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ABSTRACT

This paper presents an end-to-end condition monitoring co-
design model, from vibration measurement to anomaly de-
tection, where conventional signal processing methods are
combined with neuromorphic computing concepts to enable
a systematic investigation of potential improvements offered
by brain-like information processing technologies.

The high cost of processing digital sensor data from condition
monitoring systems implies that only a minor fraction of mea-
sured data is analysed. Thereby, an untapped potential exists
to improve these systems with embedded machine learning
condition monitoring solutions using energy-efficient neuro-
morphic processors and event-triggered sensing.

The co-design model outlined here is evaluated on two use
cases involving rolling element bearing failures. One use
case is based on a laboratory environment dataset with known
bearing condition, while the other is based on a wind turbine
gearbox output shaft bearing failure representing a real-world
scenario with stochastic changes in machine state and a high
degree of uncertainty in the bearing condition. By adjusting
the co-design model parameters, the resulting hybrid conven-
tional/neuromorphic model has a detection performance on
the laboratory dataset that is comparable to the state-of-the-
art reported in the literature. Similarly, for the wind turbine
dataset, a bearing defect detection time comparable to that
reported in previous work is obtained.

This is a successful implementation of a hybrid conven-
tional/neuromorphic co-design model for condition monitor-
ing applications, which can be used and further extended to
investigate performance trade-offs and efficiency improve-
ments enabled by neuromorphic technologies.

Daniel Strömbergsson et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

The rapid developments of deep learning seen in the last
decade have driven research into applying these techniques
in condition monitoring of machine elements, e.g. gears
and rolling element bearings, used throughout heavy rotat-
ing industries such as machining, marine assets, paper mills,
trains and wind turbines (Liu, Yang, Zio, & Chen, 2018; Qiu
et al., 2023). However, the post-Moore’s law trend in ma-
chine learning since 2012 of rapidly increasing computing
performance and the associated both monetary and energy
costs to train deep learning models has become unsustain-
able (Mehonic & Kenyon, 2022). Therefore, another comple-
mentary approach to implement large machine learning and
artificial intelligence models is needed, which can alleviate
these drawbacks.

In information processing, moving away from conventional
computing based on synchronously switching between dis-
crete states is being driven toward at least two fundamen-
tally different alternatives. In quantum computing, superpo-
sitions in the form of entangled quantum states are exploited
in a major effort to develop more efficient computers and al-
gorithms for particular problems, such as factorisation etc.
Neuromorphic computing requires less exotic hardware and
focuses on designing time-encoded signal processing to en-
able highly energy-efficient, highly parallelisable, and decen-
tralised information processing systems inspired by the struc-
ture and function of biological neural networks. Industrial
applications of neuromorphic sensing and computing devices
are forecast to be a driving market segment within the next 15
years (Cambou & Tschudi, 2019) and large-scale adoption of
neuromorphic devices within the coming five (Nguyen, Jump,
& Casey, 2023). Therefore, the introduction of neuromorphic
technology in machine element condition monitoring systems
is an emerging and interesting research path to follow in the
near future.

In neuromorphic computing, spiking neural networks (SNNs)
that model analogue, neurosynaptic processes, as well as the
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event-based communication (spikes) between neurons in the
brain, more accurately than conventional deep learning mod-
els are used (Tavanaei, Ghodrati, Kheradpisheh, Masquelier,
& Maida, 2019). The computation is event-driven, where
spikes carry information and neurosynaptic spatial and tem-
poral dynamics are used to imitate a biologically plausible
computational model, which can be energy-efficiently imple-
mented using standard semiconductor technology. Thereby,
new opportunities to efficiently solve problems such as con-
strained optimisation, graph algorithms, kernels for composi-
tion, and signal processing have been opened by neuromor-
phic engineering (Aimone et al., 2022). Most relevant in
this case is the application in edge computing, where neuro-
morphic systems can provide real-time processing on board
an Internet-of-Things-based sensor. Here, the constraints
on available energy for processing and transmission of data
with limited latency can favourably be solved with neuromor-
phic systems. In the context of industrial condition monitor-
ing, the computational demands of conventional deep learn-
ing together with increased data generation from resource-
constrained edge devices, calls for new, innovative solutions
that can efficiently handle high-volume and high-frequency
data. Neuromorphic systems incorporating SNNs have an
inherent ability to process this type of high amount of in-
formation from the environment in real-time, with abilities
to reduce energy consumption. Thereby, embedded machine
learning solutions for condition monitoring can be realised
through their capacity for event-triggered sensing and low-
power processing. This as, using mixed-signal neuromorphic
processors, the cost for information processing and learning
can be reduced to enable the move towards an edge device
that can be placed within the machine, where the available
power is limited (Nilsson, Liwicki, & Sandin, 2022). No-
tably, this would enable comprehensive analysis closer to the
source, reducing the amount of data to transmit while also
having the potential to improve defect detection and diagnosis
speed (del Campo & Sandin, 2017). Thereby, the exploration
and adoption of neuromorphic principles could unlock previ-
ously untapped potential in machine learning when applied in
machine element condition monitoring.

In the last couple of years, a few instances of neuromorphic
machine learning being used in rolling element bearing con-
dition monitoring has been published. Dennler et al. in 2021
presented an anomaly detection pipeline using low-power
neuromorphic circuits moving towards edge-component, on-
line vibration condition monitoring (Dennler, Haessig, Car-
tiglia, & Indiveri, 2021). However, the signal decomposi-
tion was done by applying a cochlea-inspired Gammatone
filter-bank to separate different frequency bands, originated
in the bio-inspired scientific field from where neuromorphic
technology originates. Instead, an implementation of con-
dition monitoring-based filtering methods from the last five
decades can introduce more certainty in comparing to pre-

vious condition monitoring work. Also in 2021, Zou et al.
presented an SNN-based defect diagnostics tool for rolling
element bearings by creating spiketrains from six statistical
moments (Zuo, Zhang, Zhang, Luo, & Liu, 2021). To alle-
viate the non-stationary and nonlinear properties of the raw
measurements, due to variations in the experimental condi-
tions of the public datasets being used, the local mean de-
composition method was used to decompose the measure-
ments. The local mean decomposition can be an interest-
ing alternative to use for future investigations in this area.
This, together with the statistical moments yielded a compa-
rable accuracy on the public datasets using 128x48x4 SNN.
However, the highly idealised situations in the public datasets
can create overly distinct differences between the different
defects being classified which is fundamentally different in
real-world applications where signal-to-noise levels are much
lower and the ability to separate different fault sources be-
yond a single bearing is needed. Therefore, not distilling
the information down to singular value statistical moments
could be an improvement. The same authors extended their
work in 2022 introducing a probabilistic spiking response
model and also adding another public dataset to the anal-
ysis where the separation between fault classes is less ide-
alised (Zuo, Xu, Zhang, Xiahou, & Liu, 2022). There, the
accuracy drops to roughly 75% due to miss-classification be-
tween fault classes highlighting the need for a well-thought-
out methodology for either frequency-based fault extraction
or signal decomposition. Wang et al. used an SNN to improve
the diagnosis of defects in aeroplane engine intershaft bear-
ings with a newly developed spiketrain encoding scheme to-
gether with adaptations to the backpropagation algorithm en-
abling it to be used in the SNNs (Wang, Li, Sun, Yan, & Chen,
2022). Here, the raw vibration measurements were converted
to time-frequency maps using the short-time Fourier trans-
form, and the resulting time series is fed into an SNN classi-
fier which can perform better than previous generation deep
learning methods. While this method can achieve high clas-
sification accuracy, there exists some improvements to be
investigated. First, the suitability of the short-time Fourier
transform, which was not motivated beyond it being sim-
ple and requiring the least previous expertise. Secondly, the
research direction being towards utilising more processing
power of time series information, rather than efficiency for
an edge device implementation, leaves a gap in how to set up
an energy-efficient model based on previous condition mon-
itoring methods and techniques to detect, and in the future,
diagnose bearing defects.

From a neuromorphic point of view, Schuman et al. com-
piled the needed shift when moving towards a co-design
structure to solve associated problems (Schuman et al.,
2022). I.e. moving from a bottom-up approach with pre-
defined materials and devices informing the architectures, al-
gorithms and applications sequentially towards a co-design
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approach with all design aspects influencing all other com-
ponents directly. Here, another consideration can be made
towards the Machine-learning Optimized Design of Experi-
ments (MODE) collaboration target for an end-to-end optimi-
sation scheme with a fully differentiable pipeline to allow the
simultaneous optimisation of all design parameters (Dorigo
et al., 2023).

This paper presents a neuromorphic co-design model for vi-
bration monitoring of rolling element bearings, which opens
up for an implementation of automatic, sophisticated optimi-
sation scheme. Recent work introduced a neuromorphic en-
gineering approach to rolling element bearing vibration mon-
itoring, by adopting methodology from biological auditory
research. In particular, the filter bank considered mimics the
cochlea and is different from the filters typically used in con-
dition monitoring. How does the choice of filter bank in
combination with event-based sampling influence the perfor-
mance of the neuromorphic approach. Therefore, the knowl-
edge gaps and problems this paper aims to fill is to extend this
previous work using methodology developed in the bearing
condition monitoring field over the last decades. Thereby, an
investigation has been made of condition monitoring based
signal decomposition methods and an analysis of a both a
laboratory bearing dataset as well as a field dataset from a
wind turbine gearbox output shaft bearing failure. With these
datasets, evaluations and comparisons can be made to previ-
ously published results using an SNN approach for the labora-
tory dataset and previous results achieved using conventional
condition monitoring methods. The main contributions are:

• Systematic overview of the design parameters to be opti-
mised

• Comparison of condition monitoring based filtering
methods used for signal decomposition of vibration
measurements

• Spiketrain conversion of signal decomposition channels
reducing the data-rate via event-triggered sampling

• Investigation of consequences for a spiking neural net-
work anomaly detector similar to the one used by
Dennler et al.

2. CO-DESIGN MODEL

A schematic compilation of its constituent component is sum-
marised in Figure 1. One such co-design model includes a
number of variables in the pipeline which has to be tuned
to optimise the model, thereby the need for a co-design ap-
proach.

In this study, these are:

1. Decomposition filter types, bandwidths and limits will
have an influence on the results which needs to be inves-
tigated.

2. Chosen threshold value on the amplitude change in the
event-triggered sampling needs to be tuned, either to a
set value or to ensure a specific spikerate.

3. SNN structure, weights as well as neuron response vari-
ables need to be tuned to the application and desired re-
sult as well.

First, the measurements from the datasets are filtered and de-
composed dependent on the frequency content, where three
alternatives have been investigated. Independent of the filter-
ing method, the measurements have been decomposed into
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eight channels. These have then each been passed to a event-
triggered sampler to extract spiketrain pairs of up and down
spikes for each channel. In total, this creates 16 spiketrains
which are fed into a balanced spiking neural network where a
single output neuron gives an anomaly detection.

2.1. Datasets

Two different vibration measurement datasets were used for
analysis, one public dataset from a laboratory bearing test
rig environment which was used for validation against pre-
vious work and one dataset of wind turbine gearbox output
shaft bearing run-to-failure measurements. This wind turbine
dataset is unfortunately not publicly available. However, the
same data has been used in previous studies, both as is in this
study but also extended with more measurements before and
after bearing defect inception. When comparing with individ-
ual measurements in the extended dataset, a corresponding
measurement number to the shorter version has been identi-
fied and presented here.

The public, bearing test rig dataset consists of six vibration
measurements in total, three healthy reference measurements
and three with a defect on the outer raceway of a small-sized
bearing. The measurements were taken over six seconds with
a sampling rate of 97.7kHz sampling rate, a shaft speed of
1500rpm and a load of 1200N. The fault frequency of the
outer ring at the set speed is 81.1Hz. State-of-the-art results
using an SNN implementation with these measurements from
this dataset is a perfect confusion matrix, achieved by Dennler
et al. (Dennler et al., 2021). Omitted in this study were
two further measurement campaigns with an outer and inner
raceway defect respectively. Here, the load was varied be-
tween 0 and 1333N in 222N increments, i.e. not including the
1200N of the healthy measurements. Thereby, an uncertainty
is introduced where differences comparing these two faulty
measurement campaigns to the healthy reference cannot only
correlate to the presence of a defect. Zuo et al. used this com-
plete dataset in their two studies achieving an accuracy above
99% in both studies, indicating that good accuracy could be
obtained without regard to some operational conditions (Zuo
et al., 2021, 2022).

The wind turbine dataset consists of 219 measurements taken
over a six-month period, i.e. once a day with additions due
to e.g. alarms in the turbine drivetrain condition monitor-
ing system triggering further measurements being stored be-
yond the regular interval. The turbine experienced an in-
ner raceway, spalling defect in an NSK HR30234J tapered
roller bearing mounted on the gearbox output shaft. The mea-
surements are 1.28s long and with a 12.8kHz sampling rate.
Since the wind speed is constantly varying, the gearbox out-
put shaft speed span 700-1200rpm over the dataset. How-
ever, a 30rpm condition on maximum shaft speed variance
over the measurement time exists in the monitoring system

to ensure that the stored measurements are not overly non-
stationary and enable a more stable frequency analysis. The
varying operation conditions of the turbine will induce an in-
herent variation in vibration measurement amplitude strength
which needs to be taken into account by the monitoring meth-
ods employed. This dataset has been used in two previous
studies involving this paper’s corresponding author which has
reported different transitions of the bearing from healthy to
faulty. First, Saari et al. used an extended version of this
dataset to study the performance of a Support Vector Ma-
chine on features from enveloped measurement spectra and
reported possible signs of incipient inner raceway damage at
measurement 51 as well as a spall appearing at measurement
159 (Saari, Strömbergsson, Lundberg, & Thomson, 2019).
Strömbergsson et al. investigated the measurement proper-
ties’ influence on detection and diagnosis performance us-
ing similar enveloped measurement spectra features with two
moving average alarm levels set on normalised trends of the
features (Strömbergsson, Marklund, Berglund, & Larsson,
2021). Here, a conservatively set alarm level, to avoid false
alarms, yielded an alarm at measurement 165 while a more
fine-tuned alarm level was triggered at measurement 147.
Thereby, a separation of this dataset into healthy and faulty
measurements cannot be done with a single cutoff point. In-
stead, the healthy data off this dataset was defined as the first
40 measurements while the faulty data was defined as the last
61, i.e. from measurement 159 forward.

2.2. Signal decomposition

A basis of the different signal decomposition methods inves-
tigated in this paper is the enveloping technique, which has
become a conventional tool in bearing condition monitoring.
A developing defect in a bearing component will emit vibra-
tions in a repeated pattern dependent on the shaft speed and
bearing dimensions as the defect repeatedly enters a rolling
element/raceway contact, commonly denominated the bear-
ing fault frequencies. However, these repetition vibrations ex-
ist at low-frequency area, often at a 102Hz range, where they
get drowned in structural noise and other dominant vibration
sources. Instead, a developing bearing defect will incite the
resonance in the bearing and surrounding components at sev-
eral thousand Hz, seen in the time signal as repeated burst
vibrations. These can be demodulated to separate the repe-
tition pattern of the resonance events and thereby correlated
to the specific bearing component experiencing a singular de-
fect. This is done by:

1. Bandpass-filtering over the high-frequency resonance
area

2. Rectification

3. Lowpass-filtering to highlight the repetition frequency.

The three investigated filtering and signal decomposition
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Figure 2. Flowchart of the three different filtering methods
1a-c used with symbolic indications on where in the signal
frequency content they have been applied, by ni and mi.

methods that were used to decompose the measurements into
eight, frequency-band dependent channels were:

• Envelope filters with the bandpass operation equally dis-
tributed over the whole frequency content of the mea-
surement, derived from the Nyquist frequency

• Envelope filters with cascaded upper bandpass cutoff fre-
quency, bandpass operation equally distributed over the
whole measurement frequency content

• First, an envelope over the resonance frequency area to
demodulate the early signs of the defect, then a bandpass
decomposition of the lower frequency area to separate
different fault frequencies into separate channels

These three different methods are summarised by symbolic
flowcharts in Figure 2.

The cascaded envelope alternative has been implemented on
the lowpass component in the first operation of the envelop-
ing, i.e. the bandpass. Instead of performing a single band-
pass, the input is highpass-filtered before four lowpass op-
erations are performed four with the cutoff frequency being
gradually lowered to the corresponding bandpass cutoff. This
will theoretically reduce the decomposition overlap as the fil-
ter response decays more sharply at the higher cutoff points.

2.3. Event-triggered sampling & balanced SNN

To perform the event-triggered sampling of the decomposed
measurements, a Level Crossing Analogue-to-Digital Con-
verter (LC-ADC) has been implemented, shown in the event-
triggered sampling box in Figure 1. Here, a set threshold on
the signal amplitude change, hereafter denominated as Delta-
value, is set and as soon as the amplitude has increased or de-
creased enough since the last recorded event, an up or down

spike is registered respectively. Thereby, the signal is rep-
resented by a limited number of binary events and inconse-
quential noise in-between is made redundant. Consequently,
the digital processing in the following training of the SNN
will in theory be computationally easier without tangible de-
creases in anomaly detection performance if the LC-ADC can
be designed to eliminate the noise which otherwise needs to
be processed. In our case when applying this to detect bearing
fault frequencies, this data reduction can be done quite sub-
stantially as these fault frequencies easily becomes dominant
in the filtered signals. However, to generalise the co-design
model to cover other failure modes and its consequences in
data reduction still needs to be investigated, as the signs of
these failures might be more deeply hidden in the noisy sig-
nal. It has been shown that these types of circuits can be
highly suitable for artificial intelligence engines in Internet-
of-Things systems where non-uniform, sparse events need to
be recorded as they are driven by the input signal instead of
a clock signal (Ye et al., 2021). Drawbacks with this type
of circuit exists regarding e.g. noise level of the input signal
and in an energy-efficient way achieve high amplitude res-
olution. Thereby, these factors need to be considered and
solved with additional techniques when designing the LC-
ADC. However, this is deemed to be outside the scope of this
paper and seen as future work when a proof-of-concept hard-
ware implementation is built.

SNN used for the anomaly detection of the channel
spiketrains consisted of Leaky-Integrate-and-Fire neu-
rons (Gerstner, Kistler, Naud, & Paninski, 2014). These
can be seen as a capacitor with a non-zero resting potential,
urest, a diffusion leakage and an input current, I(t), coming
from the synapses, i.e. spikes stimulating the neuron. At
I(t) = 0, the neuron membrane potential will decay towards
the resting potential and when enough incoming spikes under
a short enough time increases the membrane potential above
a set threshold, the neuron sends out an outgoing spike and
the membrane potential rapidly falls to a reset potential, often
the same as resting potential. The time-dependent membrane
potential, u(t), of the neuron can be calculated by:

du

dt
=

urest − u(t) +RI(t)

τm
, (1)

where the time constant, or refractory period

τm = RC. (2)

To ensure an adequately low time constant, the time between
each spike in all channel spiketrains from a single healthy
measurement was calculated and presented in an interspike
interval histogram in Figure 3. With the interspike interval
histogram in mind, the time constant was set to 0.5ms for all
neurons in the SNN going forwards.

The SNN was set up in a 16x16x1 structure with the input,
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Figure 3. Interspike interval histogram for all spiketrains
from a single healthy measurement from the test rig dataset.

hidden and output layers respectively. This structure can de-
tect channel-wise changes in spikerate as this balanced struc-
ture, inspired by Efficient Balance Networks, can achieve
rapid reaction times in a faulty state and sparse spiketrains
through the network at a healthy state (Bourdoukan, Barrett,
Deneve, & Machens, 2012). The synapse weights, used to
augment the current I passed between neurons, in between
the input and hidden layers, wHj, were excitatory horizon-
tally across from neuron nIi

i=j−−→ nHj , while inhibitory to-

wards the remaining 15, nIi
i ̸=j−−→ nHj . However, the ex-

citatory weights are scaled higher than the inhibitory by the
relation α(N − 1), where the scaling parameterα = 1.25 and
N is the number of neurons in the layer. The weights from the
hidden layer neurons to the output neuron were all excitatory
in nature.

2.4. Training and testing procedure

The training and testing procedure, used for both datasets in-
dividually, can be summarised as:

1. Filter and decompose each measurement with one of the
following methods:
(a) Envelope filters with the bandpass operation equally

distributed over the whole frequency content.
(b) Envelope filters with cascaded high bandpass cutoff

frequency, bandpass operation equally distributed
over the whole frequency content.

(c) Envelope filter over the whole resonance frequency
area followed by bandpass decomposition of the
lower frequency area.

2. LC-ADC on each filter channel of all training set mea-
surements, defined as the healthy measurements for each
dataset. Here, the generated spikerate was used in a feed-
back loop to incrementally change the amplitude Delta-

Dataset

Training set Testing set

Measurement 
filtering

Measurement 
filtering

LC-ADC to 
target spike rate LC-ADCδ

Train SNN, tune 
hidden and outer 

layer weights

Run SNN to 
identify 

anomalous 
behaviour

𝑤𝑤𝐻𝐻𝐻𝐻 ,𝑤𝑤𝑂𝑂𝐻𝐻

1) 2)

Figure 4. Procedure flowchart with indicated parameters
which are being tuned in the training phase 1) and transferred
to the testing phase 2).

value to achieve a 500Hz channel spikerate, i.e. each up
and down spiketrain pair. The target spikerate was cho-
sen well above the fault frequencies to not act as a further
lowpass filter. The final Delta-value of each channel for
each measurement was stored for later use on the test set.

3. Run training set spiketrains in the SNN and tune the
weights wHj and wOj until the outer layer neuron mem-
brane potential is just below the spiking threshold, repeat
for each training set measurement and store the lowest
weight network.

4. LC-ADC on each filter channel of all measurements, i.e.
the testing set, using the mean channel Delta-value from
the training set.

5. Run testing set spiketrains in the stored SNN and define
anomalies if the output layer neuron nO spikes.

This procedure, also summarised in Figure 4, has been im-
plemented and simulated in Python for both datasets with all
three filtering decomposition methods, resulting in six exper-
iments to run and then analyse the anomaly detection results.

3. RESULTS

3.1. Public test rig dataset results

Using the laboratory environment dataset in the procedure
described in sec. 2.4, a perfect confusion matrix could be
achieved when filtering and decomposing the measurements
with the 1a baseline envelope and 1b cascaded envelope fil-
ters. I.e. all healthy measurements being predicted as healthy
and all faulty measurements as faulty. This follows the state-
of-the-art accuracy presented in sec. 2.1. To explain as to
why the network spikes and indicates anomalies, the varia-
tion of the spikerate between the healthy reference and faulty
measurements was summarised, i.e. the total number of gen-
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Table 1. Anomaly detection for envelope baseline filter (1a),
envelope cascade filter (1b) and single envelope filter fol-
lowed by bandpass decomposition of low frequencies (1c), as
well as total spike counts over all channels from one healthy,
1a-filtered measurement.

Measurement Spike count Anomaly, Yes/No
Healthy 1 23953 No: 1a-c
Healthy 2 23392 No: 1a-c
Healthy 3 23891 No: 1a-c
Faulty 1 20189 Yes: 1a-c
Faulty 2 27296 Yes: 1a-b, No: 1c
Faulty 3 34071 Yes: 1a-b, No: 1c

erated up/down spiketrains over all eight channels. These
are compiled in Table 1 together with the anomaly detection
results for the 1a baseline envelope and 1b cascaded enve-
lope filters. Here, the healthy measurements have a total of
roughly 24000 spikes for all spiketrains passed to the SNN,
which can be derived from the 500Hz target spikerate over
the six seconds measurement time for all eight channels. For
the faulty measurements, the total spikerate varies from this
value significantly. For the first measurement, the spiker-
ate has decreased which has still triggered as an anomaly.
Thereby, the model is not purely an anomaly detector on
an increase on the number of generated spikes at a certain
point in time but can also give indications for other phenom-
ena. In the worst case, the spikerate has increased up to
42% which from an energy-efficiency perspective requires a
certain level of increased processing power. However, com-
pared to the amount of data from the >560kSamples of the
raw measurements, this is still a substantial decrease of 94%,
whereas the healthy measurement decrease constitutes 96%.
Thereby, the cost for downstream processing can be reduced
using (mixed-signal) neuromorphic processors to enable the
move towards an edge device that can be placed within the
machine, where the available power is limited. Looking fur-
ther into the generated spiketrains of the faulty measurements
gives more understanding of what is occurring in the SNN to
register anomalies in all three faulty measurements. In Fig-
ure 5, a summation of the channel-wise number of spikes,
i.e. one Up/Down pair, is presented for all faulty measure-
ments together with the channel-wise mean for all healthy
reference measurements, as they represent three occurrences
of the same situation. Here, an interesting pattern appears
where the first faulty measurement generates fewer spikes at
the lower frequency bands compared to the healthy measure-
ments while channel 4 generates more. This indicates the res-
onance frequency band of the test rig, which gets excited at
the incipient defect and starts to repeatedly enter a roller/outer
raceway contact, exists in the corresponding frequency bands
of this channel. The consequence as the spikes propagate
through the SNN is that the excitation of the corresponding
hidden layer neurons, nH7−8, to this channel increases while
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Figure 5. Channel-wise summation of spiketrains for all
faulty measurements and channel-wise mean for all healthy
measurements

the inhibition from the lower channels decreases, causing the
output neuron to spike. For the two following faulty mea-
surements, the spikerate of the resonance channels does not
continue to increase while the lower frequency band channels
increase well above the healthy measurements. This indicates
towards an increasing size of the defect does not necessar-
ily increase the amplitude and duration of the repeated bursts
in the resonance frequency bands, but only affects the vibra-
tional amplitude at comparatively lower frequency bands.

For the last filtering method, however, a miss-classification
was made for two faulty measurements with a bandpass de-
composing the low-frequency area of an already enveloped
signal. Thereby, a simplistic bandpass to separate different
fault frequencies for a future implementation where several
output neurons would correspond to different bearing com-
ponents experiencing a defect need a different approach in
future work.

3.2. Wind Turbine case

The conclusion surrounding the 1c filtering method for the
laboratory test rig dataset is found using the wind turbine
dataset as well. Here, only a few anomalies are detected
where conventional vibration monitoring techniques has been
able to clearly identify the presence of a defect on the inner
raceway of the failing bearing.

For the other two filtering and decomposition methods, how-
ever, anomalies were registered reliably in the time period
where the certainty of a present defect is high. Figure 6
show the root-mean-squared (RMS)-values of the enveloped
measurements together with the anomaly detection for the
enveloped decomposition baseline in Figure 6b and the cas-
caded envelope decomposition in Figure 6c. Evident in this
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Figure 6. Anomaly detection for the Anomaly detection, en-
velope baseline filter 1a and envelope cascade filter 1b in
(b) and (c) respectively, compared to the RMS-value of the
dataset measurements after a normal envelope without de-
composition.

comparison is the presence of several false negatives using the
baseline envelope method, while the addition of a cascade is
able to reduce this to only one such occurrence. As previ-
ously mentioned in 2.1, the separation into healthy and faulty
data in this dataset was done by the first 40 measurements be-
ing designated healthy and the last 61, i.e. from measurement
159 forward, being designated as faulty. Using this separa-
tion, the true negative; TN , true positives; TP , false nega-
tive; FN , and false positives; FP , could be extracted and an
F1-score calculated by:

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
. (3)

This information is compiled in Table 2 together with a sum-
mation of the designated anomalies and non-anomalies in the
time period in between where a high degree of uncertainty ex-

Table 2. True/False Negatives/Positives together with the F1
score for both envelope baseline filter 1a and envelope cas-
cade filter 1b, as well as anomaly detection in the uncertain
bearing state time period.

Filter 1a Filter 1b
True negative 34 39
True positives 60 59
False negative 6 1
False positive 1 2

F1-score 0.945 0.975

Uncertain anomaly 22 14
Uncertain non-anomaly 96 104

ist on the presence of a defect, where more registered anoma-
lies is found at an early stage for the 1a filtered data.

The presence of more false negatives compared to the 1b fil-
tering method cause further doubt as to the true nature of
these anomalies. Both the baseline envelope and cascaded en-
velope decomposition are able to show a continuous anomaly
detection from measurements 156 and 161 forward respec-
tively, which can be compared to the two previous studies
results using this dataset where indications of the defect were
shown reliably at measurements 159 and 165. Preceding the
continuous anomaly detection, both decomposition methods
show a period of interspersed anomaly detection from mea-
surement 134 to 145 which correlate closely to the results
from previous results with a fine-tuned alarm level at mea-
surement 147 (Strömbergsson et al., 2021), which included a
moving average window to be triggered causing a slight la-
tency compared to re results in Figures 6b and 6c. Also, the
first occurrences of an anomaly being designated in the un-
certain time period between the defined healthy and faulty
measurements occurs at measurement 48-49, closely corre-
lating to the first indication of inner raceway damage in the
Saari et al. results at measurement 51 (Saari et al., 2019).

4. CONCLUSIONS

In this study, a co-design model for anomaly detection in
rolling element bearing vibration monitoring incorporating
neuromorphic engineering concepts is presented. Vibration
measurements have been filtered and decomposed with three
alternatives based on the enveloping technique, a conven-
tional condition monitoring signal processing method used in
rolling element bearing research for the last 40 years. There-
after, the filter output has been converted into spiketrains us-
ing Level Crossing Analogue-to-Digital Converters to trans-
form the data into an event-driven domain. Lastly, the spike-
trains were used as input to a balanced spiking neural net-
work with a single output neuron used as an anomaly detec-
tor. The model has been employed with two different bear-
ing failure datasets, one public dataset from a test rig in a
laboratory environment, and one dataset representing a wind
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turbine gearbox output shaft bearing failure. Using the de-
scribed methods we achieve a perfect confusion matrix us-
ing the test rig dataset and achieve Using the described meth-
ods we achieve a perfect confusion matrix using the test rig
dataset and achieve comparable performance in the wind tur-
bine dataset to studies found in literature.

One energy-efficiency aspect of the neuromorphic system can
be quantified in this case by comparing the number of spikes
passed to the network for one healthy and one faulty mea-
surement to the number of samples in the original measure-
ment. For the laboratory test rig dataset, the six-second mea-
surements contain more than half a million samples while the
spiketrains only consist of 24- and 34kSamples, a sparsifica-
tion of of 96- and 94% respectively. This way the fidelity
of the vibration features of a faulty bearing can be improved,
and the processing can be performed on board an edge de-
vice before transmitting an eventual indication of the bearing
health.
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