
1 

Enhancing Realistic Remaining Useful Life Prediction through 

Multi-fidelity Physics-Informed Approaches 

Solichin Mochammad1, Yoojeong Noh2*, and Nam Ho Kim3* 

1,2School of Mechanical Engineering, Pusan National University, Busan, 46241, South Korea 

msolichin1989@gmail.com 

yoonoh@pusan.ac.kr 

1Department of Mechanical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 60111, Indonesia 

solichin@me.its.ac.id, Corresponding author 

3Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, 32611, Florida,  

nkim@ufl.edu, Corresponding author 

 
ABSTRACT 

Accurately predicting the remaining useful life (RUL) of 

components is challenging due to trend uncertainty in data-

driven methods and limited data availability. To address these 

issues, this study proposes a multi-fidelity (MF) approach 

that combines low-fidelity (LF) and high-fidelity (HF) data 

to estimate RUL. By predicting discrepancies between the 

two data sets using a neural network, the proposed method 

leverages a physical model and artificial neural networks to 

enhance RUL estimation. The study focuses on performance 

degradation prediction using an exponential function as the 

LF model and monitoring data as the HF model. The 

exponential function's monotonically increasing trend 

contributes to realistic RUL predictions. The proposed 

approach is evaluated on rotating components, such as 

bearings and unbalanced cooling fans, to assess its 

generalization performance. Comparisons with existing 

techniques like long short-term memory (LSTM), 

autoregressive integrated moving average (ARIMA), and 

neural network (NN) highlight the unrealistic RUL prediction 

issues they face. The experimental results demonstrate that 

the proposed method produces accurate and realistic RUL 

predictions. It offers practical benefits in terms of cost 

reduction and improved operational efficiency. Overall, the 

MF approach addresses the limitations of traditional methods 

by integrating physical models, neural networks, and 

available monitoring data. This approach enables more 

reliable RUL predictions, facilitating effective maintenance 

decision-making for optimal asset management. 

1. INTRODUCTION 

The prediction of RUL has garnered attention for its potential 

in preventing serious component or system failures, 

workplace safety, and reducing costs. As components and 

machines operate continuously, they undergo degradation, 

leading to eventual failure. RUL prediction plays a crucial 

role in addressing this issue. However, RUL predictions may 

not always yield realistic results.  

Predicting RUL as part of prognostics is challenging because 

RUL predictions are required to be accurate, reflecting future 

conditions based on available degradation data up to the 

current time. Data-driven methods, such as NN, LSTM, or 

ARIMA, are the most common approaches used for 

predicting RUL. Unfortunately, these algorithms work 

effectively when monitoring data of the operating 

components are available for their entire lifespan (run-to-

failure data) during training. In other words, if the training 

data only extends up to the current time, both machine 

learning and deep learning encounter difficulties in 

predicting future degradation accurately, leading to 

challenges in estimating RUL realistically. 

A realistic RUL prediction involves estimating the point at 

which degradation performance crosses the failure threshold. 

Unrealistic RUL predictions arise due to a method's inability 

to obtain accurate estimation model parameters from limited 

training data. Prognostic methods require the prediction of 

degradation performance in the future to generate RUL 

predictions. A recent study highlights the uncertainty in 

predicting realistic degradation performance (Kim et al., 

2022), indicating that current methods such as machine 
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learning and deep learning are insufficient to guarantee 

realistic RUL predictions. Machine learning performs 

optimally when trained with adequate data throughout the 

predictive model's interval. However, accurate RUL 

prediction is difficult due to insufficient data in the early 

stages of degradation.  

Nonetheless, MF approaches combining machine learning 

with physical models have been studied in digital twinning 

and uncertainty quantification to address this problem 

(Motamed, 2020; Cutajar and Pullin, 2019). Physics-

informed deep NN with a MF approach shows good 

regression performance (Meng et al. 2019). NNs were used 

to predict discrepancy using a physics-constrained approach 

for MF implementation (Liu et al. 2019). Deep NNs were 

utilized to predict discrepancies using a MF approach (Raissi 

et al., 2016). MF neural networks were used for efficient 

structural health monitoring, blending HF and LF data to 

enhance accuracy (Torzoni et al. 2023). The ability of the MF 

approach to handle the predictions of a more accurate model 

by providing a physical model has made several studies 

successful in implementing it. These approaches facilitate 

accurate performance prediction with limited data by 

combining a LF model representing degradation trends and a 

HF model for enhancing nonlinear predictive performance. 

Nevertheless, the study of MF focuses on high and LF models 

within a specific time range and does not involve predicting 

future performances without training data. 

Hence, this study introduces a MF approach that leverages 

physical models to ensure a monotonically increasing 

degradation trend and employs machine learning to predict 

discrepancies, leading to realistic RUL predictions. This 

approach is applicable in cases where run-to-failure HF data 

is unavailable, while maintaining adherence to physical 

principles. The proposed multi-fidelity model is validated 

using two bearing failure cases. A comparative study of RUL 

prediction is conducted between the proposed method and 

LSTM, NN, and ARIMA models. 

2.  METHODOLOGY 

The vibration monitoring data collected up to the current time 

serves as the HF data, while an exponential model 

representing monotonically increasing degradation is 

proposed as the LF model. By calculating the discrepancy 

between the HF and LF data from the initial predicted time to 

failure until the current time, a MF model is trained to predict 

the degradation performance. The scaling factor is assumed 

to remain constant at a value of 1 during the discrepancy 

calculation. The general form of the MF model can be 

expressed as low fidelity model 𝑦𝐿 and discrepancy 𝛿. 

𝑦𝐻 = 𝜌𝑦𝐿 +  𝛿    (1) 

Figure 1 provides an illustration of the available data and the 

expected realistic predictions for the RUL. To account for 

prediction uncertainty, only 60% of the available HF data is 

randomly selected as training data. 

Using the previously calculated discrepancies from the high 

fidelity data 𝑦𝐿 , future discrepancies are predicted using a 

NN. The NN structure consists of two hidden layers with 

rectified linear activation function (RELU) and five neurons 

in each hidden layer. The output layer uses a hyperbolic 

tangent (TANH) activation function to accommodate both 

negative and positive output predictions. The discrepancy 

prediction model is then combined with the physical model 

to estimate the degradation performance and RUL. The MF 

model and RUL can be calculated using equations (2) and (3), 

respectively. 

 

 

δ̂(t0~ tEoL) represents the discrepancy prediction from the 

staring time of degradation until the end of life (EOL). t̂fail(𝑖) 
is defined as the time at which the MF model intersects with 

the failure threshold, where i ranges from 1 to N, with N being 

the total number of cycles. The incorporation of 

physical(degradation) model information that consistently 

increases positively ensures the realistic performance of the 

proposed method at all times. 

 

Figure 1. An illustration of the proposed method 

3. CASE STUDY 

Degradation models can be expressed in various ways, 

including constant failure rate, increasing degradation rate, 

and decreasing degradation rate. The data used in this study 

predominantly encompassed regions where the degradation 

rate was increasing. In cases where there were intervals with 

decreasing degradation rates, the accuracy of RUL 

predictions was improved using a discrepancy model. 

3.1 Case 1: Imbalance cooling fan 

The proposed method in this study will be evaluated using 

experimental data from an unbalanced cooling fan, referred 

to as Case 1. The cooling fan was subjected to an angular 

ŷM = yL + δ̂(t0~ tEoL)   (2) 

RUL (𝑖) = t̂fail(𝑖) − t𝑖     (3) 
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speed of 3,000 rpm and operated at a temperature of 70 ℃ 

within a controlled chamber. The obtained data from this 

experiment consists of acceleration measurements, which 

represent the vibration response. The vibration response is 

quantified using its root mean square (RMS) value calculated 

from training data, which serves as a degradation 

performance feature. Figure 3(a) illustrates the raw signal 

obtained from the measured data, while Figure 3(b) depicts 

the degradation performance data, which are modeled by an 

arbitrary exponential function. The failure threshold was 

determined the six-sigma RMS value. Figure 3 illustrates that 

the degradation does not follow a consistent increasing 

pattern and instead fluctuates, occasionally experiencing 

significant spikes. This variability poses a challenge for 

accurately predicting the remaining useful life (RUL) solely 

based on HF data. 

 

Figure 2. Experimental setup in Case 1 

 
(a)  

 
(b) 

Figure. 3 Experiment data: (a) Acceleration response (b) 

Degradation performance 

3.2 Case 2: Outer race bearing defect 

Case 2 serves as a validation for the proposed method, aiming 

to enhance the generalization of the predictive model. It 

involves a failure in the outer race bearing due to a defect, as 

illustrated in Figure 4. The experimental data used in this 

study were obtained from tests conducted by the University 

of Cincinnati's Center for Intelligent Maintenance Systems 

(IMS) (Lee et al. 2007). As shown in Figure 4, the 

experiments were conducted on multiple bearings positioned 

on a mechanical system's shaft. The setup included a shaft 

rotating at a constant velocity of 2,000 rpm, supporting a load 

of 6,000 lb, utilizing a Rexnord ZA-2155 bearing type, and 

equipped with an accelerometer. 

 

 
(a) 

 
(b) 

Figure. 4 Case 2: (a) Experimental setup and (b) degradation 

performance 

 

The data collected in this experiment consists of the 

acceleration response, which is used to extract the 

degradation performance. The raw data undergo a 
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transformation process to generate a spectrogram, which 

captures the highest amplitudes within specific time 

windows. Statistical features are then extracted from the 

spectrogram data and combined using principal component 

analysis (PCA). The resulting principal components are 

further smoothed using the Savitzky-Golay method. The 

RMS values of the health index (HI) start to change when the 

health condition undergoes a transition, allowing for the 

identification of the corresponding crossing time point. This 

point is referred to as the first predicted time to failure 

(FPTF), and the failure threshold for the HI data is 

determined using the six-sigma value. The specific details of 

the feature extraction process are not the main focus of this 

study and will not be discussed. 

4. RESULT 

4.1 RUL Prediction for Case 1 

Five sets of discrepancy predictions are generated using 

randomly selected training data, and these results are depicted 

in Figure 5(a). It is observed that these predictions closely 

align with the true discrepancy within the first 50 data points, 

representing the available data up to the current time. Each of 

the five prediction results follows a linear trend, accompanied 

by some uncertainty in the discrepancy prediction. Despite 

this uncertainty, the discrepancy prediction results remain 

favorable as they exhibit proximity to the underlying true 

discrepancy. The linearity of the discrepancy prediction has 

implications for the prediction of monotonic degradation 

performance, considering that the LF models constructed 

from exponential functions also demonstrate a monotonically 

increasing behavior. This characteristic is beneficial in the 

prognostic process, as it reflects the expected trend of 

increasing degradation over time in the component. 

Figure 5(b) shows the five predictions of degradation 

performance. These five predictions show realistic results 

because all performance degradation predictions cross the 

failure threshold. The difference between the time at which 

the degradation performance function intersects the failure 

threshold and the actual occurrence of failure represents the 

RUL. The calculated RUL values using the five predicted 

degradation models are 560, 657, 725, 789, and 864 cycles, 

respectively, and they show similar results compared to the 

actual RUL value. This demonstrates that even with limited 

available training data, the proposed MF model allows for 

realistic RUL estimation. 

On the contrary, when there is limited data available up to the 

current system condition, other data-driven methods fail to 

predict RUL realistically, resulting in infinite RUL 

predictions. In Figure 6, degradation performance prediction 

results are presented using limited monitoring data from the 

initiation of degradation up to the current time through an 

additional random sampling approach. Data-driven models 

like LSTM and NN, which heavily rely on training data, 

produce degradation performance predictions that lack cross-

failure thresholds, leading to unrealistic RUL predictions. 

Although ARIMA can accurately capture the time series 

trend, it tends to underestimate the degradation trend. In 

contrast, the proposed method demonstrates realistic RUL 

prediction results that align with the degradation trend based 

on the available training data. Figure 7 presents box plots 

depicting the RUL prediction results for five random training 

datasets, illustrating the impact of the number of training data 

on the predictions. As the number of training data increases, 

the RUL While the predicted RUL tends to overestimate the 

true RUL, it remains consistently close to the true RUL across 

different numbers of training data. 

 
(a) 

 
(b) 

Figure 5. Prediction results for Case 1 (a) Discrepancy 

prediction and (b) Degradation performance and RUL 

prediction results  

  

 

Figure 6. Degradation prediction results using various 

models  
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Figure 7. RUL predictions results for Case 1 

 

4.2 RUL Prediction for Case 2 

In Case 2, only 20 randomly sampled data points were used 

for training, with 60% of these data points repeated five 

times. The smaller amount of training data in Case 2 

compared to Case 1 is due to the lower availability of run-to-

failure data in Case 2. The discrepancy prediction results in a 

linear trend because the NN model attempts to fit the training 

data, which also exhibits a linear trend. With five repetitions 

of training, the discrepancy prediction shows low 

uncertainty, indicating that the NN model is robust. 

The linear predictions of discrepancies have a significant 

impact on generating a monotonic and realistic degradation 

performance trend, as depicted in Figure. 8. The RUL 

prediction in Case 2 demonstrates low uncertainty and aligns 

well with the true RUL, occurring at a time index of 123 

compared to the true RUL of 180. Moreover, these five 

predictions collectively provide a realistic model. 

Compared to other methods such as ARIMA, NN, and 

LSTM, the proposed method outperforms in generating 

realistic predictions. Unlike ARIMA, NN, and LSTM, which 

can only provide accurate predictions up to the current time 

due to limited training data, the proposed method can predict 

performance degradation in future conditions. In Figure 9, the 

RUL prediction results obtained using the proposed method 

are displayed. Similar to the RUL results observed in Case 1, 

the predicted RUL results exhibit close proximity to the true 

RUL, regardless of the number of available data. As a result, 

the proposed method offers more reliable and realistic 

predictions beyond the current time, distinguishing it from 

the limitations of other methods. 

This study employed an exponential function as the LF model. 

However, the predictive RUL results can vary based on the 

characteristics of the LF model (Kennedy and O'Hagan, 

2001). Therefore, in future research, the optimization of 

coefficients used in the exponential function will be carried 

out to derive an LF model that effectively captures the 

degradation pattern while exhibiting a monotonically 

increasing trend. 

 
(a) 

 
(b) 

 

Figure. 8 Degradation performance prediction results for 

Case 2: (a) Discrepancy prediction (b) Degradation 

performance and RUL prediction  

 

 

Figure 9. RUL prediction results for Case 2 

 

5. CONCLUSION 

To ensure robust and accurate predictions of RUL during the 

early stages of degradation, the proposed method combines a 

LF model with a monotonically increasing behavior and HF 

data. This approach surpasses other data-driven models or 

time series prediction models that solely rely on early 
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degradation data. Precise RUL predictions in the early stages 

are critical for reducing maintenance costs and improving 

operational safety and efficiency. It is important to note that 

the results may vary depending on the scaling factor ρ. 

Hence, the study aims to optimize the parameters by 

considering the distinctive characteristics of the data and 

types of the LF models, thereby further enhancing the 

robustness and precision of RUL predictions. 
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