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ABSTRACT 

Turboshaft engines are ubiquitous in aerospace applications 
where high power and reliability are needed in a low-weight 
package. Most all helicopters incorporate turboshaft engines. 
All turboshaft-equipped aircraft have power assurance 
checks to ensure the engine can achieve the minimum 
specification for power. However, these checks seldom are 
automatically collected, nor do they trend the engine health 
over time to better assess vehicle health. Engines degrade 
over time, and the ability to assess when maintenance is 
required is accentual for the safe and efficient operation of 
the aircraft.  This paper covers a process to evaluate a 
turboshaft engine's state of health using a model-based 
assessment of the engine’s performance margin over time.  

1. THE NEED FOR ENGINE PERFORMANCE ASSESSMENT. 

Turboshaft engines, for their weight and power outputs, are 
remarkably reliable. For example, the M250C47B engine on 
the Bell 407 aircraft (from which this data was measured as 
part of a Health and Usage Monitoring System – HUMS), 
weighing a mere 124 kg, can provide a continuous 600 kW 
of power. The engine has an overhaul period on the turbine 
of 2000 hours, while the compressor and gearbox are 
essentially on condition.  

However (BHT-407-FM-3, 2018) states that periodically, 
power assurance checks need to be performed and that a 
negative margin requires maintenance as soon as practical. 
This periodic check ensures the pilot and maintainer that the 
engine is able to generate the specification power. 
Operationally, a positive margin (good engine health) allows 
the aircraft to be deployable for commercial missions. 
Perhaps as important, a reduced engine margin or negative 
margin means that more fuel is needed to generate the same 

amount of power. Over time this reduces commercial aircraft 
profitability and increases the aircraft’s carbon footprint. 

There are a number of causes for engine performance 
degradation. For example, accessories (barrier filters) will 
reduce performance in a stepwise manner as they restrict 
airflow to the compressor. This may be an operational 
necessity that needs to be accepted. Improper maintenance or 
failure/leaking of lines, such as bleed air, will also decrease 
performance. Detection of a step change in performance 
necessitates an inspection to resort safety and performance.  

Long-term changes in performance are a function of fouling, 
corrosion, erosion, and excess heat. Heat may cause turbine 
blade creep, or dry partials in the airflow could fusion to the 
hot blade. In general, the flight manual has requirements for 
inspections if the engine. Some aircraft are equipped with 
HUMS (health and usage monitoring systems), which 
automatically alert the maintainer when engine exceedance 
occurs. Some exceedances are:  

• Greater than 5 minutes when the engine is operated 
between 727 and 799c, or 

• Not to exceed 843c for 10 seconds, or 

• Not to exceed 927c for 1 second. 

Corrosion occurs when chemical reactions of the internal 
parts and contaminants are introduced into the flow. The risk 
of corrosion is higher at extreme temperatures.  

Fouling occurs when particular debris/contamination builds 
up on the turbine/compressor blade. By altering the 
shape/roughness of the blade, the airflow is reduced, and 
more need is required for the same amount of work. 
Typically, 70 to 85% of loss in engine performance can be 
attributed to compressor fouling, which can be corrected with 
an engine wash. Barrier filters and particle separators are 
often installed to reduce fouling. Erosion occurs again when 
particles enter the airflow. Erosion is an abrasive removal of 
material that, similar to fouling, increase surface roughness 
and impedes airflow.  
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While turboshaft engines have been the subject of many 
books and papers (Kurlikov, 2010, Wilson, 2014), few have 
approached engine performance margin/engine health as a 
vehicle health monitoring exercise.  Chait and Balakrishnan 
(2013) used flight data recorder (FDR) parameter 
information to evaluate fuel burn vs engine performance. 
This was in the context of evaluating aircraft emissions. 
Using fuel flow and thrust, the paper highlights that the ICAO 
(International Civil Aviation Organization) Landing Takeoff 
Cycle (LTO) vs the actual FDR data differ, affecting 
emission inventories. This paper did not look at modeling 
engine health as a function of engine margin and did not use 
the data to trigger maintenance events.  

In Nkoi, Pililisa, and Nikolaidis (2013), the authors model 
gas turbine engines to estimate design points. These were 
tradeoff studies to establish limits on thermal efficiencies. 
This is interesting as it may allow for more accurate modeling 
of a turboshaft engine to establish real-world performance 
margin and is more in keeping with the aforementioned books 
on turboshaft engine design.  

In “Estimation of Performance Parameter of Turbine Engine 
Components Using Experimental Data in Parametric 
Uncertainty Conditions” (Khustochka et al, 2020), fuzzy sets 
theory was used for engine model identification using a small 
set of data. The paper points out that small measurement 
errors can result in high variational results. Using least 
squares methods was shown to have low stability.  To 
improve results, a priori knowledge of the physical system 
was used to improve the stability and precision of the 
estimation.  Again, this paper did not approach the 
identification problem as a way to calculate engine 
performance margin or to support health monitoring, but it 
does give insight into the complexity of accurately modeling 
engine performance.  

Simon and Litt (2008) presented an automated power 
assurance test for the Blackhawk helicopter. This paper is 
interested in calculating the power available in supporting 
helicopter mission planning. The paper automates the 
Maximum Power check (MPC) procedure which is 
performed by a maintenance pilot by using data collected by 
the helicopter’s Health and Usage Monitoring System 
(HUMS). The automation concept did not extend to condition 
monitoring of the engine or establish a procedure for engine 
performance trending.  

The paper is focused on a process of automating the 
collection of engine performance data and using this data to 
assess the engine’s margin. Using the margin, the health of 
the engine will be calculated, trended, and used to direct a 
maintenance action. This system was implemented on a 
HUMS (Foresight MX) to improve safety and availability for 
helicopters.   

2. A PROCESS FOR MODELING ENGINE MARGIN 

Helicopter manufacturers, such as Bell Fight, work with the 
engine suppliers to design power assurance checks a part of 
the Type Certificate (TC, see BHT-407-FM-3, 2018). This 
document allows the pilot or maintainer to record the 
measured engine torque (TQ), pressure altitude (PA), and 
outside air temperature (OAT) to calculate the maximum 
allowed measured gas temperature (MGT). The test is 
conducted when the aircraft in hover or level flight of 85 to 
105 knots.  

If the MGT is greater than that from the power assurance 
model, the engine requires maintenance as soon as practical. 
Note that the test is valid only under certain regimes. For a 
test to be conducted, the HUMS must be able to identify when 
it the aircraft is in an appropriate state. The HUMS function 
is called regime recognition. For a further description, see 
Bechhoefer and Kessler, 2022.   

As noted, there are a number of environmental parameters 
that affect the power produced by the turbine engine, 
including Fouling, Corrosion, Erosion,  and others such as 

• Airflow from forward flight 
• Fuel Mixture 
• Governor Setting 
• Fuel Injector atomization 
to name just a few. The measurements which are available to 
determine engine turbine health, as previously noted: are 
OAT, MGT, PA, and TQ. These parameters are used by the 
power check procedure to indicate the maximum MGT. In 
this paper, MGT is converted to percent margin by 
normalizing using the modeled MGT for those measured 
conditions (see Figure 1). 

 
Figure 1 Engine Performance Table for Bell 407GX 

 
As seen in Figure 1, the relationship between engine TQ, PA, 
OAT, and MGT  is complex and not easily derived. As such, 
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the manufacturer provides a table that allows one to, for a 
given TQ and PA, normalized by OAT, to derive the 
maximum allowed MGT for those operating conditions. 

Automation of the process requires a mathematical way to 
map TQ, PA, and OAT to MGT. As the relationship is clearly 
nonlinear (see Figure 1), two bicubic splines were used to 
interpolate between given points from Figure 1. The construct 
of the output y, for, say, TQ x at given a PA, is:  

𝑦 = 𝐴𝑦! + 𝐵𝑦!"# + 𝐶𝑦!" +𝐷𝑦!"#"    (1) 
 Where: 

𝐴 = 𝑥!"# − 𝑥 𝑥!"# − 𝑥!* 	           (2) 

	𝐵 = 𝑥 − 	𝑥!"# 𝑥!"# − 𝑥!* 	              (3) 

𝐶 = 1
6* (𝐴% − 𝐴)0𝑥!"# − 𝑥!1

&
   (4) 

𝐷 = 1
6* (𝐵% − 𝐵)0𝑥!"# − 𝑥!1

&
   (5) 

For example, for the “Lefthand Side” (LS), the input is TQ 
and PA, and the output is a y value which is then the input to 
the “Righthand Side” (RS). The RS is then entered with OAT. 
The LS was designed with y values for TQ, for a given PA. 
There were 12 PA tables for -2000ft PA to 20,000ft PA. 
Example for the 4000 ft PA: 

TQ = [44.5 53.7 63 72.5 82 91.4 100] 
Y = [0 5 10 15 20 25 30 34] 

For the RS, there are ten OAT tables for MGT and the input 
y value from the LS. For 10C, as an example: 

MGT = [524 585 635 680 725 780] 
Y = [0 10 18 26 33 40] 

 
Figure 2 Bicubic Interpolation to Calculate Maximum 

Allow MGT 
The bicubic spline for the LS takes the measured TQ 
parameter data and builds a series of interpolated y values for 
each PA, the interpolates those y’s for the measured PA. The 
inverse process occurs on the RS using OAT to output the 
zero margin/minimum allowable MGT (Figure 2). 

The input measurement for this example was 62% TQ, at 
2500ft PA, with an OAT of 15. The output maximum MGT 
was 601.04C.  

2.1. Conversion of MGT to Margin 

As noted, the output of the analysis is the maximum allowed 
MGT. If the measured MGT is less than the model, the engine 
is running with a positive margin, which is good (eq. 6) 

𝑚𝑎𝑟𝑔𝑖𝑛	 = (𝑀𝐺𝑇'()*+*) −𝑀𝐺𝑇) 𝑀𝐺𝑇 × 	100⁄     (6) 

The margin for a typical Bell407GX is given in Figure 3. This 
HUMS data was approximately 5000 automated acquisitions 
over four years. Note that acquisitions were taken only in 
appropriate regimes of hover and between 85 and 105 knots. 
This period covered roughly 2000 flight hours.  

 
Figure 3 Calculated M250C47 Engine Margin 

A couple of things to note. There are periods where the 
margin was negative, resulting in maintenance being 
performed (acquisition 896 and 3373). Additionally, the 
engine was replaced at acquisition 3811. The standard 
deviation of the margin is 0.94%. Of course, there is a general 
decrease in the margin, over time, probably due to fouling 
and wear of the engine. The first step change decrease was 
due to a bad bleed air value, while the second maintenance 
action was due to filter barrier damage. The HUMS detected 
the change in the margin as was used to initiate the 
maintenance action. 

CHANGE POINT DETECTION, TRENDING, AND 
ENGINE HEALTH 

In HUMS, there is a concept of component health. The health 
index (HI) should result in a maintenance action that restores 
the component to be fully mission capable. The HI uses 
condition indicators (CIs) with a clear correlation to a fault, 
in this case, the engine margin. That is, the decreased margin 
is a fault. Thus, the appropriateness of repairing the faulty 
engine can be seen as an action to restore the designed 
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reliability of the system, driven by exceeding a HI threshold, 
typically set at 1.0.  

A component with a high HI value does not define a 
probability of failure for the component, nor that the 
component fails when the HI is 1.0. Instead, defining 
maintenance at an HI of 1 initiates a proactive policy to 
change operator behavior. The desire is to reduce the cost and 
time associated with engine failure by performing 
maintenance prior to an unacceptable reduction in reliability, 
which would impact the safety of flight.  

Given the relatively large standard deviation of the margin, it 
would improve the accuracy of HUMS if the margin and then 
the resulting engine health (HI) were trended. This is usually 
done with a low-pass filter. Trending takes into account the 
relatively low bandwidth of changes in engine health over 
time. It will, as a result, filter out step changes due to faults 
that are not associated with fouling/erosion, such as the bad 
bleed air value. For this reason, an automated method for 
step-change detection is needed. Once the step changes are 
identified, then it is a simple thing to trend between those 
identified step changes.  

A step-change in component health occurs when an event, 
such as maintenance or damage/FOD, results in degradation 
or improvement to the HI value that is not associated with 
high cycle fatigue, fouling, or other low bandwidth 
degradation. That is, the HI trend does not adequately model 
events that are not associated with high cycle fatigue.  

There are several statical procedures for detecting a change 
in process, such as a Shewart control chart or CUSUM (a 
sequential method for detecting a change in the mean value). 
However, we have found that in cases with high or time-
varying standard deviations, neither method can capture the 
step change consistently. This suggests that for a generalized 
change detection algorithm, a more robust calculation of 𝜎) 
(time-varying over some length of window) is needed or that 
techniques other than CUSUM or Shewart may be more 
appropriate. For this reason, PELT was evaluated. 

2.2. PELT for Change Detection 

The Pruned Exact Linear Time method, as outlined in Haynes 
et. al. 2017, approaches change detection in a very different 
way than CUSUM or Shewart. In PELT, the approach is to 
identify multiple change points by minimizing a cost 
function, C, for a segment of the data along a penalty 
function, Bf(m), to guard against overfitting: 

∑ [𝐶(𝑦,-.# + 1): 𝑡𝑖] + 𝐵𝑓(𝑚)	]'"#
-/#     (7) 

Algorithmically, PELT inputs are: 

• A set of data, y1, y2, … yn 
• A measure of the fit C(.), which is dependent on the data,  
• A penalty constant B, which is not dependent on the 

number or location of the change points 

And a constant K, which satisfies:  

F(t) + C(y(t+1):s) + K > F(s)         (8) 

The algorithm is initialized by: 

• n = length of the dataset,  
• F(0) = -B 
• cp(0) = NULL, and 
• R1 = {0} 
Then for t*  = 1, 2, …, n 

• Calculate F(t*) = mint* [F(t) + C(y(t+1):t*) + B] 
• Let t1 = arg{mint* [F(t) + C(y(t+1):t*) + B] 
• Set cp(t*)  = [cp(t1), t1] 
• Set Rt*+1 = { t Î Rt* È {t*}: F(t) + C(y(t+1):t*) + K < 

F(t*)} 
The output is the index of the change point. 

2.3. The Trend Model  

For trending, it was assumed that the rate of change in HI was 
bandwidth-limited, piecewise linear, and stationary. That is, 
the measurement noise, plant noise, and update rate are 
constant. As such, a forward/backward α-β tracker was used. 
This is a two-state filter of the HI, and its derivative.  

Given the assumption of stationarity, the α-β tracker is treated 
as a steady-state Kalman filter. The filter coefficients for the 
α-β tracker (used for HI and dHI/dt) can be calculated as: 

𝜆 = 0!),"

0#
,               (9) 

	𝑟 = 1"2.342"2"

1
,                                 (10) 

Where the process variance is sw2, and plant noise variance 
is  sv2. The filter gains are: 

𝛼# = 1 − 𝑟&,	                 (11) 

𝛽# = 2(2 − 𝛼) − 4√1 − 𝛼.       (12) 

The filter is then:  

For i = 1:n, 
fCI = fCI + dCI x dt; 
rk = CI(i) - fCI 
fCI = fCI + α1*rk; 
dCI = dCI + (β1*rk)/dt; 

Integration of change detection with trending greatly 
improves the ability of a maintainer to determine the 
degradation in the performance of the engine (Figure 4). 
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Figure 4 Engine Margin with Change Detection and 

Trending 

2.4. Engine Health 

In the HUMS community, analysis of components results in 
condition indicators (CIs). As noted, the CI is typically some 
descriptive statistic of a fault feature. For a shaft, a CI might 
be Shaft Order 1 (SO1) magnitude, which is a measure of 
imbalance. Or, for a bearing, the CI might be relative to the 
envelope energy associated with the inner race. Conversely, 
the CI for Engine performance was the margin.  

However, these various CIs have no common meaning other 
than some threshold. To improve human factors, the concept 
of Health Indicators (HI, See Jinks, 2016), as previously 
mentioned, is defined as “An indicator of the need for 
maintenance action for a component from either a single CI 
value or a combination of two or more CI values.” The 
concept of the HI is such that the CI is mapped to the HI in 
such a way that all component indicators have a common 
threshold. From a maintainer perspective: 
 
• The HI reflects the current component's damage. 
• A warning (yellow) alert is generated when the HI is 

greater than or equal to 0.75: maintenance should be 
planned. 

• An alarm (red) alert is generated when the HI is greater 
than or equal to 1.0. Continued operations could cause 
collateral damage. 

With this in mind, the HI function for margin is given as: 

• a new engine has a margin of 5%, and 

• warning is defined at a margin of 0, then: 

𝐻𝐼 = N((−𝑚𝑎𝑟𝑔𝑖𝑛𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡) 𝑜𝑓𝑓𝑠𝑒𝑡 × 0.75⁄ )&   (13) 

Figure 5 is the HI, using eq (13) with the change point 
detection and trend. 

 
Figure 5 Engine Health with Change Detection and Trend 

Note that with change detection, it is easy to alert on the two 
events where the HI was greater than one: the leaking bleed 
air valve and the block barrier filter. This triggers the 
maintenance event and restores the engine to its design 
performance. With the change detection segmenting the 
trend, the degradation due to fouling (most likely cause) is 
easily seen. It is interesting to note that the engine 
replacement occurs when the HI is approximately 0.75, 
which is in keeping with the HI paradigm of planning 
maintenance when the HI is greater than 0.75. Again, the 
engine was pulled from service as 2000 hours of usage, per 
the manufacturer’s scheduled time between overhauls.  

CONCLUSION 
Engine performance checks are a normal part of helicopter 
operations. They are required to ensure that the aircraft 
engine is meeting its design performance. The automation of 
engine performance checks gives a record that allows 
operators to enact maintenance better when required and 
enhances safety. However, the engine performance check as 
designed is more of a go, no-go indicator. Knowledge 
creation from a trend can better allow maintenance decisions 
to be made. This is facilitated by modeling engine 
performance as an engine margin calculation.  

The automation of the process of calculating engine margin 
was done through two bicubic spline interpolations. This is 
enabled through the use of regime recognition in order to 
collect data only when the performance calculation is 
appropriate, at hover and between 85 and 105 knots. It was 
found that interpolation of engine performance using the 
bicubic spline resulted in a margin calculation was a standard 
deviation of 0.94%.  

To help improve the decision-making process (e.g., when 
maintenance is needed), both change point detection and 
trending were incorporated. Change point detection reacts to 
high bandwidth step changes in engine margin, whereas 
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trending reveals low bandwidth degradation in performance 
due to fouling or other types of slow engine degradation.  

Finally, the engine margin was transformed into an engine 
health index, HI. This gives a common maintenance decision: 
plan maintenance when the HI is greater than 0.75 and do 
maintenance when the HI is greater than 1.0. The automation 
of engine health ensures: the reliability of the helicopter, 
enhances safety, and reduces cost (through reduced fuel 
consumption). The was implanted on a commercial HUMS 
system (Foresight MX). The data for this paper was from a 
Bell 407GX, connected over a period of five years.  It is likely 
that trending of the HI will also allow estimation or remaining 
useful life (RUL). RUL allows operators to plan asset 
availability and utilization better by moving unscheduled 
maintenance to planned maintenance.  
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