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ABSTRACT 

The automotive industry has focused on monitoring 

the health and performance of vehicles to help 

customers improve uptime and reduce downtime 

with planned maintenance. Technologies like 

telematics are for continuous data flow. The data 

depicts details about the functioning of various 

components in the engine and subsystems and the 

Fault Codes (the diagnostic troubleshooting codes) 

associated with them. One traditional method used 

by the service representatives to address these Fault 

Codes is to follow the recommended 

troubleshooting trees. With the electronic engine 

and subsystem performance interdependencies, it 

gets challenging addressing the same. Also, the 

grouping of the Fault Codes is unknown if the Fault 

Codes that occurred are related to a specific cause. 

We implemented unsupervised machine learning 
and data mining techniques to address such issues. 

First, we enforced the co-occurrence theory that 

helps us understand the Fault Codes that occur 

together and exhibit dependencies and relations. 

Second, we implemented clustering algorithms to 

know groups/categories of Fault Codes based on 

their functional states. These studies provide 

insights into the failures of the components and their 

conditions. The study also helps in resolving the 

problems experienced by the engines and 

subsystems. Moreover, these methods address the 

issues in the early stage and help technicians 

improve uptime (early repairs and diagnostics). 

Further, this paper presents the results of the 

experiments aligning to the domain needs. 

 

 

1. INTRODUCTION AND MOTIVATION 

With the dawning of technological alternatives, 

automotive industries and their customers have 

adapted advanced means to manage and fix engine 

and subsystem failures at the sooner stages of the 

onset of faults. In doing so, vehicles’ engine health 

data is captured and analyzed to uncover valuable 

business insights and track the nature and cause of 

the engine and subsystem failures. Engine health 

data depicts the detailed functioning of various 

engine components and subsystems and the 

associated failures. The failures are also known as 

Fault Codes - the diagnostic troubleshooting codes. 

Cummins has its own designed Engine Control 

Modules (ECMs) to capture the performance 

parameters and Fault Code data. ECM captures both 

private and public category performance parameters. 

These Public parameters and Fault Codes are 

captured according to SAE J1939 (SAE J1939 

Standards, 2022) standard. ECM can capture some 

key performance parameters in different formats, 

e.g., a snapshot at the instance of the occurrence of 

the Fault Code, a specific time duration aggregated 

form, and a continuous flowing form, depending on 

ECM’s designed capability. With the advancements 

in wireless technology such as Telematics, ECMs 

can transmit data continuously. Such continuous 

engine health data is captured and utilized to develop 

analytical solutions for optimized diagnostics, 

prognostics, and maintenance of vehicles.  

Telematics is a communication technology for the 

automobile industry based on information flowing to 

and generated from vehicles via wireless networks. 

Telematics combines the systems of wireless 

communications, information management, and in-

vehicle computing to allow vehicle owners to use 

wireless communication functions to exchange and 

convey information and provide drivers and 

passengers with personalized information services. 

(Neumann, 2018). 
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Figure 1. Generalized Architecture for Data Aggregation in a Telematics System.

Figure 1 depicts the generalized architecture for data 

aggregation in a telematics system. To diagnose the 

faults captured in the data of the engines and 

subsystems, based on their technical experiments 

and field repairing experience, engineers define 

troubleshooting trees for the routine and historical 

Fault Codes. With new initiatives and product 

launches, unhandled Fault Codes lack definitions 

and relevant troubleshooting trees. Sometimes, Fault 

Codes in multiple issues need to be traced back on 

large troubleshooting trees. Manual traversal and 

tracing of the fault in complex troubleshooting trees 

induce human errors.  

To overcome these challenges, we developed 

analytical models that inform possible underlying 

issues and help the engineers focus on specific 

repairs by isolating the faults. The model further 

helps to  

1. Achieve fast repair and  

2. Improves the uptime of the vehicle. 

In this paper, we are presenting two efforts to deal 

with the Fault Codes. The first is to isolate the Fault 

Codes and understand their dependencies through an 

unsupervised machine learning approach 

(Neumann, 2018). The other one is to use a 

supervised multi-label classification approach. Here 

we focus on studying critical Fault Codes for which 

the field team expect recommendation for fast repair 

based on the historical telematics data. 

We analyze the sequencing of Fault Codes and their 

combinations to define the possible issue and 

provide a recommendation. We execute the 

analytical models on the continuously flowing data 

and provide recommendations for the respective 

engine and subsystems. The field service team 

visualizes the recommendations on dashboards and 

further decides on actions suitable for the Fault 

Code. To summarize, the paper proposes approaches 

to replace the traditional ways of following the 

recommended troubleshooting trees for Fault Codes. 

2. PAST LITERATURE REVIEWS 

Traditionally, Telematics has been used to track the 

position of vehicles with the help of the Global 

Positioning System (GPS). With the help of 

Advanced Analytics and Cloud Computing 

techniques, fuel saving and fuel monitoring 

techniques are explored. (Mesgarpour, 2013). With 

the advancement in technology and accessing 

Controller Area Network (CAN) bus information 

remotely using Telematics devices, driving behavior 

monitoring, and identifying individual drivers from 

their driving signatures, have also been explored 

(Wang, 2017).  Some methodologies have also been 

explored to provide diagnostics and prognostics 

sides of Telematics. Those methodologies are the 

stepping stones for this paper to have appropriate 

troubleshooting trees further to handle complex, 

uncategorized Fault Codes and their behavior. 

Additionally, work on the comparative methods on 

the careful feature engineering by domain experts 

and the automatic feature selection techniques 

provided an added advantage in selecting features 

and parameter values. It also helped in extracting 

structure from the data (Jordan Perr-Sauer, 2020). 

The impacts of various features and methods to find 

structure in unstructured data have come in handy 

for exploring the diagnostics of Fault Codes. 

One of the most popular supervised learning tasks is 

multi-class classification, which involves more than 

two sets of labels. In multi-label problems, each 

example is associated with more than one target 

label. This method can be classified broadly into two 

groups, i.e., algorithm adaptation and problem 

transformation. The algorithm adaptation methods 

extend specific learning algorithms to handle multi-

label problems directly, whereas the problem 

transformation methods are algorithm-independent. 

They transform the multi-label classification task 

into one or more single-label classifications, 

regression, or ranking tasks (Dhatri Ganda, 2018). In 

this paper, only problem transformation methods are 

discussed. 

Evaluation of a multi-label classification algorithm 

is mostly difficult because multi-label prediction has 

an additional notion of being partially correct. One 

trivial way around would be to consider them 

incorrect and extend the accuracy used in the single-

label case for multi-label prediction (Read) (Dhatri 

Ganda, 2018). Otherwise, other metrics can be used 
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for multi-label classification namely, precision, 

recall, and F1-score. The F1 measure is the harmonic 

mean of precision and recall and is a popular 

evaluation measure for information retrieval. 

(Grigorios Tsoumakas, 2011) (Buhmann). 

 

Figure 2. PowerBI Dashboard. 

 

3.  APPROACH 

3.1. Data Source and Definition 

The data source we used to analyze the Fault codes 

is Telematics data. The data is also called heartbeat 

data since the data logging frequency is 1 Hz. The 

data is received continuously with key performance 

parameters. The Fault Codes appear in the form of a 

list as one of the columns in the data. Every row in 

the data depicts the state of the vehicle in terms of 

key performance parameters and a list of Fault 

Codes - mapped to its respective engine serial 

number, as shown in Table 1. The Fault Code list 

consists of different Codes, with each Fault Code 

designed to represent a specific problem in a vehicle. 

There can be a Fault Code representing the 

condition, for instance - Aftertreatment Diesel 

Particulate Filter differential pressure being above 

the normal operating range. 

Every Fault Code has a defined severity level. 

However, here in our work, the Faults Codes are 

given equal importance to study their co-

occurrences. The structure of the data is depicted in 

Table 1. 

 

Table 1. Structure of Data. 

ESN 
Key Performance 

Parameters 
Fault Code list 

E1 n features [FC4, FC2, FC6] 

E2 n features [FC4, FC3] 

The acquired data for every vehicle consists of 

Engine Serial Numbers and the parameter values 

specific to that particular Engine. We considered 

139 parameters that had good data quality, dropping 

the ones with missing values beyond the 

implementation of imputation strategies, Subject 

Matter Experts exclusion rules (due to the presence 

of more than 25% null values), and parameter range 

guidelines further to the inputs from Subject Matter 

Experts. The data consists of 2871 Fault Code List 

records along with parameters. There are 61 unique 

Fault Codes, and 39 out of 61 are Triggered Fault 

Codes. The final data for the analysis consists of a 

total of 104 parameters, including the key 

performance parameters and a list of Fault Codes of 

ESNs. The parameter selection based on domain 

knowledge helped have relevant parameters and 

accurate results according to domain needs. 

3.2. Methodologies 

In this paper, we use two methodologies to 

categorize similar Fault Codes and analyze co-

occurring Fault Codes and their frequency of co-

occurrence. To find groups of similar Fault Codes, 

an Unsupervised Machine Learning approach is 

implemented. To perform troubleshooting and study 

the co-occurrence of the Fault Codes and their 

frequency of co-occurrence, a Supervised Machine 

Learning approach is used. 
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3.2.1. Unsupervised Machine Learning 

Approach 

To group the similar Fault Codes, Clustering - an 

Unsupervised Machine Learning approach was 

used; since the clustering techniques help combine 

similar entities to profile the attributes of the 

different categories. The clustering algorithms 

automatically helped recognize the patterns in the 

parameters and the associated list consisting of Fault 

Codes and to further analyze the data without the 

target label. 

 

Figure 3. Unsupervised ML Approach – Clustering. 

Figure 3 depicts the operational blocks for the 

unsupervised machine learning approach. The 

analysis is done by keeping ESNs out of context, 

making data independent of ESNs. 

We prepared the data for analysis in two steps. Step 

1 - oversampling with respect to the list of Fault 

Codes, and step 2 - One-hot encoding on a list of 

Fault Codes. 

In the first step, as shown in figure 3, every row is 

duplicated for the number of Fault Codes (in the 

Fault Code list) times such that each row gets 

associated with an individual Fault Code. Hence, if 

a row consists of three Fault Codes in the list, then 

the row is duplicated thrice. For example, row index 

1. is broken into three rows, namely, 1a, 1b, and 1c, 

since three Fault Codes are present in a Fault Code 

List column for index 1. The parameters remain the 

same for all the new rows as the original row with 

index 1. however, the Fault Code column is 

populated with three different Fault Codes in rows 

1a, 1b, and 1c, based on the original row index 1. 

 
Figure 4. Clustering with One-hot encoded Fault 

Codes. 

In the next step, we implemented one-hot encoding 

on the Fault Codes list to create extra columns 

depending on the total unique Fault Codes. Figure 4 

shows the one-hot encoded representation of a Fault 

Codes list, where a unique Fault Code is treated as a 

categorical feature. The resultant data now consists 

of the parameter values and the additional one-hot 
encoded columns. Also, as there is no ordinal 

relationship among Fault Codes, we considered one-

hot encoding where the presence of the Fault Code 

is represented with a binary value. 

Having multiple features, with one having a large 

difference between the points and the other having a 

small difference, will have features with some large 

distance to be the driver of the distance, mostly. For 

example, the odometer reading in miles and features 

like voltage have values way smaller than the 

odometer reading. The 1-mile distance might not be 

as significant as the 1-volt value of any electronic 

sensor. Moreover, there are mixed numerical data, 

where each feature is entirely different from the 

other one. Thus, it is important to have the parameter 

values on a single scale. The Clustering on the 

normalized data works better than it does on the 

feature values on different scales. Min-Max scaler 

from scikit-learn is used to perform the 

normalization. 

Most clustering methods depend on different types 

of distance metrics such that points close to each 

other tend to belong to the same cluster, whereas the 

points farther from each other belong to different 

clusters. The clustering algorithm is one of the 

algorithms that suffers through the curse of 

dimensionality (Matthew R. Boutell, 2004). If the 

nearest neighbor is to be found, it can be found using 

various available distance measures. But in high 

dimensions, some different situation arises. If the 

ratio is to be calculated between the closest and the 

farthest data points, it approaches 1. In such a case, 

the data points can be called uniformly distant from 

each other. This situation is observed in almost 

every other distance metric; however, it is more 

prominent in Euclidian than the Manhattan distance 

metric. Thus, all the data points are uniformly 

distinct from each other, making the separation 
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seemingly meaningless. Therefore, the 

dimensionality reduction technique comes to the 

rescue, and it is an important step before 

determining the optimal number of clusters. The 

number of features can be reduced without losing the 

important information from the data. 

The dimensionality reduction technique used in our 

experiment is Principal Component Analysis. The 

covariance matrix was also calculated to see if the 

parameters are varying from the mean concerning 

each other, or if there is some relationship among the 

parameters. The calculation of the Eigenvectors and 

Eigenvalues of the co-variance is important to 

determine the principal components. The principal 

components are the dimensionality-reduced features 

or parameters we get from the original data; these 

are uncorrelated and contain the maximum possible 

information from all the original parameters. They 

represent the direction of the data that tend to explain 

maximum variance. The principal components are 

arranged in descending order such that the first 

component contains the maximum amount of 

information or the largest possible variance. The 

second component is perpendicular and uncorrelated 

to the first component and has the next largest 

possible variance. The principal components 

shouldn’t be looked at to have a meaning since they 

are the linear combination of the original 

parameters. 

Further, an object with three principal components 

is created and the normalized data is passed to fit the 

Principal Component Analysis object. The top 

features for the resultant three Principal Components 

turned out to be different. 

Since partitioning of clustering is our target 

clustering method, we decided to go with the K-

means algorithm. The elbow method is one of the 

best methods to find the optimum number of 

clusters. WSS (within the sum of squares) is used to 

find the optimal number of clusters on the data 

consisting of parameters and Fault Codes. WSS is 

nothing but the squared distance between each point 

of the cluster and its centroid. 

For a range of K, we applied the K-means algorithm 

and calculated the square of Euclidean distance of 

each point from its cluster center and added it to the 

current WSS. Finally, we plotted the WSS 

concerning different numbers of K, i.e., clusters. 

From Figure 5, we can see that the bend occurred at 

K = 4, and the inertia fell compared to the situation 

at K = 5; thus, K = 4 is an optimal number of clusters. 

 

Figure 5. K-means Clustering algorithm - Optimal 

value of K. 

The average Silhouette method for finding the 

optimal number of clusters is also explored to 

eliminate ambiguity in the Elbow method. 

Silhouette coefficients for each data point are 

needed to be calculated to see how much the data 

point is like its own cluster compared to other 

clusters. The average Silhouette approach is used to 

measure the quality of the clusters. The more the 

score better the quality of the clusters. First, we 

computed the Silhouette Coefficients for each data 

point and then the mean of all the samples to find the 

Silhouette score. There are three steps involved in 

calculating the Silhouette coefficient: computing the 

average distance of a point with all other points in 

the same clusters (a(i)), the average distance of a 

point with all the points in the next nearby cluster 

(b(i)), and the silhouette coefficient (c(i)). 

The silhouette coefficient is calculated using 

𝑐(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max(𝑏(𝑖), 𝑎(𝑖))
 

The values of c(i) are averaged out to have the 

Silhouette score. 

The plot of the Silhouette coefficient concerning the 

cluster label is generated to have the visual 

representation to decide the optimal number of 

clusters. The graph in Figure 6 represents a measure 

of how close each data point is close to the points in 

the neighboring clusters. The value of this measure 

lies between -1 to 1. The definitions according to the 

documentation on the official scikit-learn website 

are as follows: 

• The Silhouette coefficient of +1 indicates that 

the sample is far away from the neighboring 

clusters. 

• The Silhouette coefficient of 0 indicates that 

the sample is on or very close to the decision 

boundary between two neighboring clusters. 

• The Silhouette coefficient <0 indicates that 

those samples might have been assigned to the 

wrong cluster or are outliers. 
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Figure 6. Silhouette Coefficient Analysis. 

 

Silhouette score for various numbers of K-clusters is 

calculated. From Figure 7, the maximum average 

Silhouette score is for n_clusters = 4. Thus, using 

this method as well, the same number of clusters we 

found to be optimal. 

 

 

Figure 7. Average Silhouette score for different 

numbers of clusters. 

After choosing four clusters as the optimal number 

of clusters, the prediction is done on the Fault Codes, 

thereby generating a cluster label for all the available 

Fault Codes. Some of the Fault Codes appeared to 

belong to more than one cluster since the parameter 

values associated with those Fault Codes are 

different. 

The number of the Fault Codes (not unique) 

belonging to different Cluster labels can be seen in 

Figure 8. 

 

Figure 8. Number of Fault Codes per Cluster. 
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3.2.2. Supervised Machine Learning Approach: 

Multi-label Classification 

Multi-label classification is one of the supervised 

classification approaches we used to predict the list 

of Fault Codes using the parameters from the data. 

The supervised machine learning algorithms require 

training data well tagged with the target labels. This 

algorithm learns from labeled training data to help 

predict outcomes for unforeseen data.  

The data for the experiment includes the list of Fault 

Codes. For each record, the list of Fault Codes gets 

generated. The respective list of Fault Codes may 

involve more than two Fault Codes for a single 

instance. Those Fault Codes can be considered as 

target labels for the respective set of parameters 

from the data. So, at a time, the dataset has more than 

two classification labels. In such a case, only multi-

label classification can help predict the relevant 

results for the respective instance. 

Different methods are used in the multi-label 

classification approach, such as Problem 

Transformation and Adapted Algorithms. The target 

label is transformed from a multi-label problem to a 

single-label problem in the Problem Transformation 

Algorithm. As the name suggests, Adapting 

Algorithm performs directly multi-label 

classification.  

The Problem Transformation method is carried out 

in different ways such as: 

• Binary Relevance 

• Classifier chain 

Binary Relevance is a simple technique that treats 

each target label as a single class classification 

problem. For example, consider the below case, 

where parameters are independent variables, and C 

is the target label. 

 

Figure 9. Binary Relevance Classifier. 

In Binary Relevance, a single problem with multiple 

classes is split into different single class classifiers, 

as shown in figure 9. 

Whereas, in the Chain Classifier, the first classifier 

gets trained on an independent variable in the 

classifier. Then each next classifier is trained on the 

next independent variable and all the previous 

classifiers’ target labels. 

Figure 10 delineates parameters and C (dependent 

variable). It also shows that a classifier chain would 

transform this problem into a different single-label 

problem. 

 

Figure 10. Chain Classifier. 

This classifier chain is like binary relevance, the 

only difference being it forms chains to preserve 

label correlation. 

In addition, there is another technique to classify 

multi-label data, i.e., Label Powerset Technique. 

This classifier is trained on the unique combination 

of the labels found in the train data, but this approach 

has its limitations. When the unique combinations of 

the target labels are fewer, then the performance of 

this approach is better than other models. But, if 

unique combinations are high, it is difficult to train 

the model. The complexity of the model increases, 

which gives less accuracy. 

Each approach has its advantages and limitations. A 

binary relevance classifier works with individual 

target labels that do not consider the target labels 

dependencies on each other. The Label Powerset 

technique requires a smaller number of unique target 

label combinations, but there are many unique 

combinations of target labels in the given data. It 

will affect the performance of the label powerset. In 

the classifier chain, dependencies of Fault Code are 

considered. Also, there is no restriction on unique 

combinations of the target label, and it fulfills the 

paper's objective. Further, the classifier chain 

algorithm is discussed in detail. 

In Figure 11, the blocks represent the process 

flowchart of supervised multi-label machine 

learning technique implementation. In the previous 

section, data and data source was explained in detail. 

According to that, the key parameters are 103, and 

the Fault Code list is considered the target label for 

the analysis and model development.   
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Figure 11. Supervised classification learning model 

development flowchart. 

In the preprocessing, 67 parameters get extracted 

from 103 parameters using the feature extraction 

technique. This is used to reduce data from high 

dimensions to low dimensions, which is helpful for 

a better understanding of data and, in turn, helps 

reduce the input parameters of the model in other 

words, it mitigates the curse of dimensionality. A 

high correlation filter and recursive feature 

elimination technique are used to drill down the 

parameters. In the high correlation filter method, a 

high correlation parameter gets dropped from the list 

of parameters. The respective correlation threshold 

value is considered based on the thumb rule used in 

the correlation analysis. Recursive feature 

elimination is the feature selection technique used to 

remove features that do not substantially affect the 

target variable or prediction of output. In other 

words, this method removes the weakest features 

from the data. For normalizing the data parameters 

into a standard scale, data scaling is one of the 

processes in the pipeline of the model. 

In the available data set, the target label is in the 

form of a list comprising Fault Codes, such as 

[‘FC1’, ‘FC2’, ‘FC5’, ‘FC10’]. Converting the Fault 

Code list to one-hot encoded data plays an important 

role. Most machine learning algorithms did not work 

with categorical labels directly. They required input 

and output records in the form of numbers. So, One-

hot encoding can convert such categorical lists into 

a numerical format using 0 and 1 binary digits. After 

these preprocessing steps, scalable data get 

generated into a standard format. 

In model training and the model evaluation parts; the 

model is trained and evaluated on such scaled data. 

Model evaluation techniques are used to check 

model performance. It is pretty easy to identify its 

performance using precision, recall, accuracy, etc. 

But in multi-label, it is not easy to locate the proper 

subset of the target label to the predicted set. In 

multi-label classification, the result can be fully 

correct, partly correct, or fully incorrect (Matthew R. 

Boutell, 2004). To overcome this problem, a few 

metrics are used to measure the performance of the 

multi-class classifier. In that, for micro and macro 

averaging precision and recall, a label-based 

measure is used, and for subset accuracy, the 

accuracy_score function is used (Dhatri Ganda, 

2018). The drawback of this measure is that multi-

class classification problems have a chance of being 

partially correct, but here the partially correct 

matches are ignored. So, for the performance 

evaluation of the model, we considered all the 

metrics which gave more confidence. 

After training the model, new data comes into the 

picture. New, unseen data is pre-processed the same 

way as the training dataset. After the pre-processing, 

the data is fed to the model for prediction. This 

process flow can be depicted in Figure 11. 

4. RESULT AND DISCUSSION 

In our work, the clustering method is used to find the 

group of fault codes with similar behavior, and 

multi-label classification is used to predict the fault 

codes for a given record and to indicate the sets of 

co-occurring fault codes for the given form. These 

proposed approaches are helpful for fault code 

diagnostics in the telematics data. 

The clustering approach helps in identifying the 

group of Fault Codes, which, in turn, helps the 

domain experts identify and name the clusters and 

compare one occurrence of Fault Codes with the 

other. It also helps study the common parameter 

values belonging to a specific cluster. Thus, an in-

depth analysis of Fault Codes and the associated 

parameters is possible by grouping them and 

studying the chain of occurrences. The clusters of 

Fault Codes are shown in Figure 13. 

  

Figure 13. Cluster and Fault Codes. 
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The multi-label classification method is started from 

the raw data. Feature extraction, data scaler, and one 

hot encoding APIs convert raw data into model data. 

As we move on to preprocessed data passes to train 

the model, and after model evaluation, we found that 

multi-label classification algorithms performed well 

on the telematics data. Using the tree-based model 

as the base model of the multi-label classification 

model as per the API requirement model gives better 

validation consequences. The weighted F1 score and 

average accuracy measure the model performance. 

In the final model of classification, the XGBoost 

classifier was used as the base model. 39 target 

labels were used to develop respective models, along 

with the required parameters.  

Based on the prior understanding of the data and the 

model, the results were almost close when data were 

fitted in binary relevance classifier and classifier 

chain. After close observation, the classifier chain 

shows better results than the binary relevance 

classifier, shown in Table 2 below. Among these two 

methods, the binary relevance classifier does not 

provide any relation between the target label; 

instead, the classifier chain gives it. 

Table 2. Model performance metrics. 

Model Accuracy F1_score 

Binary Relevance 

Classifier model 
85 to 87% 85 to 87% 

Classifier Chain 

model 
87 to 90% 87 to 90% 

 

This multi-label classification approach is also used 

to find the co-occurrence of the Fault Code. The 

representation of such Fault Code occurrence is 

shown in Figure 14. For example, FC4, FC5, FC8, 

FC11, FC12 and FC13 occurred in set_11. 

 

Figure 14. Fault code co-occurrence chart. 

5. CONCLUSION  

In the case of the Clustering approach, categories of 

similar Fault Codes are formed. These categories 

will be provided names by the Subject Matter 

Experts. The approach has also helped in the 

detailed analysis of Fault Codes. It has helped to 

know distinct and common Fault Codes in different 

Categories and their functional behavior. Clustering 

helped subject matter experts to profile the attributes 

of different groups, organize the volume of data, and 

achieve intrinsic grouping of the unlabeled 

telematics data. 

Moreover, a supervised multi-label machine 

learning approach has helped in troubleshooting 

Fault Codes. It has helped analyze co-occurring 

Fault Codes, along with the frequency of 

occurrence. It also helps in guiding Subject Matter 

Experts to understand Fault Code behavior, their 

dependencies, and the significance of co-

occurrence. Additionally, identification of implicit 

and functional relationships between co-occurring 

Fault Code can be achieved. For the given set of 

telematics parameters, the approach helps identify 

the Fault Codes that are likely to co-occur. For 

example, when the FC2 occurs, the following 

troubleshooting tree is followed: 

• Check for primary Fault Codes 

• Check whether the Engine speed sensor is 

malfunctioning 

• Check whether the turbocharger oil seal is 

leaking oil into the air intake/exhaust 

system 

• ECM calibration revision history check 

In the Check for primary Fault Codes step, before 

troubleshooting FC32, troubleshooting any Fault 

Code that has occurred within the last 25 engine 

operating hours from the cluster FC32 belongs to, is 

carried out. 

Co-occurrences of Fault Codes help identify 

relationships within the data, illustrating not just 

which codes appear together but how often they 

appear, providing a means of assessing the 

prominence of the combination. Also, such an 

analysis helps subject matter experts to be informed 

of multiple possibilities that are inherently not 

apparent. 

6. FUTURE WORK 

We would like to extend the work for analyzing 

specific Fault Codes that could further help the 

organization cash in the benefits of uncovering Fault 

Code behavior and their dependencies. It will 

eventually help the organization in better detection 

of root causes for faults. Eventually, it will help to 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

10 
 

gain financial advantages through optimized 

diagnostics. 
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