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ABSTRACT 

The automotive industry is undergoing a period of rapid 

advancement, as original equipment manufacturers race to 

develop the next generation of electric, autonomous, and 

connected vehicles. Many manufacturers are investing in 

prognostics technology, which has made advancements 

mainly in the aerospace industry over the past couple 

decades. For vehicle fleet managers who own and operate 

many vehicles, prognostics and early fault detection can 

enable predictive maintenance strategies, which can realize 

cost savings versus corrective or preventative strategies. 

However, developing the technology required for predictive 

maintenance can be an expensive undertaking, requiring 

many parts, months of data collection, and possibly years of 

engineering effort. It is critical to understand the expected 

return on investment for developing such a project. 

In this paper, we present a framework to model the business 

value of a predictive maintenance system. The predictive 

maintenance system is described as the combination of a 

component being monitored, a network of sensors, a health 

monitoring algorithm, and a service policy defining the 

response to those actions. The framework incorporates 

models of component failure, health monitoring algorithm 

performance, a policy of actions, and costs associated with 

those actions. The framework is generic and may be applied 

to any component where degradation can be modelled by a 

probability distribution. Monte Carlo simulation is employed 

to estimate the distribution of repair costs for a particular 

maintenance strategy, which can then be used to assess the 

value of a predictive maintenance system. 

1. INTRODUCTION 

As automotive sensor and controller technology developed 

over the past handful of decades, the responsibility for fault 

detection has shifted from vehicle owners and technicians 

listening for abnormal sounds and taking hand measurements 

to on-board computerized systems that issue automatic 

warnings. All modern vehicles are equipped with an on-board 

diagnostics (OBD) port, which allows any driver, fleet 

manager, or technician to plug in a tool and analyze the health 

of dozens of vehicle components by looking at diagnostic 

trouble codes (DTCs). The available trouble codes and 

expected OBD functionalities are captured by international 

standards, such as J1979 (SAE, 2012) and J2012 (SAE, 

2013). For the most part, the rise of OBD has been driven by 

government bodies, such as the California Air Resources 

Board (CARB) which mandates a minimum level of 

emissions-related diagnostics that must exist on a vehicle for 

it to be sold in their jurisdiction (Cal. Code of Regulations, 

2021). Other diagnostics are required to maintain the safety 

of a vehicle, such as those related to wheel speed sensor, 

brakes, and active safety or autonomous features. 

There is, however, incentive for automotive original 

equipment manufacturers (OEMs) to develop diagnostics 

beyond the government requirements and safety 

responsibilities. Early fault detection enables owners to fix 

problems before they cause costly compound effects. This 

benefits the owner of the vehicle as it can prevent a walk-

home scenario, and it also benefits the OEM by reducing cost 

in cases where the repairs are covered under warranty. Fleet 

managers are particularly interested in these systems because 

they enable optimization of fleet maintenance and prevention 

of costly downtime (Fuchs, Safar, & Kok, 2016).  

Typically, a component on a vehicle is covered by one of 

three service strategies: corrective, preventative, or 

predictive. Corrective maintenance involves only replacing a 
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part when a fault has already occurred. This is most common 

for components that are neither critical nor expected to wear. 

Preventative maintenance involves regular servicing or 

replacement to mitigate the risk of an in-service failure. 

Regular oil changes are an example of commonly practiced 

preventative maintenance for automobiles. Finally, 

predictive maintenance is any strategy that services 

components based on their predicted condition. This strategy 

is commonly referred to as “condition-based” maintenance, 

as it requires a condition monitoring system to assess 

component health.  

Defining the maintenance strategy for a vehicle is a complex 

optimization problem as each strategy has pros and cons. 

Corrective maintenance typically has the lowest short-term 

costs since only failed parts are replaced. However, in-service 

failures can lead to costly downtime and compound effects 

that can drive greater costs in the long term. Preventative 

maintenance seeks to mitigate random, unexpected costs and 

downtime with a regular schedule of known costs. Over-

scheduling maintenance, however, can lead to preventative 

maintenance costs exceeding corrective maintenance costs. 

Predictive maintenance presents an opportunity to reduce the 

overall cost of preventative maintenance while maintaining 

the benefit of reduced risk of downtime. However, 

implementing a predictive maintenance strategy requires a 

fault detection system, which is usually neither easy nor 

cheap to develop. Savings are not guaranteed, since placing 

trust in a fault detection system with poor performance can 

lead to a predictive strategy having greater cost than a 

preventative or corrective one. 

There is evidence of predicative maintenance yielding 

positive results in certain applications. McKinsey has 

published evidence of a 20% reduction in downtime achieved 

by predictive maintenance, although they also highlighted the 

massive development effort required to achieve that 

benchmark (Decaix, Gentzel, Luse, Neise, & Thibert, 2021). 

Deloitte claims similar figures in their position paper 

(Deloitte Analytics Institute, 2017), citing an average 

reduction in costs by 25% and reduction in breakdowns by 

70%. Both firms cite the clear fact that the value of applying 

preventative maintenance to a component is correlated with 

the maintenance costs and downtime caused by that 

component, as well as with the performance of the condition 

monitoring technology.  

Maintenance cost modelling and optimization has been 

widely studied, and many academic works have been 

published on mathematical formulations and approaches to 

solving this problem. In Alrabghi and Tiwari’s literature 

review (2013), a large body of simulation-based maintenance 

optimization methods are explored. Methods employing 

discrete-event simulation were found to be most common, 

supporting earlier findings of Jahangirian, Eldabi, Aisha, 

Stergioulas, and Young (2010). The problem of determining 

optimal service frequency for preventative maintenance has 

been deeply explored (Khandelwal, Sharma, & Ray, 1979). 

In their review on maintenance optimization, Jonge and Scarf 

(2019) noted a recent trend in extending models to account 

for condition-based (predictive) strategies. They broadly 

classify research addressing single-component and multi-

component systems, and those assuming perfect and 

imperfect maintenance results. Most relevant to the focus of 

this paper is the work of Xiang, Cassady, and Pohl (2012), 

who use a Markovian model to assess the cost savings of a 

predictive maintenance strategy that accounts for error in the 

condition monitoring algorithm. Their approach assumes a 

prognostic with gaussian error is used to drive maintenance 

decisions. 

For OEMs seeking to optimize the maintenance costs for their 

vehicles, the problem comes in identifying which 

components are worth the effort to develop a fault detection 

system to enable predictive maintenance, and which are 

better served by a corrective or preventative strategy. As 

outlined in the literature review of Jonge and Scarf (2019), 

there are a plethora of models available to simulate and 

optimize the maintenance strategy for any given component. 

Careful thought and engineering judgement must be applied 

when selecting which model to apply to a given component, 

and not all components will warrant the same approach. The 

problem this paper aims to resolve is the lack of uniformity 

in the approach to valuating maintenance strategies. A 

flexible framework that can be applied to any component or 

system will benefit organizations that need to compare many 

options for focusing their engineering efforts. 

In this paper, we describe such a flexible framework that 

enables simulation-based valuation of maintenance 

strategies. The components of the framework are described 

mathematically, and a simple example is shared to highlight 

the insights that this framework can enable.  

2. VALUATION FRAMEWORK 

2.1. Predictive Maintenance 

As this paper defines a valuation framework for a predictive 

maintenance system (PMS), we begin by precisely defining 

that system and its components. The goal of a PMS is to 

monitor the health of a component on a vehicle, and perform 

maintenance as required. For the remainder of this paper, we 

will use the term “vehicle”, but the ideas will apply to any 

machine or system with serviceable components. 

As summarized in Figure 1, a PMS comprises of a network 

of sensors to monitor the vehicle and component, a health 

monitoring algorithm (HMA), and a service policy that 

defines actions to be taken given the outputs of the algorithm. 

The value of a PMS comes from the service actions it takes, 

so the system includes both the health monitoring technology 

itself plus the policy that defines the actions taken in response 

to that technology. 
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The goal of the HMA is to estimate the state-of-health (SOH) 

of the component. There are many possible realizations of an 

HMA – a simple diagnostic HMA may estimate the SOH as 

a Boolean (healthy or faulty), or more advanced prognostics 

HMAs may estimate both the current SOH on a continuum 

and the estimated remaining useful life (RUL). 

 

Figure 1: Generic predictive maintenance system. 

There is a cost-benefit tradeoff for each realization of the 

HMA. Accurate RUL estimates improve maintenance 

planning, enable pre-ordering needed parts, and provide 

information needed to bundle maintenance to improve 

efficiency. For example, if a brake pad needs regularly 

scheduled servicing and an HMA indicates that the RUL of 

the brake rotor is shorter than the time to the next brake pad 

servicing, then replacing the rotor now will prevent an 

additional trip to service in the future. Developing an HMA 

to predict RUL is more complicated than developing a simple 

HMA to output a Boolean SOH, so the effort should only be 

undertaken if there is evidence that the additional savings will 

be worth the effort. 

2.2. Valuation Framework Overview 

The proposed framework assembles models of component 

degradation, HMA performance, and a policy of service 

actions taken in response to the HMA outputs. To simplify 

calculations, the framework is applied to discrete times 

throughout the vehicle life. At each discrete step, the true 

health state is represented as a probability distribution on 

some space of health states. Then, from a model of health 

monitoring algorithm performance, we get a probability 

distribution of the outputs from the algorithm given the 

ground-truth health state. Each output from the HMA is 

associated with a service action, as defined by some 

deterministic policy. Each of these actions has a cost and an 

effect on the health state of the component following the 

action. The overall cost of a maintenance strategy can then be 

assessed by calculating the expected cost from the assembly 

of models. 

Formally, we define the valuation framework by the 

following five components, each of which is described in 

more detail in the following sections. 

1. Vehicle Life Discretization 

2. Degradation Model 

3. Health Monitoring Algorithm Performance Model 

4. Policy of Actions 

5. Model of Action Outcomes 

2.2.1. Vehicle Life Discretization 

First, we must define the behavior of the PMS as it operates 

throughout the vehicle’s life. This is captured by the Vehicle 

Life Discretization, in which we will assume that service 

actions are only taken when there is a new output from the 

health monitoring algorithm, and that these outputs come at 

discrete times in the set 𝕃 = {0, 𝐿1, 𝐿2, … , 𝐿𝑑𝑒𝑠𝑖𝑔𝑛} . Here, 

𝐿𝑑𝑒𝑠𝑖𝑔𝑛  is the ultimate lifetime of the vehicle, and the time by 

which we are aiming to optimize maintenance costs. 

Although we will use the terminology “time” for simplicity, 

the units of life may be any measure of vehicle use such as 

time, mileage, or number of rotations. We will separately 

denote the component life at step 𝑖 by 𝐿𝑖
𝑐 ∈ 𝕃. The difference 

between these lives is that the component life 𝐿𝑖
𝑐 may be re-

set to 0 whenever the component is replaced, but the vehicle 

life 𝐿𝑖 is strictly increasing with use. 

2.2.2. Degradation Model 

The Degradation Model quantifies the expected degradation 

of the component as a function of component life. First, we 

must define a state-space for the component ground-truth 

state of health, denoted 𝕏𝐺𝑇 . This state-space could be a 

binary set (e.g. {healthy, faulty}), some larger discrete set 

(e.g. {100%, 90%, …, 0%}), or a continuum (e.g. [100, 0]). 

The choice of state space depends on the ability to accurately 

measure and model the true health state of the component. 

With the state-space defined, this model shall define a 

conditional probability mass function of the state at each step 

𝐿𝑖 ∈ 𝕃 given the history of all previous states. 

𝑃𝐺𝑇(𝑥𝑖  | 𝑥1, … , 𝑥𝑖−1, 𝐿𝑖
𝑐), 𝑥𝑗 ∈ 𝕏𝐺𝑇 , 𝐿𝑖

𝑐 ∈ 𝕃 (1) 

In Expression (1), the notation 𝑃(𝑎|𝑏) denotes the classic 

definition of conditional probability. This is a generic model 

that affords the designer of the valuation framework 

flexibility in modelling the degradation of the component. In 

many cases, a Markov assumption will hold and the 

dependence on any state older than 𝑥𝑖−1 may be removed. 

Common reliability models may be expressed in this format, 

such as the Weibull distribution which is widely used in 

reliability modelling (Crowder, 1991).  The Weibull 

distribution is defined by the cumulative distribution function 

(CDF) in Eq. (2) below. 

𝐹(𝑡; 𝛽, 𝜂, τ) =  {
1 − exp (− (

𝑡 − 𝜏

𝜂
)

𝛽

) ; 𝑡 ≥ 𝜏

0  ;                                      𝑡 < 𝜏

  (2) 

This is known as the three-parameter Weibull distribution, 

which gives the cumulative probability that a component has 

failed by life 𝑡 . The location parameter, 𝜏 , defines the 

minimum life that is expected to be failure free. Note that the 

two-parameter Weibull distribution is the specific case where 

𝜏 is zero. The scale parameter, 𝜂, defines the relative scale of 

the distribution. The shape parameter, 𝛽, specifies the shape 

of the distribution. Both 𝜂 and 𝛽 are dimensionless, and 𝜏 is 
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in the same life units at 𝑡 (hours, miles, revolutions, etc.). 

More advanced Weibull-derived reliability models may be 

applied, such as extended, exponentiated, truncated, or 

mixture Weibull models (Murthy, Bulmer, & Eccleston, 

2004) (Xie & Lai, 1995).  

For any component and model, Weibull parameters can be 

determined by conducting run-to-failure testing on a 

statistically significant set of parts and fitting the above 

distribution to the results. Goodness of fit tests can be used in 

conjunction with the principal of maximum likelihood to 

select an appropriate model. Some sources such as this table 

from GE (General Electric, 2018) can be used to estimate 

typical shape parameter values for different types of 

components.  

Another realization of this model of ground-truth health state 

could employ failure records, such as warranty data, that 

capture the total number of parts failed within some 

population. A common warranty metric used in automotive 

is instances per thousand vehicles (IPTV) at 12, 24, 36, and 

60 months operation. This data can be used to derive a 𝑃𝐺𝑇  

distribution via interpolation. 

2.2.3. Health Monitoring Algorithm Performance Model 

The Health Monitoring Algorithm Performance Model 

defines the performance of the health monitoring algorithm 

as a function of the ground-truth health state of the 

component. First, we define the space of outputs of the 

algorithm, denoted by 𝕏𝑂. It is not necessarily true that 𝕏𝐺𝑇  

and 𝕏𝑂  are equivalent, though it should be that the size of 𝕏𝑂 

is less than or equal to the size of 𝕏𝐺𝑇 , as it would not be 

possible to design an algorithm to output more health states 

than can be accurately measured or modelled.  

The simplest case is a Boolean health monitoring algorithm, 

with 𝕏𝑂 = {ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑓𝑎𝑢𝑙𝑡𝑦} . More complex cases may 

include a state-of-health estimation algorithm that returns 

component health on a continuum from perfectly healthy to 

unusably faulty, or a prognostic algorithm that returns 

estimates of both the current SOH and the RUL. Note that 𝕏𝑂 

may be multi-dimensional to accommodate multi-output 

realizations of the HMA. 

Second, we must define a model of the performance of the 

HMA conditioned on the true state of the component. We will 

denote this model 𝑃𝐻𝑀𝐴(�̂� |𝑥𝑒), where �̂� is the output of the 

health monitoring algorithm and 𝑥𝑒  is the expected output 

given the ground-truth health state of the component. In cases 

where 𝕏𝑂 = 𝕏𝐺𝑇 , then 𝑥𝑒 is equal to the ground-truth SOH 

( 𝑥 ). In other cases, 𝑥𝑒  is the ideal output of the health-

monitoring algorithm, as may be defined by some 

deterministic function 𝑓𝐻𝑀𝐴(𝑥). 

If the state-space 𝕏𝑂 is discrete, then the performance of the 

HMA can be captured by a confusion matrix (Stehman, 

1997). For a classifier with 𝑁 classes, the confusion matrix is 

defined by Eqn. 3. 

𝐶𝑀 = [
𝑃(�̂� = 𝑐1 |𝑥𝑒 = 𝑐1) ⋯ 𝑃(�̂� = 𝑐1 |𝑥𝑒 = 𝑐𝑁)

⋮ ⋱ ⋮
(�̂� = 𝑐𝑁  |𝑥𝑒 = 𝑐1) ⋯ 𝑃(�̂� = 𝑐𝑁  |𝑥𝑒 = 𝑐𝑁)

]    (3) 

where 𝑥𝑒 is the expected output of the classifier, �̂� is the class 

predicted by the classifier, and {𝑐1, … , 𝑐𝑁}  is the set of 

𝑁 classes that the sample may belong to. Note that the sum 

of each column of the confusion matrix must be equal to one 

for these probabilities to be well defined. 

Alternatively, if the HMA outputs a predicted SOH in a 

continuous 𝕏𝑂 , then the outputs of the algorithm may be 

modelled as an error distribution. Experimental results should 

drive the choice of model here. In the simplest case, this could 

be a zero-mean gaussian distribution centered at the expected 

output. More complex models may include additional 

parameters to account for the state-space bounds, bias, 

heteroskedacity, skewness, multi-modal distributions, or 

other models that best fit a set of experimental results. Note, 

for generality, that 𝕏𝑂  may be multi-dimensional, and the 

error model may account for correlation between dimensions. 

It should be no surprise that the value of a PMS is inextricably 

linked to the performance of the health monitoring algorithm. 

The maximum value will come from an algorithm with 

perfect performance (100% accuracy and precision in the 

Boolean case, 0 error in the SOH/RUL estimate case), and 

negative value could be incurred from an algorithm with a 

high error rate. This model of HMA performance presents a 

degree of freedom in the valuation framework which can 

enable some deeper insights. For example, the framework can 

be used to determine the minimum acceptable HMA 

performance to meet a target ROI, or to tune the calibration 

of an existing HMA to maximize value. 

2.2.4. Policy of Actions 

The Policy of Actions defines the service actions taken when 

an output is issued by the HMA. This is modelled by a 

deterministic function 𝑓𝑎 that returns a recommended action 

𝑎𝑖 from a set of actions 𝔸, depending on the HMA output �̂�𝑖, 

and the component life 𝐿𝑖
𝑐. 

Some examples of actions, 𝑎𝑖 , that a service policy may issue 

include: 

• No Replacement: Do not replace component if �̂�𝑖 is 

healthy. 

• Blind Replacement/Repair: Replace/repair 

component if �̂�𝑖 indicates a fault. 

• RUL Scheduling: If �̂�𝑖 includes an RUL estimate, 

and the remaining life is less than the planned time 

before the next visit to the service hub, replace the 

component now. 

• Inspect & Replace/Repair: If �̂�𝑖 indicates a possible 

fault, first inspect the component, and then only 

replace/repair it if the inspection reveals a fault. 

𝑎𝑖 = 𝑓𝑎(�̂�𝑖 , 𝐿𝑖
𝑐) (4) 
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• Failure-Free Period: Ignore any fault indicated by 

�̂�𝑖 if component life 𝐿𝑖
𝑐 is below some minimum. 

• Maximum Life: Replace the component regardless 

of output state �̂�𝑖 if component life 𝐿𝑖
𝑐 is above 

some maximum.  

The service policy dictates how the outputs of the HMA are 

consumed to realize its benefits. This valuation framework 

can be used as a tool for determining the optimal policy given 

an HMA of known performance. The optimal policy will 

depend on the failure rate of the component and the 

performance of the HMA. For example, it is not worth 

incurring any cost to inspect a component before replacing it 

if the HMA has perfect performance. In cases where the 

HMA has low fault detection performance, instituting a 

maximum life can help reduce overall cost. 

2.2.5. Model of Action Outcomes 

The final piece of the valuation framework is the Model of 

Action Outcomes. For each action in 𝔸, we require a model 

of two outcomes: the cost, and the resulting SOH of the 

component being monitored.  

𝑃𝑐𝑜𝑠𝑡(𝑐𝑖  |𝑎𝑖 , 𝑥𝑖), 𝑐𝑖 ∈ ℝ+, 𝑎𝑖 ∈ 𝔸, 𝑥𝑖 ∈ 𝕏𝐺𝑇  

𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑥𝑖
′ |𝑎𝑖 , 𝑥𝑖),         𝑎𝑖 ∈ 𝔸,  𝑥𝑖 , 𝑥𝑖

′ ∈ 𝕏𝐺𝑇     

The cost model presented above is the most generic form, 

allowing for both dependence on the true health state 𝑥𝑖 and 

probabilistic definition. Some actions will have a 

deterministic cost, regardless of the true ground-truth health 

state. For example, if the action is blind replacement if �̂�𝑖 

indicates a fault, then the cost is the cost of the replacement 

regardless of the ground truth. If the action is to first inspect 

the component, and replace it only if needed, then the cost is 

the inspection only if 𝑥𝑖 is healthy, or the cost of inspection 

plus replacement if 𝑥𝑖 is faulty. Probabilistic modelling can 

capture costs that are variable in nature, such as towing which 

may be a function of distance and time of day. 

Finally, note that the costs may include both financial 

expenses as well as soft-costs, such as customer safety and 

comfort. Quantifying soft costs can be difficult and may 

require assumptions based on market research. If a dollar-

equivalent of each soft-cost can be derived, then the inputs of 

the framework can be optimized to minimize the overall cost 

in a single objective optimization problem. If such an 

equivalence is not possible, then the framework can be 

implemented to output multiple costs. For example, the costs 

in an automotive setting may include total maintenance cost 

plus the cost of customer dissatisfaction in the event of a 

roadside failure. This may manifest in a challenging multi-

objective optimization problem with conflicting objectives, 

as increasing maintenance costs will likely decrease 

dissatisfaction, and vice versa. 

The service model, 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒, recognizes the fact that service 

actions may not be perfect. If the action is to repair a part and 

there is some risk that the repair fails, that can be captured in 

this distribution. If the action is to replace the component, and 

there is no risk of the replacement failing, then 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒 can 

be collapsed to an elementary event which guarantees 𝑥𝑖
′ is 

completely healthy. 

2.3. Evaluating the Framework 

The components of the predictive maintenance system 

valuation framework are summarized below in Table 1. 

Table 1: Summary of valuation framework components.  

 

Finally, we need a process to combine the components of the 

valuation framework to determine the expected cost of the 

PMS. In even the simplest formulations of this framework, 

calculating the expected value directly will prove to be a 

complicated task. Challenging integrals may arise when 

calculating expectations of the multiple PDFs employed in 

this framework, and solutions may not be generalizable to 

slight variations in the formulation. Instead of relying on 

direct computation, it is desirable to define a generic 

estimation method that can be applied to any formulation of 

the valuation framework described above.  

One suitable approach would be to implement a Monte-Carlo 

simulation. Each iteration of the simulation would begin with 

a sample brand-new vehicle with brand-new components. 

Then, with each iteration 𝑖 of the predictive maintenance 

system throughout the vehicle life discretization 𝕃 , the 

simulation would sample a representative SOH, 𝑥𝑖, from the 

degradation model, 𝑃𝐺𝑇 . The output of the HMA, �̂�𝑖, given 

this SOH is sampled from the conditional model of HMA 

performance, 𝑃𝐻𝑀𝐴(�̂�𝑖  |𝑥𝑖) . The action to be taken is 

determined from the policy of actions, 𝑓𝑎(�̂�𝑖 , 𝐿𝑖
𝑐), and the 

cost of this action is then sampled from 𝑃𝑐𝑜𝑠𝑡(𝑐𝑖  |𝑎𝑖 , 𝑥𝑖). The 

resulting component SOH is updated according to 

𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑥𝑖
′ |𝑎𝑖), and the simulation repeats until the design 
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life of the vehicle is met. This process is summarized in 

Figure 2. 

 

Figure 2: Monte Carlo simulation block-diagram. 

This simulation and sampling process is repeated for a large 

amount (𝑁) of simulated vehicles, yielding a distribution of 

costs for the maintenance strategy and enabling calculation 

of the expected cost. Ultimately, this Monte-Carlo simulation 

can be used to valuate a predictive maintenance system by 

comparing the expected costs from a Policy of Actions that 

uses information from an HMA to a Policy of Actions that 

does not. 

3. RESULTS & DISCUSSION 

3.1. Applications 

There are many ways this framework can be employed to 

yield valuable insights, and it can serve as a useful tool 

throughout the project cycle. 

3.1.1. Project Valuation 

When looking to define a project to develop a predictive 

maintenance system and prove that the project will yield 

value, this framework can be employed to estimate a dollar 

value for the project. This is achieved by comparing the 

expected cost of a service strategy that does not include a 

HMA against a service strategy that does. Given an estimated 

cost to develop and employ the PMS that accounts for 

engineering effort, testing materials, and any additional 

sensors or processors required to implement the HMA, this 

valuation can be used to derive the ROI of the effort. An 

honest assessment will present the valuation as a range, in 

which the maximum value is attained with a perfect HMA 

( 𝑃𝐻𝑀𝐴(�̂�|𝑥𝑒) = 1𝑥=𝑥𝑒
), and the expected value considers 

some non-perfect performance that the development team 

believes is attainable. 

3.1.2. Requirement Derivation 

In some scenarios, engineering teams may be required to 

meet a minimum acceptable ROI for their efforts to develop 

a new maintenance system. Given this requirement, it can be 

possible to derive minimum performance requirements for 

the health monitoring algorithm. Consider, for example, a 

binary HMA. Savings come from true positives that allow for 

service actions to prevent in-use failures resulting in costly 

downtime. False positives, on the other hand, can drive up 

cost from trusting an HMA that isn’t accurate. Therefore, 

given a minimum acceptable ROI, this framework may be 

used to derive the minimum true positive rate (TPR) and 

maximum false positive rate (FPR) for the HMA. These 

requirements may then be used as acceptance criteria after the 

R&D stage in which the algorithm is developed and its 

performance known. 

3.1.3. Service Policy Optimization 

After an HMA is developed with known performance, this 

framework can be used to optimize the service policy. For 

example, if the HMA has a relatively high rate of false 

detections, then the policy should be revised to inspect 

components before they are replaced (versus blind 

replacement, which will result in unnecessary part cost). 

However, depending on the component, this inspection cost 

may be too high to justify. By employing the framework to a 

variety of scenarios, service decision makers can make data-

driven decisions to minimize their costs. 

3.1.4. Calibration Tuning 

Health monitoring algorithms often require many calibratable 

parameters. These parameters control the performance of the 

algorithm, and there are often conflicting objectives. 

Consider a case where an indicator signal is compared to a 

threshold, and any value above that threshold is labelled as a 

fault. Increasing the threshold will reduce the risk of false 

positives, but also reduce the rate of true positives. This 
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tradeoff relationship is captured by a receiver operating 

characteristic (ROC) curve. Once the ROC curve of the HMA 

is known, the valuation framework can be used to identify the 

set of calibrations that optimizes cost savings. 

3.2. Example 

To demonstrate the benefits of this generalized framework 

and its potential uses, we have constructed a simple example. 

Suppose we have a component where inspection cost is an 

order of magnitude below replacement cost, which itself is an 

order of magnitude below the cost of an in-service failure. 

For simplicity, we will use the values in Table 2.  

Table 2: Example cost parameters.  

Action Cost 

Inspect (𝑐𝑖𝑛𝑠𝑝𝑒𝑐𝑡) 10 

Replace (𝑐𝑟𝑒𝑝𝑙𝑎𝑐𝑒) 100 

In-Service Failure (𝑐𝑓𝑎𝑖𝑙) 1000 

We will consider a simple binary diagnostic HMA 

implemented on this component, such that the output is either 

“healthy” or “faulty”. We will consider a design life (𝐿𝑑𝑒𝑠𝑖𝑔𝑛) 

of 100,000 miles, with a discretization at 1 mile steps 

(assuming the HMA executes once per mile of driving). The 

degradation model will be a simple two-parameter Weibull 

distribution, given by Eqn. 2 with 𝜏  equal to zero. This 

formulation gives that both 𝕏𝐺𝑇  and 𝕏𝑂  are the binary set 

{healthy, faulty}. 

For this analysis, we will compare 6 different policies of 

actions, defined below. 

1. Corrective (𝑓𝐶): only replace the component if an in-

service failure occurs. 

2. Scheduled (𝑓𝑆 ): replace the component if an in-

service failure occurs, or a pre-defined service life 

𝐿𝑠  is reached. 𝐿𝑠  will be defined as an integer 

division of the design life (i.e. there will be 𝑁 

replacements at intervals of 𝐿𝑑𝑒𝑠𝑖𝑔𝑛/(𝑁 + 1) 

miles). 

3. Blind Replacement (𝑓𝑅): replace the component if 

an in-service failure occurs, or the HMA issues a 

“faulty” output. 

4. Inspect & Replace (𝑓𝐼𝑅): replace the component if an 

in-service failure occurs. If the HMA issues a 

“faulty” output, first inspect the component, and 

replace it if the inspection confirms the fault. 

5. Scheduled x Blind Replacement (𝑓𝑆𝑅): replace the 

component if an in-service failure occurs, the 

service life 𝐿𝑆  is reached, or the HMA issues a 

“faulty” output. 

6. Scheduled x Inspect & Replace (𝑓𝑆𝐼𝑅): replace the 

component if an in-service failure occurs, the 

service life 𝐿𝑠  is reached, or the HMA issues a 

“faulty” output and an inspection confirms the fault. 

For the model of action outcomes, we will assume that both 

replacement and inspection actions have 100% probability of 

success, and that the costs are deterministic as defined in 

Table 2.  

The main question to be asked by the health monitoring 

development team is whether there is a business case to 

justify developing an HMA for this component. This will 

depend on the expected failure rate of the component, which 

we are assuming may be modelled by a two-parameter 

Weibull distribution with shape parameter 𝛽  and scale 

parameter 𝜂.  

First, we must determine the “reference” maintenance policy 

for comparison. This will be the lowest cost policy that does 

not consume any outputs from an HMA – in this case, either 

a corrective (𝑓𝐶 ) or scheduled (𝑓𝑆) policy. Figure 3 below 

shows which reference policy is best as a function of Weibull 

shape and scale parameter.  

 

 

Figure 3: (a) Shows the reference policy with minimum 

cost, (b) shows the savings of an HMA policy versus the 

optimal reference strategy as a function of the component’s 

Weibull parameters. 
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The lines in Figure 3 are sets of shape and scale parameters 

with equivalent expected life. It can be seen in Figure 3 (a) 

that for shape parameters greater than 1, the optimal number 

of scheduled replacements is strongly anti-correlated with the 

scale parameter. It is interesting to note that for components 

with high infant mortality rates ( 𝛽 < 1 ), a scheduled 

replacement strategy can actually drive up costs by replacing 

matured components with new ones that are more susceptible 

to failure. For these components the optimal reference policy 

is simple corrective maintenance until the scale parameter is 

large enough. 

Figure 3(b) shows the maximum possible savings that an 

HMA policy can yield versus the optimal reference policy. 

The savings are presented in expected dollars per vehicle 

saved. Not surprisingly, the expected savings increases as the 

scale and shape parameters decrease. It is intuitive that 

developing an HMA will be most valuable for components 

with high failure rates. These results are highly dependent on 

the cost parameters in Table 2 2, and would differ 

significantly if 𝑐𝑓𝑎𝑖𝑙  and 𝑐𝑟𝑒𝑝𝑙𝑎𝑐𝑒  were to change. The benefit 

of an HMA policy is in correcting field failures before they 

occur. Therefore, the larger 𝑐𝑓𝑎𝑖𝑙  is relative to 𝑐𝑟𝑒𝑝𝑙𝑎𝑐𝑒 , the 

more valuable an HMA will be.  Correctly setting these costs 

is crucial to deriving correct insights from this valuation 

framework. 

This analysis enables initial decision making if the value of 

developing an HMA is worth the effort. Given the estimated 

Weibull parameter for the component under study, the 

expected value of the project can be assessed using the heat 

map in Figure 3 (b), and the ROI can be estimated. Note that 

uncertainty in the Weibull parameters should be 

incorporated, as Figure 3 (b) shows that the value of an HMA 

is sensitive to the degradation model. 

The above analysis assumes that an HMA with perfect 

performance is developed, which is likely not the case. 

HMAs with false negatives (missed detections) will lead to 

costly in-service failures, and HMAs with false positives 

(incorrect detections) will lead to unnecessary repair actions. 

We capture these imperfections in the framework by 

specifying the performance model 𝑃𝐻𝑀𝐴 . For a binary 𝕏𝐺𝑇  

and 𝕏𝑂, this model is uniquely defined by two parameters: 

the false positive rate (FPR) and true positive rate (TPR), 

given by Eqn. 5. 

FPR = 𝑃𝐻𝑀𝐴(�̂� = 𝑓𝑎𝑢𝑙𝑡𝑦 |𝑥𝑒 = ℎ𝑒𝑎𝑙𝑡ℎ𝑦) (5a) 

TPR = 𝑃𝐻𝑀𝐴(�̂� = 𝑓𝑎𝑢𝑙𝑡𝑦 |𝑥𝑒 = 𝑓𝑎𝑢𝑙𝑡𝑦) (5b) 

Figure 4 (a) shows the optimal service policy as a function of 

HMA performance for a component with Weibull parameters 

𝛽 = 1.3 , 𝜂 = 5 ∗ 𝐿𝑑𝑒𝑠𝑖𝑔𝑛 = 500,000 miles . It is expected 

that about 10% of these parts will fail within the 100,000 mile 

vehicle life. 

 

 

Figure 4: (a) the optimal service policy as a function of 

HMA performance. (b) the expected cost savings of the 

optimal policy, in $ per vehicle. The black line on each plot 

shows the ROC curve of a sample HMA. 

This analysis quantifies some intuitive behaviors. We can see 

that “blind replacement” is only the optimal policy when the 

TPR is high and FPR is low, when we have full trust in the 

HMA. The dominant optimal policy is 𝑓𝐼𝑅 , which is not 

surprising given the relatively low cost of inspection vs 

replacement. If the cost of inspection were to increase relative 

to replacement, we would expect the region where 𝑓𝑅  is 

optimal to grow to accept greater false positive rates. Finally, 

the blue region captures all TPR/FPR performance metrics 

where the HMA will result in negative value and sticking 

with reactive maintenance is the best strategy. For this 

formulation of the PMS, 𝑓𝑆𝑅 and 𝑓𝑆𝐼𝑅 are never the optimal 

policies. It is expected that scheduling becomes an important 

component of the maintenance policy to protect against false 

negatives when the failure rate is higher and the TPR is low. 

If there is a minimum ROI expected from the development, 

this analysis can be used to derive the performance 

requirements for the HMA by identifying the region on 

Figure 4 (b) that yields acceptable ROI. This analysis can also 

be used for calibration tuning once the HMA performance is 
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known. Suppose, for example, the HMA performance is as 

defined by the ROC curve shown in black on Figure 4. Any 

point on this performance curve is attainable by changing the 

algorithm calibrations. The valuation framework can be used 

to identify the point on the ROC curve with maximum 

savings, as shown by the marker on Figure 4 (b). 

In this simple example, we have shown how the valuation 

framework can be used to valuate projects, optimize 

maintenance policies, set HMA performance requirements, 

and derive cost-optimal calibrations. The tools and analysis 

outlined in this simple example may be expanded to more 

advanced degradation models, HMA models (i.e. SOH  

and/or RUL estimation algos), and service policies. 

4. CONCLUSION 

The framework presented in this paper aims to present a 

comprehensive and flexible method for estimating the costs 

associated with a maintenance policy that incorporates a 

health monitoring algorithm. This contributes to the existing 

literature on maintenance cost modelling and optimization by 

standardizing model components needed. The presented 

example shows how this framework may be employed to 

derive insights and drive decisions regarding investment in 

developing HMAs. It was also discussed how this framework 

can deliver insights deeper than simple project valuations, 

such as deriving HMA performance requirements, tuning 

HMA calibrations, and optimizing service policies. OEMs 

can use a framework like this to aid with deciding where to 

spend engineering effort as they work to develop health-

aware vehicles and minimize maintenance costs for their 

customers. 
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