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ABSTRACT

Receiver operating characteristic curves are a mainstay in bi-
nary classification and have seen widespread use from their
inception characterizing radar receivers in 1941. Widely used
and accepted, the ROC curve is the default option for many
application spaces. Building on prior work the Prognostics
and Health Management community naturally adopted ROC
curves to visualize classifier performance. While the ROC
curve is perhaps the best known visualization of binary clas-
sifier performance it is not the only game in town. Authors
from across various STEM fields have published works ex-
tolling various other metrics and visualizations in binary clas-
sifier performance evaluation. These include, but are not lim-
ited to, the precision recall characteristic curve, area under
the curve metrics, bookmaker informedness and markedness.
This paper will review these visualizations and metrics, pro-
vide references for more exhaustive treatments on them, and
provide a case study of their use on an imbalanced prognos-
tic health management data-set. Prognostic health manage-
ment binary classification problems are often highly imbal-
anced with a low prevalence of positive (faulty) cases com-
pared to negative (nominal/healthy) cases. In the presented
data-set, time domain accelerometer data for a series of run-
to-failure ball-on-disk scuffing tests provide a case where the
vast majority of data, > 94%, is from nominally healthy data
instances. A condition indicator algorithm targeting the hy-
pothesized physical system response is validated compared
to less informed classifiers. Several characteristic curves are
then used to showcase the performance improvement of the
physics informed condition indicator.

1. INTRODUCTION TO BINARY CLASSIFICATION

Binary classification is often encountered in the field of Prog-
nostic Health Management (PHM), machine learning, med-
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Figure 1. Confusion matrix for binary classifiers.

ical sciences, and information retrieval where there are two
mutually exclusive classes, positives (p) and negatives (n),
and the user wishes to accurately predict the class of each
instance. During development of the binary classifier a su-
pervised learning approach is utilized where the ground truth
class of each instance is known. The binary classifier predicts
the class that each instance belongs to by predicting that yes
(Y), the data is p, or no (N) the data is not p. The true and
predicted classifications are then mapped onto the 2x2 confu-
sion matrix shown in Figure 1. The following six (6) variables
are then obtained from the confusion matrix and used to de-
rive assorted figures of merit (Takaya & Rehmsmeier, 2015;
Fawcett, 2006; Powers, 2008).

1. condition positive (P): The number of real positive cases
in the data

2. condition negative (N): The number of real negative
cases in the data

3. true positive (TP): The number of classification results
that correctly predict a positive true class

4. true negative (TN): The number of classification results
that correctly predict a negative true class
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5. false positive (FP): The number of classification results
that falsely predict Y when the true class is negative

6. false negative (FN): The number of classification results
that falsely predict N when the true class is positive

1.1. Continuous and Discrete Classifiers

Binary classifiers are generally divided into two types based
on the form of their output, continuous and discrete outputs.
A continuous classifier outputs a value (e.g. probability) for
each evaluated instance, the value output is then compared
to a threshold value; values above the threshold are predicted
positive (Y) while values below the threshold are predicted
negative (N). Continuous classifiers are also broadly referred
to as probabilistic classifiers (Fawcett, 2006), even when the
output isn’t strictly a probability and may not be bound be-
tween [0, 1] . Discrete classifiers operate more as a black box,
data on the instance is provided as input and the discrete clas-
sifier returns one of two states, predicted positive (Y) or pre-
dicted negative (N). Discrete classification is very common in
machine learning applications; however, if the researcher has
the ability to see inside the machine learning algorithm and
use internally generated values as the input to the binary clas-
sifier the discrete machine learning classifier can be treated as
a continuous classifier (Fawcett, 2006). It is also possible to
use an ensemble of discrete classifiers with weighted scores
and majority voting to produce a continuous output. In the
case study that follows this introduction continuous classifiers
using figures of merit calculated from accelerometer data.

1.2. Binary Classifier Metrics

The confusion matrix of Figure 1 is the cornerstone of clas-
sifier performance evaluation. For a discrete classifier there
is only one state for the confusion matrix, the classifier is ap-
plied to the set of instances, predictions are compared to the
ground truth classes, and the six variables of the confusion
matrix are tallied. Key metrics such as those shown in Ta-
ble 1 are then calculated for the single confusion matrix state.

For continuous and pseudo-continuous classifiers the predic-
tion of (Y) or (N) is dependent on the threshold value. At one
extreme, all classifier outputs are greater than the threshold
value and every instance is predicted (Y). At the other ex-
treme of threshold values all classifier outputs are less than
the threshold output and every instance is predicted (N). Be-
tween the minimum and maximum thresholds are confusion
matrix states where a subset of instances are predicted (Y).
Each confusion matrix state represents a singular value of
the metrics listed in Table 1 and defined by the performance
metric Eqs. (1 through 9) (Takaya & Rehmsmeier, 2015;
Fawcett, 2006; Powers, 2008).

• prevalence, is the fraction of total instances that are pos-
itive (p). A balanced data-set will have a prevalence of
0.5 while imbalanced data-sets can range widely with

Table 1. Binary classifier performance metrics.

Metric Common nomenclature

prevalence N/A

TPR true positive rate, sensitivity, recall, or hit rate

TNR true negative rate, specificity, or selectivity

PPV positive predictive value or precision

FPR false positive rate or fall-out

ACC accuracy

NPV negative predictive value

BM bookmaker informedness or informedness

MK markedness or deltaP (∆P )

values between [0, 0.5) represented in real world data-
sets (Fawcett, 2006). While a minimal value of 10−6

was cited in prior literature, it is feasible for a prevalence
of zero (0) to occur when no positive instances have oc-
curred in a data-set.

prevalence =
P

P +N
(1)

• TPR, true positive rate, hit rate, recall, or sensitivity is
the fraction of positive (p) instances accurately predicted
as positive (TP) instances.

TPR =
TP

P
=

TP

TP + FN
(2)

• TNR, true negative rate, specificity, or selectivity is the
fraction of negative (n) instances accurately predicted as
negative (TN) instances.

TNR =
TN

N
=

TP

TN + FP
(3)

• PPV, positive predictive value or precision is the rate at
which predicted (Y) instances are true positives (TP).

PPV =
TP

TP + FP
(4)

• FPR, false positive rate or fall-out is the fraction of neg-
ative (n) instances incorrectly predicted as positive (FP)
instances.

FPR =
FP

N
=

FP

FP + TN
(5)
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• NPV, negative predictive value is the rate that predicted
(N) instances are true negatives (TN).

NPV =
TN

TN + FN
(6)

• ACC, accuracy is the rate that an instance of either true
class was accurately predicted.

ACC =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(7)

• BM, bookmaker informedness, or informedness is a
higher level abstraction compared to Eqs. (1 through 7).
Bookmaker informedness combines both true positive
rate and true negative rate to provide a singular scaler
value on the classifier’s ability to predict the true class of
negative (n) and positive (p) instances. Powers (Powers,
2008) states that ‘Informedness quantifies how informed
a predictor is for the specified condition, and specifies
the probability that a prediction is informed in relation to
the condition (versus chance).’ Unlike the previously de-
fined metrics informedness is not a rate bound between
[0, 1] and is instead a range between [−1, 1] with a value
of +1 indicating a perfectly informed classifier and neg-
ative values indicating the classifier should be inverted
such that any predicted (Y) instances should be treated
as (N) and vice versa.

BM = TPR+ TNR− 1 =
TP

P
+

TN

N
− 1 (8)

• MK, markedness is a higher level abstraction similar
to informedness, this time combining positive predictive
value and negative predictive value. A perfect classifier
will return zero (0) false positives (FP) resulting in a PPV
of one (1) and similarly zero (0) false negatives (FN) re-
sulting in a NPV of one (1). Markedness is therefore
maximized when there are no false predictions. Pow-
ers (Powers, 2008) also provides a helpful description
of markedness, “Markedness quantifies how marked a
condition is for the specified predictor, and specifies the
probability that a condition is marked by the predictor
(verses chance).” Definitions provided by Powers for in-
formedness and markedness are both derived from book-
making (the setting of betting odds, e.g. for horse rac-
ing).

MK = PPV +NPV − 1 =
TP

TP + FP
+

TN

TN + FN
− 1

(9)

1.3. Data Balance

Data balance, or conversely imbalance, is a measure of the bi-
nary class distribution. A data-set with near equal proportions
of (n) and (p) instances is considered a balanced data-set and
will have a prevalence, as calculated by Eq. (1), of approxi-
mately 0.5. Strictly speaking, an imbalanced data-set could
have a value between [0, 0.5) or (0.5, 1.0], for the sake of this
discussion we will assume that nominal or (n) instances are in
the majority for any cases of imbalanced data. In literature,
data balance is a major consideration when choosing which
metrics and data visualizations to use (Powers, 2008; Takaya
& Rehmsmeier, 2015). Of particular importance for compar-
ing ROC and precision recall characteristic (PRC) curves is
the effect of data balance on their underlying metrics of TPR,
FPR, and PPV (precision) given by Eqs. (2, 4, and 5).

Referring to the confusion matrix of Figure 1, the TPR is only
a function of the left hand column, the TPR which is used by
both ROC and PRC curves is agnostic to data balance. Like-
wise the FPR is a function of right hand column variables. For
both TPR and FPR used in the ROC curve the relative values
of (P) and (N) do not effect the metric. Precision, or PPV, is
different, the (TP) instances are divided by the sum of (TP)
and (FP), the metric is dependent on the relative proportion
of both columns and is therefore sensitive to class balance.
This sensitivity is key when comparing ROC and PRC curve
performance for imbalanced data-sets.

2. CLASSIFIER OPTIMIZATION

For a discrete classifier, once a performance metric to opti-
mize is identified, comparisons between discrete classifiers is
straightforward. Choosing a performance metric for discrete
classifiers is by no means trivial and is often domain specific.
Medical screening tests may prefer a high TPR at the expense
of increased FPR - in the PHM community this is termed a
liberal classifier - on the reasoning that more resource inten-
sive and invasive follow-on testing will eliminate the initial
false positives (FP) while minimizing false negatives (FN).
A contemporary example is the desire to screen populations
for a viral pandemic, better to presumptively identify edge
cases as predicted (Y) than to let a symptomatic case spread.

A contrary example was provided as an anecdote during the
2022 Analytics for PHM Short Course. One automaker, when
developing and fielding PHM products, their engineers were
very cautious to avoid false positives (FP) based on customer
and technician backlash from unnecessary maintenance. The
automaker’s approach was to focus on a high positive predic-
tive value, defined by Eq. (4). When contacting a customer
about a predicted fault, they wanted confidence that the pre-
dicted (Y) was a (TP) (Eklund, 2022).

A typical next step in classifier optimization for a business is
to add cost models on top of their classifier metrics. More
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detailed treatments on integrating cost data into classifier op-
timization can be found in (Bradley, 1997) and (Takaya &
Rehmsmeier, 2015). While not covered in this work the cost
modeling aspect of classifier evaluation is a critical next step.

For continuous classifiers, with each threshold value repre-
senting a confusion matrix state, the dimensionality of the
comparison is increased and rapidly becomes overwhelming
to interpret without some combination of visualization tools
and reduction of threshold sweeps to scalar values.

2.1. Characteristic Curves and Area Under the Curve

Moving beyond discrete classifiers, the interpretation of con-
tinuous classifiers presents a new level of difficulty. Indi-
vidual discrete classifiers produce a single value output for
the performance metrics of Table 1, but continuous classi-
fiers produce outputs for each classifier model and the models
range of threshold values. In response to this difficulty several
visualizations or curves have become standard approaches to
review classifier performance.

2.1.1. Receiver Operating Characteristic Curve

Receiver operating characteristic (ROC) curves are one of
many visualization methods for binary classifier performance
based on figures of merit derived from the confusion matrix
shown in Figure 1.ROC curves are plots showing the rate at
which positives are correctly identified, the true positive rate
(TPR), on the Y-axis against the rate negatives are incorrectly
classified, the false positive rate (FPR) on the X-axis. These
rates are calculated using Eqs. (2 and 5). For a given binary
classifier, scaler values are calculated for each sample, the
scaler values are then compared to a monotonically increas-
ing threshold value, TPR’s and FPR’s are calculated using
Eqs. (2 and 5), and finally the two-dimensional ROC curve
is plotted.

ROC curves have found widespread use in disparate areas:
from quantitizing radar operator performance in the second
world war, to medical decision making, and machine learn-
ing applications. No matter the field, the ROC curve has
been used to evaluate the performance of binary classifiers
- classifiers that predict the division of a data-set into two
groups, positives (p) and negatives (n). Continuous or prob-
abilistic classifiers, which provide a score or probability, can
be applied over a range of classification threshold values to
provide the data necessary to generate a multi-point ROC
curve (Fawcett, 2006; Takaya & Rehmsmeier, 2015; Powers,
2008).

For a binary classifier with an even 50% chance of correctly
identifying the correct class in a balanced data-set the ex-
pected ROC curve is shown in Figure 2 which was generated
using a 1000 sample data-set where the classifier had equal
chance to correctly or incorrectly predict the class. This rep-

Figure 2. ROC curve for random choice classifier.

resents a worst case classifier performance, as typically the
classifier predictions would be inverted if it was more prone
to the incorrect classification. To interpret Figure 2 imag-
ine a classifier that produces a score between (0.0, 1.0), with
higher values nominally correlated with higher probability of
a positive (p) class, and a vector of monotonically increasing
threshold values from [0.0, 1.0]. When the threshold value
is at a minimum everything is a predicted (Y) and therefore
FPR is at a maximum. When the threshold value that delin-
eates a predicted (N) and predicted (Y) is increased, a new
point on the ROC curve is generated with updated FPR and
TPR. For a random classifier the score is uncorrelated to class,
and higher threshold values increase the number of true posi-
tives and false positives at an equal rate. This continues until
the threshold value exceeds the greatest class score and every
result is predicted (N) and the value of TPR and FPR con-
verge to 0.0. The number of threshold values used to generate
the ROC curve is application specific, but in general should
have sufficient quantity and spacing to accurately visualize
the curvature and any knee points in the ROC curve. The
relative spacing of threshold values is also application spe-
cific, the author has had success using both linear and loga-
rithmically increasing threshold values. In (Fawcett, 2006) an
ROC generation algorithm is presented which sorts the classi-
fier outputs by amplitude and for each unique amplitude cal-
culates the requisite performance metrics instead of using a
pre-defined threshold set, depending on the application this
alternative method may provide computational efficiency.

A random choice continuous classifier will produce results
comparable to Figure 2. On the other extreme of classifier
performance is a binary classifier that perfectly classifies ev-
ery instance resulting in FPR = 0, TPR = 1, and a point
in ROC space at coordinates [0, 1] (Bradley, 1997; Fawcett,
2006; Powers, 2008; Takaya & Rehmsmeier, 2015). A per-
fect classifier as described will produce an ROC curve with
two perpendicular legs as shown in Figure 3.
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Figure 3. ROC curve for a perfect classifier.

2.1.2. Evaluation of Classifier Performance via Area Un-
der the Curve

The comparison of Figures 2 and 3 brings us to an important
subject - using the ROC curve to objectively evaluate clas-
sifier performance - and introduces another figure of merit,
the area under the ROC curve (AUC) (Bradley, 1997). As
the ROC curve is plotted on a unit square, the corresponding
AUC is bound between 0.0 and 1.0. For the random classifier
of Figure 2 the expected AUC is 0.50 and in the case of this
specific 1000 sample random data-set AUC = 0.493. Alter-
natively the perfect classifier of Figure 3 results in AUC =
1.0. These contrasting classifiers illustrate an attractive fea-
ture for the ROC AUC, the AUC is equivalent to the probabil-
ity that a random instance of class (n) will produce a classifier
output lower than the output of a random instance of class (p),
known in the field of statistics as the Mann-Whitney U statis-
tic (Hand, 2009).

The prior paragraph paints a rosy picture of using ROC AUC.
Figure 4 is included to urge caution before blindly using ROC
AUC as the sole metric in choosing a classifier. In Figure 4
classifier A is a simulated data-set where approximately 10%
of the data-set is (FN); the prediction is (N) while the ground
truth is (p). Classifier B is the opposite and approximately
10% of the data-set is (FP) where the prediction is (Y) while
the ground truth is (n). As seen this produces two drastically
different ROC Curves that result in ROC AUC values that are
equivalent. Recalling the discussion in Section 2, classifier
A is conservative and would appeal to the General Motors
use case where (FP) is to be minimized and a threshold that
maximized TPR while FPR = 0 is optimal. Classifier B is
an example of a liberal classifier, it prioritizes identifying all
(p) cases at the expense of greater (FP), classifier B would be
preferred in the medical screening classifier also discussed in
Section 2. We will revisit the four classifiers of Figures 2, 3,
and 4 during the discussion of an alternative to ROC curves.

Much has been written on alternative measures (Bradley,
1997; Powers, 2008; Hand, 2009; Takaya & Rehmsmeier,
2015; Fawcett, 2006). The AUC is just one measure of clas-
sifier performance and can be applied to other permutations

Figure 4. ROC curves for a conservative and liberal classifier.

of characteristic curves such as the Precision Recall Charac-
teristic (PRC) curve.

2.1.3. Precision Recall Characteristic Curve

Due to an unfortunate lack of coordination the PRC curve’s
relation to the ROC curve is hidden by nomenclature. The
PRC curve is a 2D visualization of the performance met-
rics Precision (PPV, or positive predictive value) and Recall
(TPR). Yes, a double take is required, Recall is simply an-
other name for the true positive rate used by the ROC curve.
Eqs. (4) and (2) define these two metrics. As a review; the
positive predictive value is the rate at which predicted (Y) in-
stances are true positives (TP), and the true positive rate is the
fraction of positive (p) instances accurately predicted as pos-
itive (TP) instances. Further confounding comparisons, the
PRC curve places TPR on the X-axis while the ROC curve
place the TPR on the Y-axis.

The PRC curve is commonly used for information retrieval
classifiers such as developing search engines (Fawcett, 2006;
Takaya & Rehmsmeier, 2015). The combination of TPR and
PPV at first seem an unlikely pairing as they are similar met-
rics. TPR is maximized when all (p) instances are predicted
(Y) and PPV similarly has true positives (TP) in the equation
numerator. The beauty of the PRC curve is that TPR pun-
ishes false negatives (FN) while PPV punishes false positives
(FP), the ‘optimization’ of the PRC curve therefor leads to a
balance between identifying all positive instances while min-
imizing the number of false positives (FP).

Before using the PRC curve to visualize classifier perfor-
mance in a real world data-set the examples provided in the
ROC curve section are revisited using PRC curves, Figures 5,
6, and 7 show the results along with the PRC AUC. Note
that the ROC AUC equaling the Mann-Whitney U statis-
tic does not apply to the PRC AUC because ROCAUC ̸=
PRCAUC.

The interpretation of the PRC curve differs from the ROC
curve, in Figure 2 the random classifier performance was
shown as a line on the diagonal of FPR and TPR. This same
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Figure 5. PRC curve for random choice classifier.

random classifier produces a notably different visualization
with the PRC curve. At the far right of the PRC curve a very
liberal threshold correctly predicts all positives (p) as (Y), the
value of precision is 0.5 because there are an equal number of
false positives (FP) as true positives (TP). As the threshold
value is increased the [X,Y] pair translates horizontally to the
left because true positives (TP) decreasing lowers TPR while
true positives (TP) and false positives (FP) are decreasing at
the same rate - fixing (within the limits of randomness) the
value of precision at 0.5. As the threshold value of the ran-
dom classifier continues to increase true positives (TP) ap-
proach zero (0) and the PRC curve exhibits instability on the
far left of the plot. True positives (TP) and false positives
(FP) continue decreasing at the same rate but their sample
size decreases until there are not sufficient data points for ran-
domness to average out. In fact depending on how threshold
minimum and maximums are established the value of preci-
sion at TPR = 0 is equally likely PPV = 0, as shown in
Figure 5, as it is for PPV = 1. For reference this paper
uses Eqs. (10) and (11) to set the threshold values dynami-
cally for each classifier evaluated. Exact threshold values are
then calculated using a linear spacing of 100 points inclusive
of the minimum and maximum values calculated in Eqs. (10)
and (11).

Thresholdmin = min(Classifieroutputs) (10)

Thresholdmax = max(Classifieroutputs) (11)

The perfect classifier’s PRC curve is thankfully more straight-
forward than the unstable random classifier PRC curve and is
shown in Figure 6. With a exclusively liberal threshold value
the PRC curve again starts at the coordinate pair [1, 0.5], due
to the perfectly balanced class distribution in this synthetic
data-set. The PRC Y-axis location when threshold is at a
minimum is equal to the prevalence of positive cases in the
set. As the threshold value is increased, becoming more con-
servative, the perfect classifier reaches the PRC space of [1, 1]

Figure 6. PRC curve for a perfect classifier.

Figure 7. PRC curves for a conservative and liberal classifier.

when all the positive (p) and negative (n) classes are correctly
predicted.

Figure 7 uses the same data-set as Figure 4. To review, classi-
fier A is a simulated data-set where approximately 10% of the
data-set is (FN); the prediction is (N) while the ground truth
is (p). Classifier B is the opposite and approximately 10%
of the data-set is (FP) where the prediction is (Y) while the
ground truth is (n). The PRC AUC values for these two clas-
sifiers differ by a non-trivial amount, unlike the example with
ROC AUC, but ultimately the end user would need to make a
decision based on their particular requirements - it is entirely
possible that classifier B may be preferred if a high true pos-
itive rate is significantly more important than avoiding a few
false positives (FP).

2.2. Bookmaker Informedness and Markedness

In preparing this work, I came across a series of
works, (Powers, 2003, 2008; Chicco, Tötsch, & Jur-
man, 2021), that introduced Bookmaker Informedness and
Markedness which at first impression seem well suited to
quantifying classifier performance in PHM.

Unlike the well established ROC and PRC curves the sister
metrics of informedness (BM) and markedness (MK) were
not developed into an easily visualized curve. To demonstrate
general trends for (BM) and (MK) the individual metrics are
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Figure 8. Informedness for random choice classifier.

Figure 9. Markedness for random choice classifier.

plotted verse a linearly increasing threshold for the three syn-
thetic examples previously visited for ROC and PRC curves
of Figures 2 through 7. In this work the evaluation threshold
maximum is dynamically updated for each classifier. To stan-
dardize the X-axis the threshold sample number of the mono-
tonically increasing value is used in place of actual values.
First informedness and then markedness are shown for the
balanced data-set random classifier in Figures 8 and 9. After
reviewing the three synthetic use cases with standalone BM
and MK metrics, a combined visualization - the Bookmaker
Curve - will be introduced.

Figures 8 and 9 have several noteworthy features. First is
the behavior of both figures before the 35th threshold value.
Prior to threshold value 35 the threshold value was less than
the minimum classifier output. The synthetic data-set’s bal-
anced nature leads to equal TPR and FPR’s and a resulting
BM value of 0.0. The same circumstances lead to no (FN) or
(TN) values prior to the 35th threshold value - causing a zero
term in the denominator of the NPV calculation of Eq. (6).
This NaN is carried into the calculation of MK and is vi-
sualized as a missing region in the MK curve of Figure 9.
The second noteworthy result of Figures 8 and 9 is their near
zero (0.0) amplitude in the threshold region where they are
properly defined. This matches the random classifier’s un-
informed classification scheme. Turning our attention to the

Figure 10. Informedness for a perfect classifier.

Figure 11. Markedness for a perfect classifier.

case of a perfect classifier, Figures 10 and 11 show the result-
ing metric curves.

Figures 10 and 11 show similar symmetric behavior as the
threshold values are increased from a minimum value of 0.0
to the classifier’s maximum output value. As implied by
name, the perfect classifier includes a range of threshold val-
ues where each instance is correctly predicted as (TN) or
(TP). Please note ‘perfect’ does not imply that the classifier
performs likewise for any given threshold value, rather the
classifier is able to take advantage of some feature of the data-
set to separate the instances into accurate discrete classes. For
the example data-set used, values between thresholds [49, 52]
are in the range of classifier outputs where (n) and (p) in-
stances are separated..

The third set of figures for the initial visualization of BM and
MK stems from two classifiers: classifier A is a simulated
data-set where approximately 10% of the dataset is (FN); the
prediction is (N) while the ground truth is (p). Classifier B
is the opposite and approximately 10% of the data-set is (FP)
where the prediction is (Y) while the ground truth is (n). Fig-
ure 12 shows the informedness as a function of increasing
threshold value for the two classifiers while Figure 13 visual-
izes the markedness.

An interesting contrast between bookmaker informedness
and markedness is their response to a biased classifier. Recall
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Figure 12. Informedness for a conservative and liberal classi-
fier.

Figure 13. Markedness for a conservative and liberal classi-
fier.

that classifier A is an idealized conservative classifier with
10% of the balanced data-set instances set as (FN). The re-
sult of this is that 20% of (p) instances are misclassified by
classifier A. Classifier B, as a liberal classifier, is the inverse
- 10% of the balanced data-set instances are (FP). Figure 12,
which tracks informedness as the threshold is varied is agnos-
tic to classifier permissiveness, showing near identical curves.
Conversely Figure 13, which tracks markedness responds to
the classifier differences. Tracking classifier A performance,
the peak of markedness is reached at a higher threshold than
classifier B and their slopes fall off asymmetrically and in
opposing skews. A deeper investigation into the markedness
metric is reserved for now.

The dual metrics of informedness and markedness have so
far been viewed in isolation, making interpretation markedly
different than the ROC and PRC curves that are familiar terri-
tory in PHM. To thematically match the ROC and PRC curves
and hopefully aid in their interpretation the use of a visu-
alization I’ll coin the Bookmaker curve. In the Bookmaker
curve the informedness is plotted on the X-axis while the Y-
axis is reserved for markedness. The three established exam-
ples are revisited using this new visualization in Figures 14
through 16.

The random classifier Bookmaker curve, shown in Figure 14,

Figure 14. Bookmaker Curve for random choice classifier.

displays a non-linear curve that randomly oscillates around
the coordinate pair [0, 0] and indicates that the classifier pre-
dictions are not acting on any foresight of the instance class.
Skipping to Figure 16 the pair of classifiers trace similar
curves with the values approaching coordinate pair [1, 1] at
the optimal threshold values. Not shown in the still-frame
of Figure 16 is the order in which the respective curves
are plotted with increasing threshold values. At the lower
bound of threshold values classifier A starts at [0.0, 0.2] and
traces counterclockwise until the maximum threshold value
at which point the curve is at [0.0, 0.5]. The Classifier B trace
follows a clockwise path as threshold values are monoton-
ically increased. The non-linear curves are reminiscent of
hysteresis loops often encountered in materials science and
engineering mechanics and indicate a non-symmetric behav-
ior about a peak.

Returning to Figure 15, the behaviors of the random classi-
fier and imperfect classifiers frame the discussion. Clearly
the classifier has some measure of insight into the system to
properly predict the true class of instances, unlike the random
classifier. The hysteresis loops of Figure 16 are not present
in the perfect classifier (for a synthetic data-set and balanced
data), but our prior experience allows us to understand the
Bookmaker curve is first tracing the curve from [0.0, 0.5] to
[1.0, 1.0] before retreating back to the originating coordinate
pair as threshold values are increased. Unlike the ROC and
PRC curves the Bookmaker does not have a fixed phenotype
for a perfect classifier. Depending on the complex interac-
tions of TPR, TNR, PPV, and NPV as threshold is swept the
Bookmaker curve may exhibit a wide range of shapes, the
only constant is at least one threshold value where the curve
is at Bookmaker space of [1.0, 1.0].

The discussion of classifier optimization and visualization
sets the stage for analyzing a more complex data-set.

3. EXPERIMENT

The remainder of this work will focus on the initial, trou-
bleshooting, run of data collected from a series of run-to-
scuffing-failure ball-on-disk (BoD) tests. The initial test run
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Figure 15. Bookmaker Curve for a perfect classifier.

Figure 16. Bookmaker Curve for a conservative and liberal
classifier.

used in this work confirmed test procedures and informed
planning for the full series of subsequent tests not covered
in this paper. Testing was conducted on a Bruker UMT
TriboLab at the Penn State University Tribology/Materials
Processing Lab. Detection of scuffing, defined in (Ludema,
1984) as “a roughening of surfaces by plastic flow whether
or not there is material loss or transfer”, has historically been
limited to the field of tribology where the conditions at on-
set of scuffing, as indicated by a rapid increase in coefficient
of friction (CoF), are used as a performance metric. Scuffing
detection via local CoF is impractical for many applications
of prognostic health management (PHM) systems, particu-
larly PHM retroactively installed on legacy systems. The test
objectives were to provide bench-top development and vali-
dation of scuffing detection algorithms for continuous sliding
contact systems such as found on the internals of high pres-
sure diesel fuel pumps. The full problem statement, test de-
scription, and analysis are the subject of an in-progress Ph.D.
dissertation, but the limited sample used in this work serves
the purpose of providing a relevant imbalanced PHM data-set
for binary classifier performance metric comparison.

The Bruker UMT TriboLab shown in Figure 17 applies nor-
mal force between a rotationally fixed hardened steel ball
bearing and the flat face of a rotating hardened steel disk.
In this test run the disk was machined from SAE 9310 steel
with the wear surface carburized to a Rockwell scale hard-

Figure 17. Bruker TriboLab at Penn State University.

Figure 18. Hardened steel disk spinning inside lubrication
bath.

ness of 61 HRC. Each test used a new test disk and new ball
bearing. All ball bearings were from the same manufacturing
lot of 52100 steel with surface hardness averaging 65 HRC.
The disk is held in an oil lubrication bath and spun at a con-
stant 5, 000RPM as shown in Figure 18. The lubrication
was replaced after each run with Mobil Jet Oil II (MIL-PRF-
23699 qualified). A stepper motor driven ball screw assembly
with PID controller controls normal force between the tribol-
ogy pair. The load cell, used for data acquisition and PID
feedback, has sufficient compliance to allow the ball screw
to control force in an otherwise non-compliant assembly. As-
sembled onto the TriboLab the spindle mechanism is oriented
as shown in Figure 19.

The run-to-failure BoD methodology and load profiles used
in this testing were previously developed by the Gear Re-
search Institute at Penn State University for analyzing gear
steel performance in sliding contact systems such as helical
gears. This paper uses data from the initial BoD test. The
load profile first brings the test disk up to 5, 000RPM before

9



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

Figure 19. Load cell and spindle mounted on TriboLab.

Table 2. Binary classifier performance metrics.

Duration (sec) Description

N/A Ramp disk to 5, 000RPM

2 Ramp load to 5N

600 Run-in period

1 Ramp load to 25N

600 First load range

1 Ramp load to 50N

1800 Second load range

1 Ramp load to 75N

1575 Third load range

N/A Terminate test

gradually bringing the rotationally fixed ball bearing into con-
tact with the upper face of the test disk. After a short 2 second
loading ramp the PID controller held the contact normal force
at a nominal 5N load for a ten (10) minute run-in period. The
full load profile used for the initial BoD test is detailed in
Table 2.

3.1. Data Collection

Classifiers require an input to predict the class of an instance,
in the BoD testing data was collected from two sources.
The Bruker TriboLab has built in sensors and feedback that
recorded the following relevant data of Table 3 at a 10Hz
sampling rate.

In addition to the data natively collected by the TriboLab,
vibration data collected via accelerometers was identified as
key to developing successful scuffing fault classifiers. To en-
able vibration data collection the upper clamping bolt of the
TriboLab spindle was replaced with a through-bolt secured
accelerometer mount seen in Figure 19. The accelerom-

Table 3. Load profile used for initial BoD test.

Variable Description

T [sec] Elapsed time from test start

Fx [N] Reaction force from friction

Fz [N] Normal force applied to disk

Z [mm] Relative Z-axis position

X [mm] Radius of ball contact

V2 [RPM] Velocity of disk rotation

Ff [N] Derived friction force

COF Derived coefficient of friction

eter mount was instrumented with a total of four (4) ac-
celerometers. An IEPE powered PCB 352A60 was installed
on the vertical Z-axis while three matching Analog Devices
ADXL1005z accelerometers were arranged in a tri-axial con-
figuration. For this work the Z-axis acceleration obtained by
the PCB 352A60 is used.

To take advantage of the high bandwidth provided by the PCB
352A60 (5− 60kHz) the maximum sampling rate supported
by a NI PCI-4472B card was used - 102, 400Hz. Due to
limitations of the legacy data acquisition system used for the
initial run data was collected in 25 second records with a 5
second buffer between each record. Subsequent tests used a
newer system sampled continuously at 200kHz and added a
measurement microphone mounted inside the TriboLab test
chamber.

3.2. Test Observations

The test run for this work’s data-set was observed continu-
ously from test initiation through test termination. Lessons
learned from this initial test were used to modify future
rounds of testing. The test initiated successfully with the disk
velocity ramping up to 5, 000RPM in a counterclockwise
direction. The following 2 second load ramp was insufficient
time for the TriboLab controller to bring the ball into contact
with the spinning disk and ramp the load to 5N . During the
testing load ramps from one load range to the next were orig-
inally set to a 1 second duration, this rapid load change led to
transient behavior during the testing, subsequent tests would
use a uniform 30 second load ramp between loading condi-
tions to allow time for the ball to initially contact the disk and
for smoother load ramping dynamics.

Several periods of the test were noteworthy. During the load-
ing ramp from 25N to 50N there was a brief period of ap-
parent scuffing indicated by increased acoustic noise levels,
increased friction force readings from the TriboLab, and in-
creased vibration as measured by the accelerometers. This
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Figure 20. Time domain acceleration during transient.

period of increased system response was brief and the system
reverted back to a steady state similar to pre-scuffing activity.
Figure 20 shows the time domain Z-axis acceleration for this
transient event with the initial steady state behavior, scuffing
like behavior, and return to a nominal steady state. The time
domain acceleration plot covers multiple 25 second records
with 5 second gaps due to the limited capabilities of the data
acquisition used for this test run. Several future test runs were
terminated immediately following similar transient scuffing
indicators and support the scuffing classification for this type
of temporary elevated outputs.

A challenge encountered during all runs in this experimental
setup is establishing a ground truth for active scuffing. The
test samples could not be inspected for indications of scuffing
until after the test had concluded, as such a ground truth was
manually established by comparing contemporaneous notes
from auditory cues, TriboLab data, and accelerometer data.
While every effort was made to ensure accuracy of the ground
truth it remains a significant source of uncertainty in the clas-
sifier analysis. For this test a (n) or (p) class was assigned on
a 1Hz interval. Due to the transient nature of scuffing events,
decreased instance periods could be explored in future work.

After the initial transient scuffing behavior during the 25N
to 50N load ramp there was minimal change in system be-
havior. 30 minutes into the 50N load the 75N load ramp
was manually triggered. Approximately 2 minutes after the
75N load was reached the acoustic, force, and vibration lev-
els spiked for several seconds before once again returning to
a steady state baseline. This behavior is shown in the time
domain acceleration of record 106 in Figure 21.

The test was allowed to continue running after the brief spike
in output variables shown in Figure 21. The test maintained
steady state behavior until, suddenly, during record 147 a
drastic change in run behavior occurred. Shown in Figure 21,
the acceleration rapidly increased to levels greater than seen
in the prior transient scuffing. Further, unlike Figure 20, no
‘self-healing’ of the tribology pair occurred and steady state
behavior was never re-established. When it became clear that
no return to prior behavior was likely the test was terminated.

Figure 21. Time domain acceleration spike.

Figure 22. Time domain acceleration at test termination.

Based on later tests results with runs terminated at various
stages of the test profile, this last stage of scuffing accounts
for the vast majority of surface wear visible on the test disk
and ball samples. The worn SAE 9310 carburized steel disk
for this run is shown in Figure 23 showing a significant wear
scar. In the follow-on testing of 16 test runs the test samples
were cleaned of their lubricant film and the wear scars were
photographed under a microscope for visual inspection.

At the conclusion of the BoD scuffing test the sample disk
and ball were removed from the Bruker TriboLab, cleaned of
residual lubricant, and sealed in airtight packaging for preser-
vation. The raw data from the TriboLab instrumentation and
accelerometers was then reviewed and for each second of
elapsed time a ground truth class was assigned by subject
matter experts as either negative (n) or positive (p) for ac-
tive scuffing wear during that elapsed second of data. It is
important to emphasize that the ground truth designation is
subject to error, a reality that is difficult to avoid for all but
the least ambiguous data-sets.

3.2.1. Data Balance

Compiling the ground truth vector allowed for the calculation
of prevalence using Eq. (1). The resulting prevalence of 5.6%
indicates an imbalanced data-set, but not an extreme of im-
balances as reported by (Fawcett, 2006). The relatively high
prevalence of this data-set is primarily attributed to the 168
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Figure 23. SAE 9310 carburized steel disk after test.

instances of (p) at the test conclusion where the TriboLab was
allowed to run to see if a steady state would be re-established.
Only including one instance of (p) at the test conclusion re-
sults in a prevalence of 1.3%.

prevalence =
P

P +N
=

216

216 + 3609
= 5.6% (12)

3.3. Signal Processing and Classifier Design

Figures 20 through 22 show samples of time domain data for
the BoD test. Focusing on the vibration signal from the PCB
352A60 the 153 records of 25 seconds were processed into
3825 one second records and synchronized with the ground
truth vector of the same length. To maintain focus on com-
paring classifier characteristic curves, three simplistic binary
classifiers are used.

1. Elapsed time between test start and end of instance
2. Absolute value of first sample for each 1 second in-

stance
3. Root mean square (RMS) of full bandwidth power

spectral density (PSD)

The first classifier analyzed was chosen as an example of
deceptively good subjective performance and also exempli-
fies standard interval based maintenance schedules, the sec-
ond classifier was expected to perform poorly by all objec-
tive measures, and the third classifier is expected to perform
significantly better as it is informed by the test systems fault
physics. The design and optimization of pre-processing al-
gorithms and subsequent scuffing detection algorithms is re-
served for future work.

3.4. Binary Classifier Characterization Comparison

Using three separate characteristic curves to explore classi-
fier performance is somewhat ironic, when you consider the
ROC curve was originally meant to simplify the presentation
of classifier performance. By adding two additional charac-

Figure 24. ROC curve for elapsed time classifier.

teristic curves, each with their own nuance, returns the user
to square one, with too many variables to track simultane-
ously. With that in mind the following section attempts to
add commentary on what each characteristic curve provides
an analyst.

The elapsed time classifier, at first inspection, shows re-
spectable ROC curve performance in Figure 24 with a TPR
of 0.71 before FPR becomes non-zero. Observing the broad
horizontal shelf of the ROC curve it is clear that the classi-
fier is missing a key component of diagnostic information.
The partially informed classifier performs well for a subset of
all (p) instances but the last 20% of (p) instances are seem-
ingly agnostic to the classifier mechanism of elapsed time.
With some reflection on ROC curve behavior and understand-
ing the transient scuffing behavior during the test it become
obvious why elapsed time does not identify all (p) until the
FPR has nearly reached a worst case value of 1.0. Further the
elapsed time classifier will be very sensitive to the training
data used. A training data-set pulled from a heavily duty-
cycled and abused system will produce a very conservative
classifier threshold when applied to a system in a milder op-
erating environment and vice versa.

The elapsed time PRC curve of Figure 25 tells a similar story.
At first glance, performance seems good, the nosedive in pre-
cision as recall approaches a value of 0.8 indicate there is
a non-trivial proportion of (p) instances that the classifier is
not responsive to. This could be the result of multiple failure
modes in the training data with at least one mode veiled to the
classifier, or it could simply be a classifier that is predestined
to predict (Y) at end of a run-to-failure data-set. While the
ROC and PRC curves appear drastically different, partially
due to Y-axis TPR in the ROC curve and X-axis TPR in the
PRC curve, a straightforward interpretation of the visualiza-
tion provides a similar grasp on classifier interactions. This is
not necessarily so for the third visualization, the bookmaker
curve.

The Bookmaker curve of Figure 26 is difficult to interpret.
The two metrics plotted as classifier threshold increases are
both 2nd order abstractions of the six variables in the ba-
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Figure 25. PRC curve for elapsed time classifier.

Figure 26. Bookmaker curve for elapsed time classifier.

sic confusion matrix of Figure 1. Knowing that a point at
[1.0, 1.0] in Bookmaker curve space represents a perfect clas-
sifier certainly helps, but the non-linear changes in MK and
BM as threshold changes make AUC calculations meaning-
less. Likewise the author sees little value in assigning some
metric of hysteresis loop area as a quantifying sub-metric of
the bookmaker curve. What can be quickly concluded from
the bookmaker curve is that there exists a threshold value
where the paired metrics of MK and BM have reasonably
high amplitude and the smooth curvature of the downward
arc suggests relatively stable performance as threshold is var-
ied in this section of Bookmaker curve space. Overall the
elapsed time classifier performed subjectively well based on
the three visualizations examined, the performance of the
classifier was highly dependent on the run to failure nature
of the test data-set and is unlikely to transfer well to the same
physical system under different duty cycles, the classifier is
over-trained to this single test data-set.

Moving to the first value classifier, a clear difference in clas-
sifier performance is expected. With a run to failure test
data-set there is clear correlation between elapsed time and
fault probability, that is not necessarily the case when the
absolute value of the first time series acceleration value is
used. Observing the time domain acceleration of Figures 20
through 22 the signal amplitude increases significantly dur-
ing scuffing events - an entire order of magnitude at test ter-

Figure 27. Histogram of record 153 acceleration samples.

mination; however, the signal amplitude is not a DC value.
The first sample for a given instance has an amplitude bound
by the minimum and maximum acceleration values for that
instance but the instantaneous sample could be anywhere
within that range. Figure 27 shows the histogram for record
153, the final 25 seconds of data before the test was termi-
nated, the data roughly follows a normal distribution, and
statistically any sample is more likely to be near zero than
the maximum amplitude. While the probability skews to-
wards lower amplitudes even during high vibration level in-
stances, the distribution of Figure 27 shows that many values
will exceed the nominal peak amplitudes for the healthy data
(mean = −0.012, STD = 21.05).

Record 153’s data distribution, the most extreme of the faulty
data in this BoD test, demonstrates the challenges the first
value classifier will experience. The anticipated poor perfor-
mance of this classifier is confirmed in Figures 28 and 29.
The initial sharp rise in the ROC curve’s TPR shown in 28
indicates the classifier has some insight into instance class,
these are the instances where the first acceleration value are
greater than (n) instance nominal values and are point in ROC
space representing higher threshold values. The low slope of
the ROC curve from coordinate [0.1, 0.6] to [1.0, 1.0] is proof
that the first value amplitude classifier is a poor performer
outside of the most conservative threshold values and at best
could be used as an initial screening to identify extreme (TP)
instances. Frustratingly the ROC AUC for the elapsed time
classifier and first value classifier are nearly equivalent de-
spite the classifiers incongruous performance.

Figure 29 shows the PRC curve and PRC AUC for the first
value classifier. Unlike the ROC AUC, the PRC AUC is able
to differentiate between the elapsed time and first value clas-
sifiers. The PRC curve also does a subjectively ‘better’ job at
highlighting the flawed performance of the first value classi-
fier; the classifier can only identify all the (p) instances at the
expense of a significant number of (FP) instances resulting in
either high TPR or high precision but never both at the same
time.

The first value classifier’s Bookmaker curve provides some
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Figure 28. ROC curve for first value classifier.

Figure 29. PRC curve for first value classifier.

interesting insight. For some range of threshold values, the
values approaching classifier output maximum, the marked-
ness is near its maximum value of one (1). Beyond that region
of threshold values the Bookmaker curve generally indicates
poor performance. The initial high values of markedness are
deceiving and a casualty of data-set class balance. Recall
from Eq. (9) that markedness is a higher order abstraction
of both precision and NPV. At high threshold values there are
few if any (FP) instances, maximizing precision. NPV from
EQ. (6) is a function of both (TN) and (FN), while the first
value classifier struggles with the normal distribution of ac-
celeration amplitudes the imbalanced data-set minimizes the
number of (FN) instances and therefore showing a high NPV
despite a high FPR. Overall the Bookmaker curve requires the
analyst to process a series of scenarios to fully comprehend
the visualization and its utility as a quick visual reference is
compromised.

The elapsed time classifier showed subjectively good results
that must be tempered by the analyst due to the over-trained
nature of the classifier and the first value amplitude classifier
was plagued by accelerometer output distribution for even
the most severe of faulted data. In contrast the curves dis-
played in Figures 31 through 33 are for a classifier informed
by the physical interactions of the test fault mode. In the case
of sliding contact scuffing the two hardened steal surfaces
are moving against each other in a lubricant bath at a nom-

Figure 30. Bookmaker curve for first value classifier.

Figure 31. ROC curve full bandwidth RMS classifier.

inal coefficient of friction. The healthy state sliding contact
and the TriboLab’s drive mechanism generate vibrations de-
tected by the accelerometers. As the test runs, increasing nor-
mal force, temperature, and specimen wear lead to conditions
where scuffing contact is initiated and vibrations levels drasti-
cally increase. Tracking the broadband accelerometer signals
should therefore provide an informed classifier to the system
class for a given instance, helpfully this classifier is not de-
pendent on a single random sample of time domain making
it robust to the identified weakness of the first value classi-
fier. Fine tuned classifiers that focus on specific frequency
ranges and frequency domain phenotype are expected to pro-
vide improved classifier performance compared to the RMS
of vibrations power spectral density but is reserved for future
work.

Both the ROC and PRC curve visualizations show better sub-
jective performance than the prior two classifiers with the
PRC curve’s increased sensitivity to imbalanced data-sets ap-
parent in the AUC values. In many fields the ROC AUC value
of 0.970 would be considered exceptional, this is a trap that
PHM analysts must be cognizant of, continuously monitored
systems could have thousands, if not millions of (n) instances
before a single (p) instance the visual differences between an
ROC curve with AUC = 0.99 and AUC = 0.9999 will be
minuscule yet will drastically effect the real world. For an
imbalanced data-set this is where the PRC curve offers ad-
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Figure 32. PRC curve full bandwidth RMS classifier.

Figure 33. Bookmaker curve full bandwidth RMS classifier.

vantages over the ROC curve, both curves share TPR (a.k.a.
recall) as one axis. The secondary axis of each curve pro-
vides their differentiation. The second axis of the ROC curve
is FPR, defined by Eq. (5) uses (FP) and (TN), both of which
are in the second column of the confusion matrix shown in
Figure 1 and are part of the dominate class. As a result the
FPR will have a significantly larger denominator than the cal-
culation for precision leading to less sensitivity to false class
predictions for the imbalanced data-set. The sensitivity of
precision to class balance is beneficial to the analysis. For ex-
treme examples of class imbalance data pre-whitening may
also prove helpful to condense duplicated inputs from iden-
tical nominal instances, this could be done during the super-
vised ground truth determination phase in training data-sets.

The Bookmaker curve of Figure 33 shares no resemblance to
that of the perfect classifier shown in Figure 15 despite the
RMS classifier’s good subjective performance. The lack of
a common phenotype for well behaved classifiers is a seri-
ous impediment to implementing the bookmaker informed-
ness - markedness curve for rapid visual assessment of clas-
sifier performance.

4. CONCLUSION

In this paper the basics of binary decision classifiers were
presented along with key metrics and visualizations to quan-
tify classifier performance. The importance of visualizations

to allow analysts to efficiently review classifier performance
was discussed and three classifier performance curves were
studied in more detail. The ROC curve, PRC curve, and a
promising combination of higher order metrics - the Book-
maker curve were detailed by using three synthetic scenarios
to build a foundation for readers. Ultimately a PHM run-to-
failure experiment was introduced for a real-world compari-
son of the three binary classifier visualizations.

For poor to moderately performing classifiers the relative dif-
ferences between ROC and PRC curves were inconsequen-
tial to the analysis and either visualization provided a clear
depiction of classifier performance. When a vastly superior
classifier was introduced the ROC curve is limited because
the underlying metrics are not sensitive to data balance and
there is little difference between great and truly exceptional
classifier performance in the ROC curve and the ROC AUC
metric. For the imbalanced data-set studied the relative lack
of (FP) and (TP) instances makes the PRC curve much more
sensitive to small changes in classifier performance for high
performing classifiers.

For all classifiers studied the Bookmaker curve proved un-
wieldy and difficult to rapidly interpret because the X- and
Y-axis metrics are both 2nd order abstractions from the fun-
damental variables used in the confusion matrix shown in Fig-
ure 1. Perhaps with more experience and examples using the
dual metrics of bookmaker informedness and markedness this
shortcoming could be overcome. At this time the Bookmaker
curve, while a promising concept, provides minimal added
value compared to the ROC curve.

For imbalanced data-sets encountered in PHM the PRC curve
appears to be the superior visualization if the target audience
has similar familiarity with both ROC and PRC curves. The
shortcomings of the ROC curve can be worked around and
with the proper analytical perspective ignored; however, they
may be optimistically misconstrued to a casual audience.
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