjusts their loss contributions, directing the 
learning procedure towards effective knowledge transfer and 

direction. In comparison with cutting-edge models, our 

AWL-NanoDet boasts a minuscule model size of less than 2 

MB and a computational expense of 1.52 G FLOPs, 

delivering a processing time of less than 14 ms per frame 

(evaluated on Nvidia’s AGX Orin). Compared to the original 

NanoDet, it also significantly enhances the model's accuracy 

by nearly 6.2%, facilitating extremely precise, instantaneous 

recognition of rail track elements. 

 

1. INTRODUCTION 

As reported by the Federal Railroad Administration's safety 

database [2], there were over 300 accidents in 2022 caused 

by missing track components, resulting in losses of more than 

$85 million. Rigorous inspections are essential to identify 

flaws in rail roads and ensure the safety of train’s operations. 

However, most existing methods are manual and heavily rely 

heavily on operator’s experience, making them costly and 

time-consuming. As such, the need for an automated, real-

time, and cost-effective image-based system for accurate rail 

track inspections is significant. 

Convolutional Neural Networks (CNN) have revolutionized 

computer vision and object detection recently. LeNet [3], 

AlexNet [4], Visual Geometry Group (VGG) [5], and ResNet 

[6] are a few notable CNN models that have contributed to 

the field's progress. LeCun et al. introduced CNN and 

demonstrated its superiority in classification tasks compared 

to traditional approaches. AlexNet enhanced the capabilities 

of CNN by delving into the extraction of more complex 

features through its relatively deep CNN layers (5 layers). In 

additional, VGG used a deeper CNN network (16 or 19 

layers) for constructing more comprehensive features. 

However, the increasing depth of these networks resulted in 

higher probability of overfitting and deterioration in real 

detection tasks. He et al. addressed these problems by 

proposing a ResNet, which introduced shortcut connections 

to enable deeper CNN models while mitigating the issues 

above.  

All these significant advances in CNN-based models have 

laid a strong foundation for developing highly accurate 

systems, inspiring a range of real-world applications. CNN-

based object detection models can be broadly classified into 

two categories: anchor-based and anchor-free models. The 

former relies on preconfigured anchors to match 

corresponding objects, while the latter circumvents the use of 

those anchors. Noteworthy examples of anchor-based 

methods that have demonstrated remarkable performances in 

reported results include RCNN (proposed by Girshick et al. 
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[7] ) and YOLO (proposed by Redmon et al. [8]). Despite the 

success of anchor-based models, a notable drawback arises 

from the anchor matching step, which could greatly slow 

down model inference. To address this limitation, the anchor-

free method was introduced as an alternative. One notable 

example is CornerNet devised by Law et al. [9], which 

directly generates bounding boxes (BBs) without relying on 

anchor matching. Furthermore, Tian et al. [10] introduced the 

fully convolutional one-stage object detection (FCOS) 

method, which not only regresses the object's centroid but 

also utilizes parallel computation to calculate the distance 

between the centroid and the bounding box's boundary. 

Consequently, FCOS exhibits superior performance in 

various object detection tasks. No matter it is anchor-free or 

anchor-based, the utilization of deeper model structures has 

resulted in a great growth in computational cost. 

Consequently, deploying these complex models on small 

form-factor edge devices becomes challenging due to their 

slow runtime, which hinders real-time object detection 

capabilities. As a result, substantial research endeavors have 

been dedicated to developing lightweight models and 

approaches. These efforts aim to address the computational 

challenges and enable the efficient deployment of CNN 

models on edge devices, ensuring real-time object detection 

capabilities are achievable. Howard et al. [11] introduced 

MobileNet, a well-known lightweight model structure used 

as a backbone. One of its key innovations is the use of depth-

wise separable convolutions, which greatly reduce the 

computational load for models. This design has made 

MobileNet an efficient solution for deploying CNN models 

on resource-constrained devices, striking a balance between 

model size and performance. In addition to MobileNet, 

another notable lightweight model structure is ShuffleNet, 

designed by Zhang et al. [12], which also utilizes depth-wise 

separable convolutions, but incorporates a creative shuffling 

of input feature information. This shuffling operation 

enhances the feature combination across different channels, 

leading to a more comprehensive feature representation and 

significantly enriching the overall feature information. Based 

on those excellent properties, RangiLyu et al. [1] leveraged 

the ShuffleNet to develop NanoDet, a lightweight object 

detection model. The integration of ShuffleNet into NanoDet 

translates into superior object detection performance, 

particularly in resource-limited scenarios. 

Meanwhile, the smaller number of trainable parameters in 

lightweight models introduces a limitation of poorer learning 

capabilities, potentially restricting its ability to achieve high 

performance and adapt to complex patterns and variations in 

the data. Hinton et al. [13] proposed knowledge distillation 

(KD) to overcome the negative effects of over-simplification 

in lightweight models. KD uses a more complex teacher 

model to guide a simplified student model, facilitating 

knowledge transfer. Label Assignment Distillation (LAD) 

developed by Nguyen et al. [14] is based on KD. The teacher 

model in LAD, with a more complex structure, generates 

simplified labels for the student model, and enhances the 

training process. In the case of NanoDet, a similar approach 

of LAD is employed, where an Assign Guidance Module 

(AGM) is implemented as the teacher model, which assigns 

learning labels to the prediction head of the student model 

and facilitates learning convergence. By utilizing LAD, 

NanoDet enhances the learning capabilities and performance 

of the lightweight student model. 

Some of the above-mentioned advances have also made 

significant contributions to the development of accurate and 

real-time models and processes for Prognostics and Health 

Management (PHM) in facilities and infrastructure. 

Dais et al. [15] introduced a CNN-based system designed 

specifically for the classification and localization of cracks 

on masonry surfaces. Given that masonry structures 

constitute a significant portion of the global building stock, 

the development of a highly accurate and automated system 

is of paramount importance for ensuring public safety. 

Additionally, Zhang et al. [16] and Cha et al. [17], each 

developed CNN-based models for bridge inspection. Both 

models significantly enhance accuracy in detecting surface 

damages like cracks, spalling, and corrosion, thereby playing 

a crucial role in ensuring bridge safety and structural integrity. 

Moreover, Guo et al. [18], [19] extended YOLOv4 and 

YOLACT models for inspecting track components in 

railroads. Their work achieved satisfactory performance in 

classifying and localizing components like spikes and clips, 

improving the practice of maintenance and safety in the 

railroad industry. In another domain, Li et al. [20] introduced 

a CNN-based model tailored for inspecting damages on the 

surfaces of concrete structures. This innovative approach 

enables a visual assessment of the safety, durability, and 

serviceability of concrete structures. 

While these influential studies demonstrated the potential of 

achieving real-time performance on powerful computing 

platforms, they are not very well-suited for field applications. 

And there is a notable scarcity of research endeavors focused 

on the development of lightweight models specifically 

tailored for edge devices, thereby enabling true mobile 

computing and field-deployable inspection. 

Addressing the pressing demand for the real-time safety 

inspection, this paper presents an edge-device-compatible 

computer vision model based on the emerging NanoDet 

framework for real-time assessment of rail track components. 

Our proposed model redefines NanoDet's training process by 

introducing an adaptively weighted loss (AWL) and a 

dynamic algorithm online adjusting their loss metrics during 

the training phase. With this strategy, our model guarantees 

an effective and stable knowledge distillation process, 

achieving superior results than native NanoDet.  

The subsequent sections of this paper are organized as 

follows: Section 2 will examine the framework of native 

NanoDet and discuss its existing issue. Section 3 is dedicated 
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to the delineation of the AWL pipeline. Section 4 will 

describe the experimental setup and results with 

interpretation. Section 5 will illustrate the conclusion of the 

proposed method. 

2. PRELIMINARIES 

This section will first describe the architecture of the native 

NanoDet, which forms the foundation of the current study. 

Subsequently, the challenges associated with NanoDet will 

be discussed. 

2.1. NanoDet 

The NanoDet is an extremely compact model, drawing its 

inspiration from the LAD. It incorporates a teacher model 

that, during the training phase, assists a student model in 

learning data, mitigating potential adverse effects caused by 

its lightweight nature. The architectural design of the native 

NanoDet is portrayed in Figure 1, comprised of three 

constituent modules: 

 

Figure 1. The structure of native NanoDet 

 

1. The first part, crucial to the object detection task, 

comprises the Backbone and the Feature Pyramid 

Network (FPN), which together establish a feature 

extraction framework. This widely used structure is 

capable of producing salient quality of the feature maps 

denoted as F in Figure 1. 

2. The Assign Guidance Module (AGM), or teacher model, 

processes feature maps F to predict bounding boxes (BA) 

and their respective classes (CA). The model's predictions 

are compared with the ground truths of the bounding box 

(BG) and class (CG), yielding a loss metric (𝐿𝑇). Instead 

of BG and CG, these predictions (BA and CA) are used as 

the reassigned labels for student model training - a 

method known as Label Assignment Distillation (LAD). 

3. The prediction head, often referred to as the student 

model, utilizes the same feature maps F as those in the 

teacher model for predicting the bounding box (BP) and 

associated class labels (CP). The predictions from the 

student model, however, are compared with the teacher 

model's reassigned labels (BA and CA), not the ground 

truth, to determine the student model's loss (𝐿𝑆). This is 

a primary departure from conventional model training 

methods. 

𝐶𝐴 , 𝐵𝐴 = 𝑇𝑖(𝐹) 

𝐶𝑃 , 𝐵𝑃 = 𝑆𝑖(𝐹) 
(1) 

In Eq. (1), "i" signifies the models at the 𝑖𝑡ℎ training epoch. 

The teacher model, 𝑇𝑖, provides class output 𝐶𝐴 and bounding 

box output 𝐵𝐴 , while 𝑆𝑖 , the student model, delivers 

classification output CP and bounding box output BP. The 

teacher loss (𝐿𝑇 ), a combination of binary cross entropy 

classification loss (BCE) and Generalized Intersection over 

Union bounding box loss (GIOU), is then computed as Eq. 

(2) below. The reassigned labels CA and BA are used to train 

𝑆𝑖  in the learning process. 

𝐿𝑇=𝐵𝐶𝐸(𝐶𝐴, 𝐶𝐺)+𝐺𝐼𝑂𝑈(𝐵𝐴 , 𝐵𝐺) (2) 

Moreover, as depicted in Eq. (3), NanoDet's student loss (𝐿𝑆) 

is derived by comparing 𝑆𝑖 's outputs (CP, BP) with the 

reassigned labels (𝐶𝐴 , 𝐵𝐴).  

𝐿𝑆=𝐵𝐶𝐸(𝐶𝑃 , 𝐶𝐴)+𝐺𝐼𝑂𝑈(𝐵𝑃 , 𝐵𝐴) (3) 

This equation signifies that 𝑆𝑖  relies on these reassigned 

labels, rather than the ground truth, for optimized learning 

when 𝑇𝑖  is in operation. The quality of 𝑇𝑖  profoundly 

influences NanoDet's efficacy. Thus, the cumulative loss for 

training NanoDet is 𝐿𝑆 + 𝐿𝑇.  

Once the training is completed, the teacher model is removed, 

leaving the student model to make predictions. 

2.2. Issues in NanoDet 

The native NanoDet's teacher model employs the COCO 

dataset [21] for training. Yet, our research utilizes a 

distinctive dataset sourced from railroad inspections, as 

shown in Figure 2, which is considerably different from 

COCO. This disparity necessitates the retraining of the 

teacher model, which introduces new issues. 

 

  
Figure 2. The railroad data 

The NanoDet's teacher model has a compact structure 

composed of only four 3x3 convolutional kernels, could be 

trained insufficiently at the beginning of the training process. 

This can lead to possible mislabeling of data intended for 

guiding the student model. Given the inherent structure of 
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Label Assignment Distillation (LAD), the quality of the 

student model's training is intrinsically dependent on the 

teacher model's performance. If the teacher model's output 

distribution diverges drastically from the actual distribution, 

it could induce a wrong direction for early-stage training, 

which might degrade the student model's quality and impede 

the backpropagation of loss, thereby slowing down the 

training process.  

Nevertheless, if the teacher model is meticulously trained to 

a high qualify from the very beginning and is capable of 

generating accurate labels, it will certainty improve the 

efficacy of the student model's training. This immaculate 

level of instruction from an impeccably trained teacher model 

not only boosts the student model's ability to grasp true data 

patterns but also accelerates the learning process, hence 

enhancing its overall performance. 

3. PROPOSED ADAPTIVELY WEIGHTED LOSS (AWL)  

To remedy this issue, we introduce an innovative loss 

algorithm, viz., the adaptively weighted loss (AWL), which 

evaluates and dynamically adjusts the weight of the student 

loss based on the quality of the teacher and student models in 

each training epoch. At the beginning of training, the teacher 

loss is given priority to facilitate rapid teacher learning and 

prevent generation of incorrect labels. Once the teacher 

model is mature, the emphasis shifts toward the student 

model. 

 

Figure 3. The pipeline of the adaptively weighted loss 

(AWL) 

Figure 3 illustrates our proposed pipeline, consisting of three 

critical components: firstly, the assessment of the teacher 

(𝑄𝑇𝑖
) and student (𝑄𝑆𝑖

) model qualities in the ith training 

epoch; secondly, the assignment of a quantitative score to the 

teacher model in the ith epoch (𝜆𝑖), and the determination of 

a weight (𝑤𝑖) for the student loss based on current 𝑄𝑇𝑖
, 𝑄𝑆𝑖

 

and 𝜆𝑖; finally, the updating of student loss 𝐿𝑆𝑖 using weight 

𝑤𝑖, forming a weighted student loss 𝐿𝑆𝑖

′  in response to various 

training situations.  

3.1. Quality Assessment 

Our method begins with the determination of the quality 

metrics for the teacher model 𝑇𝑖 and the student model 𝑆𝑖  at 

the ith epoch. These quality measures are instrumental in 

defining the procedures for assigning the weight 𝑤𝑖  and 

adjusting the student loss 𝐿𝑆𝑖 . The final loss for 

backpropagation during training incorporates both the 

updated student loss and teacher loss, as given by 𝐿𝑆𝑖

′ +𝐿𝑇𝑖
. 

Further details of each component will be elaborated in the 

subsequent sections. An essential prerequisite of AWL is to 

have a pre-training process employing the native NanoDet 

model without AWL, which generates the pre-trained loss at 

each training epoch (𝐿𝑇𝑖

𝑝𝑟𝑒
and 𝐿𝑆𝑖

𝑝𝑟𝑒
). Then its mean and the 

maximum teacher loss (𝐿𝑇𝑚𝑒𝑎𝑛
 and 𝐿𝑇𝑚𝑎𝑥

) can be extracted 

as shown in Eq. (4) 

𝐿𝑇𝑚𝑒𝑎𝑛
=

1

𝑀𝑝𝑟𝑒 ∑ 𝐿𝑇𝑖

𝑝𝑟𝑒
𝑀𝑝𝑟𝑒

𝑖=1
   

𝐿𝑆𝑚𝑒𝑎𝑛
=

1

𝑀𝑝𝑟𝑒 ∑ 𝐿𝑆𝑖

𝑝𝑟𝑒
𝑀𝑝𝑟𝑒

𝑖=1
   

𝐿𝑇𝑚𝑎𝑥
= 𝑀𝑎𝑥(𝐿𝑇𝑖

𝑝𝑟𝑒)  

𝐿𝑆𝑚𝑎𝑥
= 𝑀𝑎𝑥(𝐿𝑆𝑖

𝑝𝑟𝑒)  

𝑖 = 1, … ,  𝑀𝑝𝑟𝑒 

(4) 

The superscript pre denotes quantities associated with the 

pre-training phase, with 𝑀𝑝𝑟𝑒  being the total number of 

training epochs in that phase. Once the constants 

𝐿𝑇𝑚𝑒𝑎𝑛
,  𝐿𝑆𝑚𝑒𝑎𝑛

,  𝐿𝑇𝑚𝑎𝑥
,  and 𝐿𝑆𝑚𝑎𝑥

 are determined, they 

function as benchmark values for evaluating the performance 

of the teacher and the student models during the AWL-

integrated training process. 

Eq. (5) establishes that the quality of the teacher model 𝑄𝑇𝑖
 

and the student model 𝑄𝑆𝑖
 at the ith epoch based on their 

respective losses 𝐿𝑇𝑖
 and 𝐿𝑆𝑖 , compared to the mean losses 

𝐿𝑇𝑚𝑒𝑎𝑛
 and 𝐿𝑆𝑚𝑒𝑎𝑛

 in the pre-training  

𝑄𝑇𝑖
= {

0, 𝐿𝑇𝑖
≤ 𝐿𝑇𝑚𝑒𝑎𝑛

1, 𝐿𝑇𝑖
> 𝐿𝑇𝑚𝑒𝑎𝑛

 

𝑄𝑆𝑖
= {

0, 𝐿𝑆𝑖
≤ 𝐿𝑆𝑚𝑒𝑎𝑛

1, 𝐿𝑆𝑖
> 𝐿𝑆𝑚𝑒𝑎𝑛

 

(5) 

𝑄𝑇𝑖
= 0  resulting from 𝐿𝑇𝑖

 lesser than 𝐿𝑇𝑚𝑒𝑎𝑛
, signifies a 

relatively low loss and high qualify of the teacher model, that 

is, the teacher is qualified for guiding the student model. In 

contrast, if 𝐿𝑇𝑖
> 𝐿𝑇𝑚𝑒𝑎𝑛

, it yields 𝑄𝑇𝑖
= 1, indicating poor 
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teacher model's quality. A similar criterion can be applied to 

the student model to assess its quality.  

3.2. Score/Weight Assignment 

The rationale behind the aforementioned quality evaluation 

lies in accounting for the different scenarios involving 

various combinations of 𝑇𝑖 and 𝑆𝑖  qualities, and, accordingly, 

assigning suitable scores and weights to the student loss 

during model training. In Eq. (5), we have four possible 

combinations of 𝑇𝑖  and 𝑆𝑖  qualities. The methodologies for 

assigning scores and weights in each combination are 

explained in the subsequent sections. 

1. 𝑄𝑇𝑖
= 0 and 𝑄𝑆𝑖

 = 0: 

In this first scenario, where both the teacher and student 

models are qualified, we propose to set 𝑤𝑖  using Eq. (6), 

where 𝑤𝑖  remains a constant value of 1, and the adjusted 

student loss 𝐿𝑆𝑖

′  will equal to 𝐿𝑆𝑖. The rationale is that when 

both 𝑇𝑖  and 𝑆𝑖  are qualified, 𝑇𝑖  can accurately predict the 

ground truth and provide high-quality labels to instruct 𝑆𝑖 , 

and 𝑆𝑖  is also qualified to learn from the labels reassigned by 

𝑇𝑖. Then, there is no need for weight adjustments in the loss, 

which can be used directly for backpropagation. 

𝑤𝑖 = 1 

𝐿𝑆𝑖

′ = 𝑤𝑖 ∗ 𝐿𝑆𝑖
 

(6) 

2. 𝑄𝑇𝑖
= 1 and 𝑄𝑆𝑖

 = 1: 

In the scenario where both 𝑇𝑖  and 𝑆𝑖  are unqualified, the 

weight assignment, 𝑤𝑖, follows Eq. (7). Here, 𝜆𝑖, defined in 

the first row of Eq. (7), measures the degree to which 𝑇𝑖 

deviates from being qualified. A larger 𝜆𝑖  indicates a 

significant deviation from qualification for 𝑇𝑖. Given that, for 

an unqualified teacher, 𝐿𝑇𝑖
-𝐿𝑇𝑚𝑒𝑎𝑛

 will always be positive, 

normalizing by 𝐿𝑇𝑚𝑎𝑥
 ensures 𝜆𝑖  ranges from 0 to 1. This 

calculated 𝜆𝑖  is utilized as a penalty coefficient, multiplied 

with the teacher's loss 𝐿𝑇𝑖
 in the second row of Eq. (7), along 

with a hyperparameter, c, acting as a gain factor for 𝜆𝑖*𝐿𝑇𝑖
 to 

compute 𝑤𝑖. Noticeably, 𝑤𝑖 is confined between 0 and 1. Eq. 

(7) means that an increase in 𝐿𝑇𝑖
 due to the teacher's poor 

alignment with the ground truth leads to a corresponding rise 

in 𝜆𝑖  and a decrease in 𝑤𝑖 . This implies that when 𝑇𝑖  is 

significantly unqualified, guiding 𝑆𝑖  becomes futile, 

prompting a smaller 𝑤𝑖  to downscale 𝐿𝑆𝑖
, thereby reducing 

its contribution to the total loss. This allows prioritizing 

training of the teacher model to enhance its qualifications. 

𝜆𝑖 =
𝐿𝑇𝑖

− 𝐿𝑇𝑚𝑒𝑎𝑛

𝐿𝑇𝑚𝑎𝑥

 

𝑤𝑖 = 1 − tanh(𝑐 ∗ 𝜆𝑖 ∗ 𝐿𝑇𝑖
) 

𝐿𝑆𝑖

′ = 𝑤𝑖 ∗ 𝐿𝑆𝑖
 

(7) 

3. 𝑄𝑇𝑖
= 0 and 𝑄𝑆𝑖

 = 1: 

In the third scenario, where 𝑇𝑖  is qualified but 𝑆𝑖  is 

unqualified, the assignment of 𝑤𝑖  follows Eq. (8). As 

suggested by Eq. (5), when 𝑇𝑖 is qualified, it means 𝐿𝑇𝑖
 is less 

than 𝐿𝑇𝑚𝑒𝑎𝑛
, resulting in a negative value for 𝐿𝑇𝑖

-𝐿𝑇𝑚𝑒𝑎𝑛
. 

Applying the operation of absolute value ensures 𝜆𝑖 remains 

positive. The first two rows of Eq. (8) imply that when 𝑇𝑖 is 

highly qualified (i.e., 𝐿𝑇𝑖
 is very low), and hence capable of 

generating accurate labels for 𝑆𝑖 , both the score 𝜆𝑖 and weight 

𝑤𝑖 become large. Here, 𝑤𝑖 ranges from 1 to 2, thereby scaling 

up the student loss 𝐿𝑆𝑖
 and increasing its contribution to the 

total loss. Consequently, the training process for 𝑆𝑖  is 

expedited, enabling 𝑆𝑖  to learn faster towards 𝑇𝑖. 

𝜆𝑖 =
|𝐿𝑇𝑖

− 𝐿𝑇𝑚𝑒𝑎𝑛
|

𝐿𝑇𝑚𝑎𝑥

 

𝑤𝑖 = 1 + tanh (𝑐 ∗
𝜆𝑖

𝐿𝑇𝑖

) 

𝐿𝑆𝑖

′ = 𝑤𝑖 ∗ 𝐿𝑆𝑖
 

(8) 

4. 𝑄𝑇𝑖
= 1 and 𝑄𝑆𝑖

 = 0: 

In the final scenario, where 𝑇𝑖  is unqualified while 𝑆𝑖  is 

qualified, the score and weight assignment is the same as the 

formula in Eq. (7). That is, that, when 𝑇𝑖 is unqualified and 

generates erroneous label reassignments, the student loss 

becomes insignificant. Consequently, its contribution to the 

total loss should be diminished to expedite the training of the 

teacher model, prioritizing its convergence for qualification. 

3.3. Loss Update 

The total training loss, derived from the different scenarios, 

is given by 𝐿𝑆𝑖

′ + 𝐿𝑇𝑖
. The non-linear correlation between 

𝐿𝑇𝑖
 and 𝑤𝑖  forms the core of our AWL method and is 

visualized in Figure 4. 

From this diagram, it's clear that the weight reduces non-

linearly with the increasing teacher loss. When the teacher 

model is well-qualified, a large weight is assigned to the loss 

of the unqualified student (blue curve) to speed up learning 

of the latter. When both the student and the teacher are 

qualified (green curve), the weight is constant 1, leading to 

behavior similar to the native NanoDet. For unqualified 

teacher models (Orange line) where teacher loss exceeds 0.8 

(the threshold for qualifying a teacher model.), the student 

loss becomes less important regardless of the student's 

qualifications. Therefore, a weight lower than 1 is assigned 

to the student loss, prioritizing the improvement of the 

teacher model's training process. 

Our method, illustrated in Figure 3, can be succinctly 

represented by Eq. (9). 𝑇𝑖  and 𝑆𝑖  denote the teacher and 

student models at the ith epoch, respectively. The Score 
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function determines the accurate level of these models, 

consequently generating the weight 𝑤𝑖. The student loss, 𝐿𝑆𝑖
, 

is updated by multiplying it with 𝑤𝑖, mitigating learning from 

an inadequate teacher model. 

𝑤𝑖 = 𝑆𝑐𝑜𝑟𝑒(𝑇𝑖 , 𝑆𝑖)   

𝐿𝑆𝑖

′ = 𝑤𝑖 ∗ 𝐿𝑆𝑖
 

𝑖 = 1, … , 𝑀𝑡𝑟 

(9) 

 

 
Figure 4. Teacher loss vs. student weight 

4. EXPERIMENTAL SETUP AND RESULT 

The AWL-NanoDet model and other baseline models were 

trained on a comprehensive dataset of 2,000 railroad 

inspection images, leveraging the computational power of the 

NVIDIA RTX A5000 GPU, equipped with 8,192 CUDA 

cores and capable of 27.77 TFLOPS. Those models were later 

tested on Nvidia’s AGX Orin, an edge computing device of 

modest specifications, including 2,048 CUDA cores and 5.3 

TFLOPS, which poses a challenge for real-time detection. 

4.1. Dataset collection & pre-process 

For data collection, four high-speed cameras, generating  

videos with a resolution of 416*416 pixels at the rate of 60 

fps, were mounted under a Hi-rail truck, as Figure 5 shows, 

each targeting a different trackside.  

Our study focused on detecting two key railroad components: 

clips and spikes, as shown in Figure 6. We collected 2000 

images, and the images are split at an 80% (1600 images) to 

20% (400 images) ratio for model training and testing, 

respectively. Given the fixed perspective angles between the 

camera and the rail, extensive data augmentation is not 

necessary. We only implement brightness augmentation to 

handle variable lighting conditions during the inspection, as 

Figure 7 shows. 

 

 

Figure 5. Data collection system. 

 

 
Figure 6. Collected image data 

 

(a) -20% brightness         (b) 0%        (c) +20% brightness 

Figure 7.  Data augmentation. 

4.2. Performance Metrics 

For assessing our proposed method, standard performance 

metrics, including precision, recall, and mean Average 
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Precision (mAP), along with computational efficiency 

measures of FLOPs (Floating Point Operations) and 

inference time, are utilized.  

Precision and recall in Eq. (10), indicate the proportion of 

correctly detected objects among all detected ones, and the 

ratio of correctly identified objects to all objects in the ground 

truth, respectively. True positive, false positive, and false 

negative are, respectively, denoted by TP, FP, and FN in the 

equation.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(10) 

Moreover, the mAP, in Eq. (11) , serves as an overarching 

measure of the model's performance across all object classes, 

with each class having its own Average Precision (AP) value 

that represents the area under the Precision-Recall (P-R) 

curve. We specifically use mAP@0.5 and mAP@0.5:0.95 to 

evaluate the accuracy of Intersection over Union (IoU) values 

in bounding box predictions, which are shown in Eq. (11). 

The Eq. (11) involves two classes: clips and spikes. For the 

evaluation metric mAP@0.5, bounding boxes with an 

Intersection over Union (IoU) greater than 0.5 are treated as 

positive predictions, indicating a significant overlap between 

the predicted and actual object location. 

𝑚𝐴𝑃 =
1

𝐶
∗ ∑ 𝐴𝑃𝑖

𝐶

𝑖

 (11) 

For mAP@0.5:0.95, as shown in Eq. (12), we average mAP 

values calculated at an increment of 0.05 within the IoU range 

of 0.5-0.95 

𝑚𝐴𝑃@0.5: 0.95 =
1

𝑁
∗ ∑ 𝑚𝐴𝑃@𝑖

0.95

𝑖

  

(𝑖 = 0.5,0.55 … 0.95, 𝑁 = 10) 

(12) 

4.3. Results 

In the following section, the performance outcomes of the 

proposed AWL-NanoDet model will be analyzed and 

compared with other real-time, lightweight benchmark 

models These include the native NanoDet, along with 

YOLOv8-n and YOLOv8-s [22]. 

NanoDet, with its size under 2 Mb and computational cost of 

1.52G FLOPs, is a compact model. In comparison, YOLOv8-

n is larger in size (3.2 Mb) and more computationally 

intensive with 8.7G FLOPs. Meanwhile, YOLOv8-s is even 

larger with 28.6G FLOPs and 11.2M size. However, the scale 

of FLOPs across NanoDet, YOLOv8-n, and YOLOv8-s, is 

comparable in general, hence confirming the relevance of 

their comparative analysis. 

The tabulated results in Table 1 provide a quantitative 

comparison in precision, recall, mAP, FLOPs, and inference 

time across various classes. The data indicates that our 

proposed AWL-NanoDet model outperforms the other 

models in most performance measures. 

In evaluating the spike class, the native NanoDet model 

shows worse results, only reaching a recall rate of 92.2% and 

a precision of 93.0%. Although YOLOv8n achieves better 

results with a recall rate of 94.1% and a precision of 95.8 for 

the spike class, our AWL-NanoDet demonstrates superior 

detection featuring a recall rate of 95.2% and a precision of 

96.1%. This corresponds to a notable 3% improvement over 

the native NanoDet. Although the recall rate of YOLOv8 is 

almost the same as our AWL-NanoDet, YOLOv8s has a 

FLOPs nearly 19 times larger than our AWL-NanoDet.  

Furthermore, our model surpasses the native NanoDet by a 

significant 5.6% in AP@0.5:0.9, as shown in Table 1. When 

compared with the larger models like YOLOv8n and 

YOLOv8s, our model maintains its performance at the high 

level in the mAP@0.5 metrics and matches larger model in 

mAP@0.5:0.9. Considering that our AWL-NanoDet and the 

native NanoDet share the same model structure, this 

remarkable performance enhancement in both object classes 

is solely due to the AWL algorithm proposed in this study. 

Figure 8 depicts Precision-Recall (P-R) curves for both native 

NanoDet and AWL-NanoDet, colored in orange and blue 

curves, respectively. The integration of AWL during training 

noticeably enhances the performance compared to the native 

NanoDet. 

 
(a) Spike P-R curve 

 
(b) Clip P-R curve 

Figure 8. Precision-Recall (P-R) curve 

mailto:mAP@0.5:0.95


ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023 

8 

In Figure 8 (a), the P-R curve of the spike class indicates a 

dramatic drop in precision for native NanoDet as recall 

increases. On the contrary, the drop in precision of AWL-

NanoDet is much mild, maintaining a precision above 0.25 

even at a recall close to 1, whereas native NanoDet is close 

to 0. This robust performance confirms AWL's effectiveness 

for detecting challenging object classes. Figure 8 (b), shows 

the P-R curve of the clip class, which similarly demonstrates 

that AWL-NanoDet slightly surpasses NanoDet. Similarly, 

our model's precision decays more slowly as recall increases, 

keeping precision above 0.35 even when the recall is near 1, 

which is notably higher than that of native NanoDet at the 

same recall level. 

Figure 9. displays the image output from our model, 

employing the AWL algorithm under complex conditions, 

such as cluttered background or component blurring. 

 

 
(a)                                       (b) 

Figure 9. AWL-NanoDet results 

 

In Figure 9 (a), even though the arrangement of objects is 

dense, the model is still successful in detecting all the 

components. Similarly, in Figure 9 (b), despite the rusty 

spikes embedded in the background, the model continues to 

effectively identify all components. 

 

 

Model Class Precision 

(%) 

Recall 

(%) 

mAP@0.5 

(%) 

mAP@0.5:0.95 

(%) 

FLOPs 

(G) 

Inference time  

(ms) 

AWL-Nanodet All 

Clip 

Spike 

96.7 

97.2 

96.1 

96.8 

98.4 

95.2 

98.7 

99.0(AP) 

98.4(AP) 

71.5 

75.9(AP) 

67.0(AP) 

1.52 4.2 

Native-NanoDet All 

Clip 

Spike 

94.9 

96.8 

93.0 

95.1 

98.0 

92.2 

98.1 

98.2(AP) 

97.9(AP) 

65.9 

69.7(AP) 

62.1(AP) 

1.52 4.2 

YOLOv8n All 

Clip 

Spike 

95.0 

94.2 

95.8 

95.5 

97.0 

94.1 

98.2 

98.6(AP) 

97.8(AP) 

73.2 

78.9(AP) 

67.0(AP) 

8.7 19.5 

YOLOv8s All 

Clip 

Spike 

96.2 

95.1 

97.2 

96.5 

97.1 

95.9 

98.6 

98.9 

98.3 

76.3 

81.7 

70.8 

28.6 60.2 

Table 1. Comparison of each models 

5. CONCLUSION 

This paper introduces AWL-NanoDet, a real-time rail track 

inspection model suited for edge devices. Its innovation lies 

in adapting the teacher-student guidance during training, 

altering the weight of the student loss based on the teacher 

and student model qualities, and eventually balancing the 

teacher and student losses. The model is tested on railroad 

inspection data and compared with other models in precision, 

recall, mAP, and FLOPs for performance benchmarking, and 

shows superior results. Future improvements will focus on 

refining the scoring and weight strategies, evaluating AWL-

NanoDet on real-world platforms, and expanding its 

applications. 
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