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ABSTRACT

Traditional fault management can be an onerous task and ro-
bust automated solutions are increasingly necessary to ac-
commodate the complexities of modern space systems and
mission operations. The present work proposes a hybrid
framework for performing automated spacecraft fault detec-
tion by leveraging the benefits of both model-based and data-
driven approaches. The framework uses a system model to
generate residual data that are subsequently fed into a data-
driven residual analysis stage. The framework was verified
by using data from a hardware-in-the-loop test campaign in
which faults were injected into a spacecraft attitude control
system, and successfully identified. The fault detection ap-
proach implemented using this framework outperformed re-
sults obtained from expert-tuned fault detection parameters.
Overall, the proposed framework is a promising alternative
for sustainable fault detection and mission operations suitable
for complex space systems.

1. INTRODUCTION

Fault management is one of the fundamental responsibili-
ties of spacecraft operation. Failure to detect and mitigate
faults can have a wide range of adverse effects, including loss
of mission. Traditionally, spacecraft fault management is a
largely manual process, where ground-based fault detection
and diagnosis is performed by operators monitoring and an-
alyzing telemetry down-linked from the spacecraft (Djebko,
Puppe, & Kayal, 2019). Current automated ground systems
often operate using simple limit checks that declare faults
when a telemetry value exceeds a pre-defined threshold. An
illustration of this approach is shown in Figure 1. Faults are
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Figure 1. Traditional limit-based fault detection. Limits are
set around the estimated nominal telemetry range and faults
are declared when limits are exceeded.

detected in a given telemetry channel if the telemetry value
strays outside of a defined nominal range. Selection of thresh-
olds for these systems is typically performed manually by
subject matter experts who use prior mission data, spacecraft
testing data, and engineering judgement to establish nominal
data ranges. Threshold selection is often performed multi-
ple times throughout the mission as components naturally de-
grade or fail over time. Considerable time and effort must be
invested to establish and maintain these systems over a full
mission lifetime.

As space systems become more complex, the traditional ap-
proach to fault management becomes unsustainable. Increas-
ing data rates and sensing capabilities have resulted in space-
craft that generate more telemetry and mission data (Mukai,
Towfic, Danos, Shihabi, & Bell, 2020). There are numerous
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telemetry streams generated by a spacecraft and manual mon-
itoring of all telemetry would require a prohibitive amount of
labor. Instead, a subset of telemetry channels may be chosen
for inspection, but this reduces the amount of available sys-
tem information, making it more difficult to detect faults. Fur-
thermore, space systems are increasingly composed of multi-
spacecraft constellations, multiplying the number of vehicles
that must be monitored. This drastic increase in the quantity
of data can quickly overwhelm operators and the existing sys-
tems in place to support fault detection efforts. In response
to this paradigm shift, the community increasingly looks to
more automated fault management solutions.

One family of approaches for automated fault detection uti-
lizes data-driven or machine learning systems. Fault detec-
tion based on machine learning broadly falls into two cate-
gories: supervised and unsupervised. Supervised approaches
rely on labeled training data that contains both nominal and
faulty samples, which are typically expensive to obtain and
may not be representative of all possible faults (K. H. Park,
Park, & Kim, 2021). In contrast, unsupervised approaches
do not require labeled data and typically frame fault detec-
tion as a one-class classification or anomaly detection prob-
lem. In this case, the machine learning model detects faults
by estimating the nominal operating conditions of the sys-
tem and identifying anomalous deviations from this nominal
state (Nalepa et al., 2022). Regardless of learning paradigm,
the main drawback of a purely data-driven fault detection ap-
proach is that it fails to incorporate explicit knowledge about
the physical system. This can result in reduced fault detection
performance if the model is unable to learn the complete sys-
tem dynamics (Hundman, Constantinou, Laporte, Colwell, &
Soderstrom, 2018). In addition, data-driven approaches often
provide limited understanding of the origin of faults, compli-
cating the isolation and recovery process. Thus, fault miti-
gation techniques that rely solely on data-driven approaches
may not be sufficient for practical spacecraft operations.

Model-based fault detection is an alternative method that has
received significant attention (Marzat, Piet-Lahanier, Damon-
geot, & Walter, 2012). The approach is based on generation
and analysis of residuals, which are measurements of devia-
tion between the observed state of the system and the mod-
eled nominal state. Nominal state estimates are derived from
system models that emulate the expected or desired behav-
ior of the system. The most common model-based approach
leverages residual generators that produce a set of residuals
that are sensitive to specific types of faults (Isermann, 2005).
The process for developing appropriate residual generators
typically relies on domain knowledge and analysis of the sys-
tem, and requires that the set of faults to be detected is known
in advance. Consequently, it can be a fairly inflexible and
expensive approach. Other model-based approaches detect
faults by identifying when a given residual value exceeds a set
threshold. This approach is more flexible but, as with simpler

limit-checking systems, threshold tuning is often performed
manually by a subject matter expert. As a result, there is sub-
stantial interest in increasing the efficiency of model-based
systems (Jung & Sundström, 2019).

Model-based and data-driven fault detection approaches in
isolation each have unique strengths and weaknesses. There-
fore, a number of hybrid approaches to fault detection that
combine model-based and data-driven techniques have been
proposed. Many proposed techniques couple fault detec-
tion and diagnosis into a single step using residual gener-
ators (Tidriri, Chatti, Verron, & Tiplica, 2016). One pro-
posed approach uses a data-driven method to create an ensem-
ble diagnosis from multiple model-based systems (Slimani,
Ribot, Chanthery, & Rachedi, 2018). Another approach
uses a data-driven method to automatically generate residual
sets and an anomaly classifier to classify faults (Jung, Ng,
Frisk, & Krysander, 2018). A framework combining both
model-based and data-driven systems as feature extractors
for a downstream diagnostic engine has also been proposed
(Khorasgani, Farahat, Ristovski, Gupta, & Biswas, 2018).
The primary limitation of such systems is that the use of resid-
ual generators typically requires manual analysis and prior
knowledge of all fault classes to be detected, which may not
be feasible for some missions. While much of the existing lit-
erature has explored various hybrid frameworks for systems
that explicitly model faults, there is an opportunity to develop
hybrid fault detection methods without explicit fault model-
ing.

The goal of the present work is to propose and demonstrate a
new hybrid framework that combines the strengths of model-
based and data-driven fault detection approaches. The pro-
posed framework uses nominal system models and physical
system data to generate residuals that are then used to train an
unsupervised anomaly detector. Anomalies identified in the
residual data are indicative of faults. To demonstrate the con-
cept, data taken from a hardware-in-the-loop test campaign
for a particular model-based fault detection system were used
to fit an outlier detection model, which was then used to au-
tomatically determine fault detection thresholds. The results
of the analysis indicate that the proposed framework is ca-
pable of improved fault detection performance, without ex-
plicit fault modeling, and with a significant reduction in la-
bor requirements from subject matter experts. Overall, the
proposed framework is a promising alternative for sustain-
able fault detection and mission operations in the face of the
growing complexity of space systems.

2. PROPOSED HYBRID FAULT DETECTION FRAME-
WORK

A fault in a system can be described as an unacceptable devi-
ation from nominal state resulting in degraded system perfor-
mance. In the case of a spacecraft, system state is determined
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Figure 2. The proposed hybrid fault detection framework. In the first stage, modeled nominal data are compared with mea-
sured system state to form residuals. The residual data are then input to the second stage, which performs fault detection via
unsupervised anomaly detection.

by the telemetry values at a given point in time. Nominal
state refers to the expected state of the system under normal
operating conditions, and nominal behavior refers to the ex-
pected evolution of system state over time. Because signifi-
cant departures from nominal behavior indicate the presence
of a fault, the fault detection problem can be framed in terms
of anomaly detection, where the goal is to identify abnormal
deviations between the expected and actual behavior of the
system. An advantage of this approach is that faults do not
have to be explicitly modeled. Rather than developing a clas-
sifier or fault-specific residuals that require prior knowledge
of the faults to be detected, the fault detection process is based
instead only on departure from a known nominal baseline.

Leveraging this principle, the proposed hybrid framework
consists of two stages: (1) model-based residual generation
and (2) data-driven residual analysis. A schematic representa-
tion of the general fault detection process utilizing this frame-
work is shown in Figure 2. In the first stage, measurements
taken from the physical system are compared to modeled sys-
tem behavior to generate a set of residuals. The data are then
provided to the second stage, which detects faults by identify-
ing anomalies in the residual set. A description of these two
stages is provided below.

2.1. Model-Based Residual Generation

The first stage of the framework is responsible for generating
the residuals that are used for fault detection. A residual is
a value that quantifies the degree of difference between the
nominal behavior of the system and the measured or actual
system behavior (Gertler, 1991). Because residuals represent
deviations from nominal behavior, large or abnormal residual
values indicate a higher likelihood of a fault. In this work,
a residual is defined as a quantitative difference between a
modeled and measured signal. For spacecraft, measurable
signals in the system are telemetry channels. The simplest
version of a residual is the error signal obtained by subtracting
the modeled signal from the measured signal. An example of
this type of residual generation is shown in Figure 3, where

Figure 3. An example of generating a residual signal. The
modeled signal is subtracted from the measured signal to ob-
tain the residual. Abnormal variations in the residual signal
— such as the sudden change of slope in this example — sug-
gest the presence of a fault.

the residual value abruptly increases after the onset of a fault
that leads the measured signal to deviate unexpectedly. Other
measures of distance or spread may also be used as residuals,
such as statistical deviation measures.

Generation of a residual requires a nominal or expected sig-
nal, which can be obtained from a system model, as well as
a measurement of the corresponding signal in the physical
system. Most real-world systems will have multiple residu-
als where each represents a different descriptor of system be-
havior. Each individual residual generated from this process
forms the complete residual set. The form of the complete
residual set is a t × m time series, where t indexes the time
dimension and m is the number of individual residual sig-
nals obtained from the system. Under this definition, there
are two requirements for residual generation: (i) sensors in-
strumented on the physical system and (ii) nominal system
models.
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2.1.1. Instrumented Physical System

To detect faults using residuals, a measurement of system
state must be available for comparison with the output of a
system model. Examples of these types of signals include
those obtained from rotary encoders for attitude control, ther-
mistors for spacecraft thermal management, and ammeters
for proper operation of electronic systems. Modern space-
craft are typically designed with a plethora of sensors that are
used to generate telemetry for various subsystems, which can
be used to generate residuals. However, for missions requir-
ing additional fault detection capabilities, it may be necessary
to instrument the system with additional sensors that are more
descriptive of the relevant system behavior. Nonetheless, sat-
isfying this requirement is accessible to spacecraft designers
who routinely deploy these types of sensors in physical space
systems.

2.1.2. Nominal System Model

The primary requirement of the system model is that it em-
ulates the expected behavior of the system for all nominal
operating conditions. Because faults are detected according
to the system’s departure from expected behavior, failure to
correctly model nominal system behavior could cause nor-
mal spacecraft state to be incorrectly declared as faulty. Any
means of estimating the nominal state of the system may be
used in this step, provided that the corresponding measure-
ment can be obtained from the system. Examples of system
state may include electrical currents, data communication bit
rates, and spacecraft attitude rates. Custom models may be
designed for this stage if required, or re-used from other engi-
neering tasks if possible. For instance, any engineering mod-
els created as part of the system design may be used in this
stage. Process, mathematical, and logical models are all suit-
able candidates for use in system modeling.

The required fidelity of the system model depends on the fault
detection requirements of the mission. Higher-fidelity mod-
els offer greater ability to characterize nominal behavior for
all operating conditions and thus enable improved fault de-
tection. For complex spacecraft systems, a complete system-
level model may contain subsystem models which are them-
selves composed of component-level models. As an example,
a spacecraft’s system model may contain a subsystem model
for attitude control that contains component models for reac-
tion wheels. Ultimately, there is a trade-off between the effort
required to create a higher-fidelity system model and any re-
sulting fault detection performance gains. Therefore, model-
ing effort should be considered along with fault detection re-
quirements when implementing the framework. Finally, due
to the residual generation requirement of the framework, it is
not generally required to model component behaviors which
are not directly measurable in the physical system.

The full residual set is generated from the nominal system

Figure 4. An example of a nominal residual distribution (left
of boundary) and outliers indicating faulty behavior (right).
The boundary between nominal and faulty behavior is deter-
mined through outlier or anomaly detection.

model and the instrumented physical system. A residual is
generated from each pair of modeled and measured signals,
and the resulting residual set is provided to the second stage
of the framework to identify faults.

2.2. Data-Driven Residual Analysis

Once the residual set has been generated, it is analyzed in
the residual analysis stage to perform fault detection. Each
data point in the residual set represents the degree to which
the system is deviating from its nominal state. Due to various
effects such as sensor noise and modeling inaccuracies, resid-
ual values will often be non-zero. However, values obtained
during nominal operation will tend to form a nominal dis-
tribution. An anomalous value suggests an off-nominal sys-
tem state and thus indicates a higher probability of a fault.
Figure 4 illustrates the concept for a single residual value.
For real dynamic systems, the nominal data distribution will
be multivariate due to multiple residuals and may be time-
dependent due to a variety of influences. Because identi-
fication of faulty data points relies only on their deviation
from the nominal data, faults do not have to be explicitly
modeled. This work therefore frames fault detection as an
unsupervised anomaly detection problem, where sufficiently
anomalous points in the residual data indicate the presence of
a fault. Note that hereafter the terms outlier and anomaly are
used interchangeably.

Any unsupervised outlier or anomaly detection algorithm, or
some combination thereof, may be used in this step. A con-
siderable amount of work has been performed in the field of
unsupervised anomaly detection (Pang, Shen, Cao, & Hengel,
2021; Chandola, Banerjee, & Kumar, 2009), some of which
has focused on spacecraft (Shriram & Sivasankar, 2019; Gao,
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Figure 5. Schematic diagram of the implemented framework in the case study. The MONSID model and test bed were used
to generate residual data in the form of consistency values. The GLOSH algorithm was used to identify and remove outliers
to form a nominal data distribution, and kernel density estimation was applied to the nominal data distribution to estimate the
tolerances responsible for detecting faults. Note that the incorporation of state measurements into the propagation of the system
model is a feature of analytic redundancy but is not generally a requirement for generating a nominal system response.

Yang, Xu, & Xing, 2012; Yu, Song, Tang, Han, & Dai, 2021).
Because of the extensive amount of prior work performed in
this field, there are many available options for implementa-
tion of the framework.

Two notable considerations for this stage include the di-
mension of the residual set and temporal dependence be-
tween data points. Because spacecraft are dynamic systems,
the residual data is time series data, and therefore time se-
ries anomaly detection approaches that can identify temporal
anomalies should be considered. This is not requisite, how-
ever, and depending on the mission it may be valid to incor-
porate more traditional outlier detectors based on clustering
or partitioning. For multivariate residual sets, a fault may be
characterized by an anomaly in a single residual, or it may be
formed by a more complex multivariate anomaly. For mul-
tivariate residual sets it is therefore recommended to select a
multivariate anomaly detector. As with other machine learn-
ing tasks, ensembles of models may be used in an effort to
obtain more robust anomaly detection performance (Zimek,
Campello, & Sander, 2014).

2.3. Summary

The proposed framework detects faults through unsupervised
anomaly detection on the residuals formed from nominal sys-
tem models and measured system data. The approach is mod-
ular in that it is agnostic to the specific model-based and data-
driven approaches used, provided that they fulfill the require-
ments introduced in their respective sections. This flexibility
makes the framework robust to physical systems of varying
complexity, albeit at the potential expense of greater model-
ing effort. Further, no explicit fault modeling is required be-
cause the approach is based on deviation from expected sys-
tem performance.

3. CASE STUDY

To demonstrate the effectiveness of the proposed framework,
a proof of concept is shown in this section. This case study
is introduced in an order similar to the framework descrip-
tion above to allow straightforward connection between the
practical implementation and the theoretical framework re-
quirements. The framework has been applied to detect faults
in a spacecraft attitude control system (ACS) test campaign.
Data for the study were collected using a hardware-in-the-
loop ACS platform along with a specific model-based fault
detection and isolation (FDI) system. The Model-based Off-
Nominal State Identification and Detection (MONSID) sys-
tem used in this study is an analytic redundancy-based FDI
system composed of an application-specific nominal sys-
tem model and a generic diagnostic engine (Kolcio & Fesq,
2016). The full implementation of the framework is shown
in Figure 5. Due to the architecture and requirements of
the MONSID system, this implementation leverages MON-
SID for three tasks: nominal system modeling, generation of
residual values, and fault detection using tolerances automat-
ically obtained in the residual analysis stage.

The physical test bed is a hardware-in-the-loop system owned
and operated by the Air Force Research Laboratory that emu-
lates a spacecraft bus. The test bed allows for direct commu-
nication with the ACS, enabling operators to send command
information, receive telemetry data, and inject faults. Teleme-
try data can be read from the system for further analysis.

3.1. Residual Generation

During operation, the same commands sent to the test bed
were communicated to MONSID. Concurrently, MONSID
received telemetry data transferred from the test bed. The
commands and telemetry values were used to propagate the
system model and generate residuals.
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3.1.1. Instrumented Physical System: ACS Test Bed

The ACS hardware platform simulates a spacecraft bus us-
ing three-axis rotation provided by six control moment gyro-
scopes (CMGs), an inertial measurement unit (IMU), and a
motion capture (MOCAP) system that simulates the function
of a star tracker. Sensors such as rotary encoders and hall sen-
sors are instrumented in each ACS component to record rele-
vant telemetry including angular displacement rates. Com-
mands and telemetry from sensors can be transmitted be-
tween the test bed and the controller via a RS-422 commu-
nication line. The MONSID engine was integrated with the
test bed using the cFS flight software framework (Kolcio &
Prather, 2023).

To emulate faults in the physical system, the ACS test cam-
paign was completed in a sequence of individual runs of the
system. During some runs, the system was allowed to per-
form without any faults present, while other runs contained
faults injected into the system by the test operators. The 29
total runs considered in this analysis were split between 15
fault injection runs and 14 nominal runs. A single fault in-
jection run was arbitrarily chosen to be used as training data,
leaving 14 fault injection runs and 14 nominal runs as test
data. For the fault injection runs, a fault persisted for the
duration of the run after it was injected. Ground truth infor-
mation was generated for all evaluation runs by assigning a
0 (”no fault”) to all time steps prior to fault injection and a 1
(”fault”) to all subsequent time steps. Fault detection perfor-
mance is measured on a per-time step basis; in other words,
each time step is considered an independent data point for the
purposes of evaluation.

3.1.2. Nominal System Model: MONSID ACS Model

System-level MONSID models are composed of intercon-
nected components that characterize nominal behavior. A no-
tional example of a MONSID model is shown in Figure 6(a).
Each component (shown in 6(b)) contains input and output
nodes that accept sensor and command data to allow for emu-
lation of a wide array of physical systems. At each processing
time step, sensor and command data are propagated through-
out the model and multiple state values are stored in each
node to generate consistency values. Consistency values are
a type of residual that measure the deviation between state
estimates at a node. A fault-free system should contain con-
sistency values close to or equal to zero. Larger consistency
values correspond to a larger degree of inconsistency between
expected and observed behavior and therefore indicate the
presence of a fault. The MONSID engine declares a fault in
the system when a consistency value exceeds a value called
a tolerance for a number of consecutive time steps called a
fault window. For this analysis, the fault window was fixed at
17 time steps due to the specific implementation used during
the test campaign. Further discussion of the general MON-

Figure 6. (a) A notional MONSID system model and (b)
the anatomy of a component [after (Kolcio & Fesq, 2016)].
Consistency values are generated at each node by propagat-
ing data forward and backward through the model, and com-
puting a measurement of deviation between all state values
present at the node. Larger consistency values indicate more
inconsistent state and thus a higher likelihood of a fault.

SID framework, FDI process, and generation of consistency
values is available in earlier work (Kolcio & Fesq, 2016).

The MONSID model of the hardware system used in this
case study contains 28 components and 32 sensors. It con-
tains components modeling the test bed hardware including
the rotors, gimbals, the IMU, and the MOCAP. Addition-
ally, a CMG Assembly Pseudo-component (CAP) represent-
ing the CMG assembly dynamics and a Dynamics Kinemat-
ics Pseudo-component (DKP) representing the spacecraft bus
dynamics and kinematics were modeled.

The tolerance selection process was performed using the pre-
viously mentioned fault injection run. The MONSID engine
records consistency values for every node at each time step,
resulting in a t × m matrix of consistency values, where t
is the number of time steps in the run and m is the num-
ber of nodes in the model. Each row in this residual matrix
represents the residual values for each node at a given time
step. While there are a total of 89 nodes in the MONSID ACS
model, 60 nodes showed consistency values equal to zero for
the entire duration of the run (i.e., these nodes did not deviate
from nominal). Therefore, these 60 have been omitted from
the analysis and the remaining 29 have been considered.

3.2. Residual Analysis

The MONSID engine requires a tolerance to be set for each
node in the system to perform fault detection. To accom-
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modate this requirement, this study’s implementation of the
framework therefore utilizes a two-step residual data analy-
sis process. In the first step, an outlier detection algorithm
detects and removes outliers in the residual set, resulting in
an estimate of each node’s nominal data distribution. In the
second step, these nominal distributions are used to estimate
fault detection tolerances. Once tolerances are obtained, they
can be provided to the MONSID engine to detect faults on
incoming data.

3.2.1. Outlier Detection and Removal

The residual data analysis for this implementation begins
with an unsupervised outlier detection and removal step. The
outlier removal step is necessary to ensure that tolerances are
established using only nominal data. An illustration of this is
provided in Figure 7, which demonstrates the difference be-
tween data distributions contaminated by outliers versus the
subset of data containing only inliers. Tolerances obtained
on data contaminated with faulty samples could significantly
overestimate the true range of nominal values, resulting in
decreased fault detection performance.

The outlier detection and removal process in this work was
performed through an outlier scoring and binarization proce-
dure. Identified anomalies were removed and the remaining
data were passed on to the tolerance selection step. The out-
lier detection algorithm used in this analysis is Global-Local
Outlier Score from Hierarchies (GLOSH) (McInnes, Healy,
& Astels, 2017). GLOSH was selected for this case study be-
cause it is a density-based and noise-aware algorithm capable
of identifying both global and localized outliers. It requires
no prior assumptions about the training data and often re-
quires little to no hyper-parameter tuning to obtain reasonable
results (Campello, Moulavi, Zimek, & Sander, 2015). Addi-
tionally, it is a suitable algorithm for smaller data set sizes, in
contrast to deep learning-based methods, which may require
much larger amounts of data to train an effective model (Pang
et al., 2021). The model was fit to the residual matrix with
mostly default hyper-parameters; the only exception was the
minimum cluster size parameter, which was set to 10% of the
training data size. This selection was based on an assumption
that any nominal data cluster should contain at least that per-
centage of the total data. The output of the GLOSH algorithm
is a continuous outlier score for each input data point in the
range [0, 1], where scores closer to zero indicate inliers and
scores closer to one indicate a higher probability of an out-
lier. A common approach for converting continuous outlier
scores to labels is to select a crossover threshold based on the
distribution of scores. Here, the 90% quantile was chosen as
the transition threshold between inlier and outlier points. All
points with scores larger than the threshold were identified as
outliers and removed from the data set.

Figure 7. A comparison of initial and outlier-removed data
distributions. Importantly, the outlier detection and removal
process significantly modifies the probability distribution
for nodes contaminated by outliers (CAP Torque) but does
not noticeably modify already-nominal distributions (Rotor
Speed). The inlier distributions are used for tolerance estima-
tion.

3.2.2. Tolerance Selection

Once outlying data points were identified and removed, tol-
erances were selected for each node. Tolerances should be
selected such that consistency values larger than the set toler-
ance are attributed to faulty behavior. The task thus reduces
to the determination of a threshold for sufficiently unlikely
observations of faulty behavior within the nominal data. By
computing an estimate of the nominal probability distribu-
tion, it is straightforward to select a tolerance. Kernel den-
sity estimation was chosen to perform the tolerance estima-
tion process for each node.

Kernel density estimation is a method for determining a con-
tinuous probability distribution from samples of data. It has
been shown that the bandwidth parameter has a far greater ef-
fect on the density estimation than the choice of kernel func-
tion. Therefore, a standard Gaussian kernel was used. The
bandwidth was estimated via cross-validation (B. U. Park &
Marron, 1990). The upper and lower bounds for the band-
width grid used in the cross-validation procedure were deter-
mined for each node via a heuristic approach that seeks to
automatically approximate bounds surrounding the optimal
bandwidth (Minnotte & Scott, 1993). A final density estima-
tion was performed with the estimated optimal bandwidth to
obtain the distribution used for tolerance selection.

Tolerances were selected via the estimated distribution’s
quantile function. For a given probability p, a tolerance T can
be obtained such that the likelihood of obtaining a value more
extreme than T is equal to p. In practice, p is a free parameter

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

representing the the likelihood that an observed value in ex-
cess of T is actually a nominal value. This can be tuned to the
specific risk posture of a given mission if required, or left to a
reasonable default, e.g., 1% ≤ p ≤ 20%. For this analysis, p
was chosen as 10%. Once estimated, all node tolerances were
provided to the MONSID engine to perform fault detection.

3.3. Experimental Results

To provide a baseline, the fault detection performance for tol-
erances obtained by the automated framework implementa-
tion is compared to the performance of the tolerances man-
ually selected for the system by human experts. Tuning
tolerances manually requires engineering judgement, char-
acterization of sensor noise, and iteration as more data be-
come available (Kolcio & Prather, 2023). The manual tol-
erances for this study were obtained by reviewing telemetry
data taken from the test bed. A comparison of the tolerances
obtained by both methods is given in Figure 8. In general,
the automated tolerance values are well correlated with the
manually determined tolerances. An interesting result is that
the framework as implemented selected tolerances that were
uniformly smaller (i.e., more prone to declaring a fault) than
those manually tuned.

One way to modify detection performance for the system as
implemented would be to change the probability threshold p
on the distribution obtained by the kernel density estimate in
the previous step. For example, a lower probability would
result in larger tolerances less prone to detecting faults. An-
other way to modify detection behavior would be to alter the
GLOSH outlier detection threshold in an attempt to modify
the nominal data distribution. As shown in comparisons be-
tween the original and trimmed data sets, the anomaly de-
tection and removal step has a strong influence on the result-
ing nominal distribution, which in turn influences the result-
ing tolerance. Because the density estimation step is primar-
ily dependent on the underlying distribution, care should be
taken to implement a robust anomaly detector. Most anomaly
detection techniques offer a direct or implicit mechanism for
tuning model bias toward precision or recall, thereby influ-
encing the amount of anomalies detected and allowing for
further control over the final results if needed. An advantage
of this specific implementation is that fault sensitivity can be
tuned directly using the probability introduced in the toler-
ance estimation section.

The efficacy of the proposed framework is evaluated as a bi-
nary classification problem where a “fault“ or “no fault“ la-
bel is assigned at each time step. The ground truth labels
are compared with the predictions from the MONSID en-
gine for both sets of tolerances. A comparison of results for
the automated and manual solutions for all time steps in the
test data set is shown in Figure 9. Deviations between ap-
proaches in all elements of the confusion matrix spanned ap-

Figure 8. Comparison of tolerance values obtained manually
and by the automatic framework for a representative subset of
nodes. The automated approach uniformly estimated smaller
tolerances than those manually tuned, making the automated
approach more conservative (i.e., fault-sensitive).

proximately three percentage points, demonstrating similar
but not equal performance. The manually-tuned tolerances
showed a slightly lower false positive rate whereas the au-
tomated approach demonstrated higher sensitivity to faults.
Both of these results are sensible in relation to the Figure 8
comparison demonstrating the more restrictive tolerances ob-
tained by the automated approach.

Similarly to most fault detection problems, the evaluation
data set used in this work is imbalanced, with nominal
data samples significantly outnumbering faulty samples. For
this reason, F1 score and Matthews Correlation Coefficient
(MCC) were used to estimate overall performance (Chicco
& Jurman, 2020). Precision and recall scores were also ob-
tained. A comparison of metrics for the manual and au-
tomated approaches is shown in Figure 10. The results
show that the automated framework outperformed the man-
ual method in all metrics except precision. The increase in F1
score and MCC indicate that in addition to detecting more to-
tal faults, the automated approach resulted in a superior over-
all fault detection system.

4. DISCUSSION

A potential benefit of the data-driven stage is that it may
automatically compensate for minor modeling inaccuracies
or sensor noise prevalent in model-based systems (Gertler,
1991). For example, a small constant bias offset in a resid-
ual signal due to a modeling inaccuracy is a temporal pattern
that a temporal anomaly detector may correctly learn to ig-
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(a) (b)

Figure 9. Fault detection confusion matrices for (a) manual and (b) automated tolerances. Compared to the manual approach,
the automated method detected more and missed fewer faults at the expense of more false detects.

Figure 10. Comparison of various fault detection perfor-
mance metrics for the manual and automated tolerances. The
automatically tuned system slightly outperformed the manual
system in terms of overall performance as measured by both
F1 and MCC scores. Note that the minimum score for MCC
is -1 whereas the minimum score is 0 for all other metrics.

nore as nominal. However, this phenomenon should not be
relied upon when modeling the system and significant mod-
eling errors are likely to lead to reduced fault detection per-
formance as previously discussed. Another notable consid-
eration for the implementation of the data-driven stage is that
both the model and data may be monitored for drift as the sys-

tem operates over longer time scales (Lu et al., 2018). Both
natural degradation of components as well as incipient faults
(i.e., faults that develop slowly) have the potential to grad-
ually modify the residual data distribution over time; if this
occurs, off-nominal behavior may gradually become consid-
ered as nominal and the anomaly detector could mask faults
in the system.

The outlier detection method selected for the implementation
of the framework is a point-outlier detector that is not de-
signed to detect contextual or temporal anomalies which may
occur. Fault detection performance was not negatively im-
pacted in this implementation, but for many spacecraft mis-
sions it will be necessary to use time-series anomaly detection
methods capable of detecting both point and temporal anoma-
lies. This may be achieved for traditional anomaly detectors
via a windowing method or with deep learning architectures
utilizing an inbuilt temporal mechanism such as recurrence or
attention (Vaswani et al., 2017).

Finally, for those operating on large-scale and/or high-
dimensional data, deep learning methods for anomaly detec-
tion offer the potential for increased performance compared
to traditional methods and should be increasingly explored
as the underlying techniques become more easily automated
and computationally efficient. Adding model-based contex-
tual information such as model topology into the data-driven
stage may offer the opportunity to increase the performance
of the framework due to the additional context provided re-
garding nominal behavior. For example, a graph neural net-
work trained using model topology may be capable of detect-
ing faults that may elude models without such context (Ma et
al., 2021).

Because the framework is modular, it offers wide applica-
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bility and flexibility in implementation. Depending on the
specific implementation and system hardware the framework
may be run onboard the physical system, remotely from a
control center, or via a hybrid of the two. Complexity of the
implemented framework can be increased or decreased in the
system modeling and/or anomaly detection stages as required
for a given mission risk posture.

5. CONCLUSION

As performance requirements continue to increase for both
onboard and ground-processing operations, it is increasingly
important for fault management solutions to be both efficient
and robust. This work presents a hybrid framework for per-
forming automated spacecraft fault detection by leveraging
the benefits of both model-based and data-driven systems.
The examined case study demonstrates that the hybrid frame-
work can produce practical results for real-world systems,
without explicitly modeling faults. Experimental results show
that the proposed framework is able to outperform a manually
tuned fault detection system. Further, implementation of the
framework is modular and easily customized to fit the needs
of specific missions. This work demonstrates the viability
of hybrid fault detection and encourages the community to
continue incorporating systems that leverage the strength of
combining model-based and data-driven approaches.
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