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ABSTRACT

The process of assessment of effectiveness of the existing
overhaul practices determined that the historical usage of as-
sets provides valuable contextual information. Usage data
is typically highly reliable, but not in legacy fleets, featur-
ing older vehicles with missing, incomplete, inconsistent,
and contradictory data. This paper describes two methods
for usage estimation from noisy data by exploiting two data
sources: 1) unreliable, manually-entered usage data and 2)
part replacements. The first method employs a probabilistic
model to reconcile missing and inconsistent data entries; the
second is based on the replacement of consumable compo-
nents. The probabilistic model, fully and uniquely specified
by the probabilistic variables (with their distributions) and
deterministic variables, is validated using synthetic datasets
because the real ground truth associated with the field data
does not exist. Disproportional impact of an incorrect initial
data point is mitigated by training the model in both forward
and reverse directions. The motivating hypothesis for usage
estimation from part replacements is based on a plausible as-
sumption that specific consumables, e.g. brake pads, have
reasonably repeatable replacement patterns which can be re-
lated to usage. For many vehicles mean time between fail-
ures of a component was even longer than the average data
collection time span. But for assets with sufficiently longer
data records, the cumulative replacements of components are
well-correlated with the probabilistic usage estimates, provid-
ing additional reinforcement for the inference.

1. BACKGROUND

Equipment health and condition monitoring enables main-
tenance to better manage the effects of equipment degrada-
tion or failure. The systematic approaches include Reliability
Centered Maintenance (RCM) and Condition-Based Mainte-
nance Plus (CBM). RCM specifies processes that must be
implemented to manage failure modes that can cause func-
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tional failure of assets, i.e. RCM identifies the maintenance
needs for CBM (Nowlan & Heap, 1978; Moubray, 1997).
CBM is the application and integration of selected processes,
technologies, and knowledge-based capabilities to improve
the reliability and maintenance effectiveness of systems and
components (US-AMRDEC, 2016). Being based upon objec-
tive evidence of equipment degradation or impending failure,
CBM has significant economic and safety benefits; it reduces
incidence of unscheduled failures and downtime, and the oc-
currence of unnecessary or early scheduled maintenance.

Health or condition monitoring is the process of collecting as-
set data and extracting the information for CBM. Affordable
sensors, data storage, and networking enable comprehensive
monitoring of all types of assets. In order to make this data
actionable for CBM, specific models are necessary to identify
and characterize anomalies to relate the anomalous patterns
to forward looking failure risk for decision making purposes
(Engel, Gilmartin, Bongort, & Hess, 2000; Goebel et al.,
2017). The models are typically classified as expert-system,
physics-based, data-driven, and hybrid (Vachtsevanos, Lewis,
Roemer, Hess, & Wu, 2006).

Health monitoring is often an incremental process, as data is
typically not available to develop comprehensive diagnostic
and prognostic algorithms from the outset. Instead, the lev-
els of Prognostic Health Management (PHM) capability grow
over time (Sikorska, Hodkiewicz, & Ma, 2011; Bussey, Ne-
nadic, Ardis, & Thurston, 2014). Consolidation of vehicle
fleet data in a data warehouse provides an opportunity to de-
velop PHM knowledge and algorithms incrementally. The
current study stems from an initiative to reevaluate the effec-
tiveness of some of the existing maintenance practices. A
specific objective of high importance was to assess the effec-
tiveness of periodic overhauls based on existing data. The
data came from a family of military tracked vehicles. The
approach was pragmatic, based upon the available data, and
available domain knowledge.

Knowledge of assets’ usage has the potential to improve the
assessment. However, because the usage data was unreliable
(contained inconsistent and often missing values), an infer-
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ence model was needed. A probabilistic networks model was
selected because networks of Bayesian probability calcula-
tions are an effective way to impute missing data and improve
statistical models of time-series data. Multiple imputation is
an effective way to fill missing data while maintaining a de-
gree of uncertainty (Honaker & King, 2010). Parameter es-
timation in statistical models can be used to build a belief
network for correcting imperfect observations in data mining
problems (Denoeux, 2013). Probability was first interpreted
as a natural extension to formal logic in the 1940s (Cox, 1946,
1961). This approach was later extended and popularized
by Jaynes (Jaynes, 2003) and others ((Sivia, 1996; Gregory,
2005).

The problem with probabilistic models was their compu-
tational requirements. The Markov chain Monte Carlo
(MCMC) method, that also originated in the 1940s
(Metropolis & Ulam, 1949), has become a standard tool for
this computation. Probabilistic (graphical) models had no-
table successes in the sixties and seventies, but then fell out of
favor to some other AI approaches (e.g. fuzzy logic (Zadeh,
1965, 1983), Dempster-Shafer evidence theory (Shafer et al.,
1976)). The renaissance of probabilistic modelling started
in the late 1980s with theoretical development (Pearl, 1988),
but computational power did not allow the explosion of so-
lutions that we have witnessed in the very recent past. The
graphical approaches will allow domain experts to take ad-
vantage of the framework. Many new applications including
medical diagnostics, analysis of genetic and genomic data,
speech recognition, natural language processing, analysis
of market data, and fault diagnosis, which can be extended
to reliability. The potential of the probability networks has
been recognized in the 1980s (Pearl, 1987; Geman & Geman,
1984)). More recently excellent tutorials (e.g. (Andrieu,
De Freitas, Doucet, & Jordan, 2003; Diaconis, 2009) and
books (e.g. (Jordan, 1998), (Bishop, 2006), (Barber, 2012),
(Koller & Friedman, 2009), (Gelman, Carlin, Stern, & Rubin,
2014), and (Theodoridis, 2015)) have become available.

Probabilistic modeling is computationally intensive. Many
high-quality, well-tested frameworks for probabilistic mod-
eling emerged, including BUGS (Lunn, Thomas, Best, &
Spiegelhalter, 2000), JAGS (Plummer et al., 2003), Church
(Goodman, Mansinghka, Roy, Bonawitz, & Tarlow, 2012),
Infer.NET (Minka, Winn, Guiver, & Knowles, 2012), PyMC
(Patil, Huard, & Fonnesbeck, 2010; Davidson-Pilon, 2015),
and Stan (Gelman, Lee, & Guo, 2015). Usage estimation in
this work employed PyMC and Stan because of their ability
to integrate with the open-source scientific Python ecosys-
tem, which also includes NumPy (Oliphant, 2006), SciPy
(Jones, Oliphant, Peterson, et al., n.d.), Matplotlib (Hunter,
2007), with statistical Pandas (McKinney, 2012), and ma-
chine learning tools, Scikit-Learn (Pedregosa et al., 2011)),
Theano (Bergstra et al., 2010), TensorFlow, and PyTorch.

t

Cm

Before overhaul
(t < 0)

After overhaul
(t > 0)

toverhaul = 0

Figure 1. Sketch of expected maintenance cost before and
after an overhaul assuming that the overhaul is effective.

2. INTRODUCTION

2.1. Approach based on the available data

For the fleet of interest, the maintenance history data was
available, but the operational history was almost entirely lack-
ing. While the knowledge of the operational history had the
potential to greatly improve the decisions, the decisions had
to be made even in the absence of important data.

A way to demonstrate effectiveness of previous vehicle over-
haul using maintenance data alone was to visualize the cost
of maintenance over time. Figure 1 shows a hypothesized
maintenance cost Cm as a function of time t, where cost of
maintenance was computed as the sum of the cost of parts
Cparts and the cost of labor Clabor

Cm = Cparts + Clabor (1)

where the cost of labor Clabor is a product of time associated
with active repair tlabor expressed in hours (labor hours) and
hourly rate rlabor

Clabor = rlabortlabor (2)

The tacit assumption in this figure was that the usage and
the general operating and environmental conditions did not
change appreciably over the time associated with an over-
haul cycle. In practice, this assumption had to be verified,
as shown in Section 3. Within the existing database, parts
cost was generally available. However, the number of parts
replaced were sometimes misleading and the recorded labor
hours were often missing, requiring hand cleaning of data for
analysis.

2.2. Maintenance Application Overhaul

The motivation of this study was in reducing the cost of over-
hauls by choosing more appropriate, condition-based main-
tenance times across the fleet. Figure 2 shows maintenance
and overhaul activity on a fleet of more than four hun-
dred vehicles. The solid (dark blue) line shows overhaul
dates, the faded orange background signifies the time interval
with recorded maintenance history corresponding to the over-
hauled vehicle and is populated with dark-orange dots that de-
note maintenance events, and the dashed grey line marks six
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Figure 2. Overhaul (dark line) and maintenance events over
time for a fleet of vehicles.

months after the overhauls. Note that there are generally few
maintenance events in that six months interval after overhaul.

In order to assess the effectiveness of current overhauls, data
was arranged so that all vehicle’s overhaul dates aligned and
cost records before and after could be compared. The purpose
of this visualization is to compare cost, availability, and num-
ber of repairs relative to overhaul, across all vehicles. Cost
and maintenance histories were analyzed by sub-system (i.e a
collection of components categorized by their collective pur-
pose). Components that were hypothesized to have replace-
ment rates most influenced by usage, such as road wheels,
were analyzed individually (Section 3.2).

A cost analysis was done for the 425 vehicles that have been
overhauled since 2007 and data was grouped by 90 day in-
tervals, as shown in Figure 3. From top to bottom, the fig-
ure shows a) total cost, b) available number of vehicles in
the sample population, c) cost per available number of ve-
hicles, and d) number of maintenance orders with non-zero
cost. Grey and orange shading were used to emphasize the
comparison of activity before and after the overhaul dateline.
In order to avoid effects from the volatility of price variation
over time, all costs shown in this plot were based on the 2014
unit prices using information on current parts. All vehicles
in the sample contained the overhaul event. However there
were fewer vehicles that had observation time intervals long
before and long after the overhaul event. To take into the ac-
count the number of vehicles available at a time away from
the overhaul event, the cost per vehicle is shown in Figure 3c.
Figure 3b shows the availability of vehicles.
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Figure 3. Effect of overhaul in time measured in days: a)
total cost, b) available vehicles, c) normalized cost (per

vehicle), and d) number of repairs.

The available number of vehicles was computed by taking
the earliest and latest maintenance date for each vehicle and
counting the number of vehicles available in the days rela-
tive to overhauls. The earliest maintenance dates were used
to count number of available vehicles before overhaul and are
represented by the grey shade. The latest maintenance dates
were used to count available vehicles after overhaul and were
represented initially by the blue line but later revised to the
orange shade for the following reason. 132 vehicles did not
have maintenance records after their overhaul, hence the gap
in Figure 3b between the end of the grey shade before over-
haul and the start of the blue line after overhaul. The lack of
vehicle data after overhaul was also apparent in the top right
region of Figure 2, where orange data points were sparse. For
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Figure 4. Data for making decisions on vehicle overhaul.

Figure 3b, the count was revised from the difference between
overhauls and the latest maintenance events to the difference
between overhauls and the time of analysis, since some vehi-
cles had no maintenance events after their overhaul date and
before this study.

Figure 3a and Figure 3c shows reduced maintenance cost for
period of time after overhaul. However, as the maintenance
moves from time-based scheduling, it needs to consider asset
usage. The remainder of the document is concerned with the
usage estimation.

2.3. Best case scenario

The objective of this study was to obtain inferential estimates
of usage based on noisy raw data. This study supports a
broader goal to improve the overhaul interval utilizing con-
dition and usage information, which requires accurate usage
estimates. Clearly, maintenance needs depend on the context,
defined by operating and environmental conditions a vehicle
is subjected to. Thus, a careful analysis of vehicle overhaul
effectiveness for a given vehicle must consider the context of
use; however, this type of data was not recorded. Instead,
the consideration of vehicles collectively has the potential to
reveal the impact of overhaul on the continuous vehicle main-
tenance.

Figure 4 shows factors that contribute to the state of health of
a vehicle. Two main classes of influence are identified as the
operational history and the maintenance history.

Operational history is determined by usage, operating condi-
tions, and environmental conditions. The usage is typically
measured in miles, engine hours, or both. Operating con-
ditions include in-use/storage patterns, braking, sudden ac-
celerations, engine and vehicle speed distributions, and other
similar parameters. Environmental conditions include terrain,
humidity, exposure to salt water, dust, etc. The dominant
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Figure 5. Usage data example: the values are not
monotonically non-decreasing as expected

approach for capturing usage data is the inclusion of health
and usage monitoring system (HUMS), defined as a system
of sensors, processes, and algorithms for prognostics, on the
vehicle platform (Heine & Barker, 2007). HUMS applica-
tions have been deployed only on the most expensive vehi-
cles, such as fix-wing aircraft (Trammel, Vossler, & Feld-
mann, 1997) and rotor craft (Gordon, 1991; Ellerbrock, Shan-
thakumaran, & Halmos, 1999). Ground vehicles are gener-
ally not equipped with HUMS because HUMS adds on cost
and complexity (with potential decrease of reliability), but it
has been explored in research and development e.g. (Heine
& Barker, 2007; Rabeno & Bounds, 2009; Das, Hall, Patel,
McNamara, & Todd, 2012). The older tracked vehicles con-
sidered in this study were not equipped with HUMS. Main-
tenance history includes current issues, past repairs, and cost
of maintenance over time.

3. USAGE ESTIMATION

Of the operational history data described in Figure 4, only
usage data existed in the available data set. The maintenance
history database contained a field called usage, and for the
fleet studies this value is supposed to represent cumulative
engine hours (as read from the engine hour meter) or total
miles. The units of recorded usage were unclear at first. Due
to the noisy nature of the data, they may have represented
hours driven, or miles traveled. Either unit should have non-
decreasing values over time, but the volatility of the observa-
tions made it difficult to determine which were most plau-
sible. Furthermore, observations were far enough apart in
time that logical reasoning was not enough to distinguish the
units (e.g. usage changing by five in one hour would imply
miles, not hours). Further investigation of ordinance vehi-
cle monthly and daily log-books strongly suggested the units
of usage were hours. Of the 32 vehicle log-books provided
to us, several held records that precisely matched that of the
database for the vehicle under units of hours. However, us-
age data had many missing, inconsistent, and contradictory
values. An illustration of this situation is shown in Figure 5,
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ui ui+1

bi∆ti

Mi Mi+1

ni ni+1

. . . . . .

Figure 6. A simple probabilistic model

which plots cumulative usage over time. Cumulative usage∑
i ui should be monotonically non-decreasing, except from

a rare event of reset (e.g. after an engine replacement). How-
ever, the recorded usage data was non-monotonic, with only
the trend appearing to adhere to the expected behavior.

Two methods for estimating actual usage were considered: 1)
development of a probabilistic model to reconcile the missing
and inconsistent values, and 2) estimation of usage based on
replacement of consumable parts. The two approaches are
described in turn.

3.1. Probabilistic Model for Usage

MCMC is a sampling method that draws likelihood measure-
ments from simulated random data conditioned by some pre-
defined measured data. It utilizes a high dimensional search
space where certain positions (representing a set of parameter
values for the variables being estimated) have a greater like-
lihood than others. In order to search the parameter space,
MCMC generates correlated random numbers from the cur-
rent values by stepping to a new position of higher likelihood
in parameter space by use of the gradient field (or probability
density). This requires an initial guess to start the chain and
is part of the conditioning.

3.1.1. First-Order Implementation

Figure 6 shows a simple probabilistic model used here: ui and
ui+1 are successive actual usages that are unknown, whileMi

andMi+1 are the corresponding recorded measurements. The
observations are shaded, following the convention of (Bishop,
2006)). The model is constructed as

Mi ∼ N (ui, ni), (3)

so that actual usage ui, distorted by noise ni produces mea-
surements Mi. The noise was measured in hours modeled as
uniform between 0 and tmax (set to 50 to accommodate high
errors encountered in the data)

ni ∼ Uniform(0, tmax). (4)

The only assumption to model the unknown amount of usage
between two measurements was that usage is monotonically

0 1

x
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P
D
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Beta(x|α= 1, β= 4)

Figure 7. Usage factor modeled as a Beta(α, β) distribution
with parameters α = 1, β = 4.

non-decreasing. The usages were modeled as deterministic
variables

ui+1 = ui + bi∆ti, (5)

where ∆ti was a known time interval between two samples,
and bi was a positive usage factor. It was important to keep
these two factors separate rather than lumping them into a
single parameter. As two parameters, they better related to the
basic domain knowledge, allowing for time to be expressed in
days, which improved the model’s overall interpret-ability. In
practice the usage was not recorded daily and the usage factor
bi, being a small fraction of a day, was modeled as the Beta
distribution,

b ∼ Beta(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (6)

where Γ(.) is the gamma function. The parameters α and β
were empirically selected to 1 and 4, respectively, to model a
larger likelihood to values closer to 0, as shown in Figure 7.
Because of the recursive nature of Eq. 5, the first usage data
point had to be modeled separately

u1 = N (M1,M1/2). (7)

The separate treatment of the first usage point gave rise to
undesirable behavior in cases where the first point contained
unusually large error. The approach to fully address this prob-
lem is further explained in Section 3.1.2. However, because
the probabilistic model aimed to maximize the likelihood of
the entire fit it was less dependent on the initial estimate’s ac-
curacy as the number of samples increased. In addition, in
cases where physically-impossible outliers were encountered
(vehicle was used more than 24 hours per day), as evidenced
by the condition

Mi+1 −Mi

∆ti
> 1, (8)

the noise was allowed to sample beyond the (0,50) limit (refer
to the lines 30-32 in the listing provided in the Appendix).

The results of an estimation using the simple model imple-
mented in Stan are shown in Figure 8). The orange line
traces the means of the estimated distributions of usage ûi.
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Figure 8. Usage estimation example

After running the program, each measured data point had a
probability density function (PDF) assigned to it, built by the
model. Every value in the PDF represented one of the ac-
cepted samples in the Markov chain. The mean of these PDFs
was chosen to represent the estimate because it denotes the
average value of all the samples. The mode was considered
but not used due to the possibility of a value that may not
have accurately represented the best estimate to that point be-
ing the value that the stepping method hit more often. This
was one example of how the thinning and burn-in sampling
parameters were useful. Thinning reduced samples where the
stepping method got stuck, and burn-in removed earlier sam-
ples that may not have contributed to the final convergence.

While this simple form of a probabilistic network seems par-
ticularly well-suited for the problem at hand (featuring rela-
tively few data points with potentially large errors), based on
our literature search, we believe that it has not been used in
the context of the usage estimation before. In addition, the as-
signment of the probability distributions, which is critical to
model performance was described in detail. As other similar
approaches ((Bishop, 2006) shows the connections between
Kalman filters, HMMs, and other probabilistic networks), it
returns a full probability distribution for the data, the poste-
rior. This allows for a much fuller understanding of the un-
certainty of the results. A script for the Stan implementation
is provided in the Appendix.

3.1.2. Initial Value Dependence and Looping

The choice of a Beta distribution for the slope of the model
described in the previous section imposed the limits for the
cumulative usage, making it non-decreasing by design. One
limitation of this approach was that the starting point has
stronger impact than the subsequent measurements. It had
no preceding data values to step up from so it had to be es-
timated some other way. It was estimated using a normal
distribution with a user inputted standard deviation. This dis-
tribution could pick a value close to the data point or allow

Figure 9. Forward and reversed model operated on the same
data.

for variation when a bad initial value was recorded, however,
the final fit was always biased by this initial estimate. When
the first measured data point was greater than the successive
points the overall fit tended to sit atop of the values near that
data point. A good starting estimate led to a good overall fit.
The quality of fit was determined by what was known. The
only knowledge of this data was that it had to monotonically
increase to make physical sense and that not all of the data
was bad. If the estimates followed the monotonic rule and
lied close to the plausible measured data, the fit was deemed
valid. A reasonable data point was one that fell in line with
the surrounding data in an increasing fashion. When the first
data point was reasonable, the fit was reasonable. When the
first data point was unreasonable, the fit was considerably less
reasonable near that data point. Figure 9 shows two fits to
some real usage data taken from the vehicle database. The
forward fit worked from the beginning to end of the time data,
and the reverse fit worked from end to beginning. Because the
first data point was noisy, the reverse fit was a better estimate
overall as it started from a reasonable data value.The orange
line represents the average Bayesian fit evaluated from the
first data point to the last. The red dashed line represents the
average Bayesian fit evaluated from the last data point to the
first. When evaluating in this direction, because the first point
was noisy but the last point was not, the reverse fit looked
more plausible.

It was hypothesized that the bias of the initial point would
affect the final fit less when the model was run many times
forward and reverse through the data and the results were av-
eraged. The process was as follows: The first run estimated
the first point with a normal approximation and fit the rest
of the data. Then, taking the average value of the last data
point’s estimate, it started the process over again in reverse,
this time starting with the endpoint. Once the reverse direc-
tion fit was computed, the program averaged that last point
estimated (which was our starting point from the beginning)
and continued again in the forward direction, this time having
a different starting point than at first run. The only part of the
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code that needed to be changed in order to accommodate this
condition was the deterministic expression shown in Eq. (5)
which, in the reverse direction, was changed to

ui+1 = ui − bi∆ti (9)

and a feature to read the previous run’s last estimate to start
the next run. A new piece of data (boolean) which declared
the direction of fit was added as well.

The fit behaved better where surrounding data existed than
at the initial value and if the data were evaluated in the re-
verse direction (end to beginning), the estimate of the first
value was more reasonable than the normal approximation
described above. This was because the reverse direction
would end on that first value and if it were an unreasonable
value the preceding points would guide the fit better than if it
started at that value. The idea was that this pattern would con-
tinue as more loops were made forward and backwards. That
method did not show any significant decrease in bias, how-
ever, averaging the estimates of a single forward pass and a
single (independent) reverse pass did decrease the bias expe-
rienced from the first point. It is important to note for this
final method, the reverse fit was evaluated independently of
the forward fit, unlike the looping procedure.

3.1.3. Testing with Synthetic Data

In order to further test the effectiveness of the overall fit, syn-
thetic data was created so that true values could be known
for a visual comparison. The objective of this estimator was
to ultimately show the most plausible interpretation of noisy
measurements with what prior knowledge of the data we had.
Four cases were chosen to represent typical scenarios in the
data and are shown in Figure 10. The first test case, Fig-
ure 10a, was intended to get a control set and see how the
fit handled perfectly reasonable data. The crosses mark the
true (synthetic) data. The dots mark the measured (observed)
data. In this case the true data matched the measured data and
so the final estimates showed much sharper peaks in their dis-
tribution. This verified that the model performed accurately
with the most ideal case of measurements.

The second case, Figure 10b, included some noise added to
the measurements. Notice here that some of the dots are not
aligned with the crosses. The orange line, representing the
mean trace of the posterior distributions, was almost identical
to the first case. This showed that small instances of noise
could be handled as if there was no noise.

The next case, Figure 10c, introduced larger noise to the true
usage. Some measured points were above the true values and
some were below, just like the second case. In this case the
mean trace was still nearly identical to the first case, how-
ever, notice the uncertainty in the individual distributions has
widened for those noisier observations.
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Figure 10. a) Case 1: Measured data equals true data. b)
Case 2: Some noise added to measured data. c) Case 3:

Large noise added to measured data. d) Case 4: Extreme
outliers.
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Figure 11. Hypothesized relationship for usage between
maintenance events and number of replaced parts.

The fourth and final case, which introduced the effectiveness
of the conditional free variable on noise when obvious out-
liers were detected, shows how the estimator handled two ex-
treme outliers. It was not uncommon to see values like 12,345
and 99,999 in the data. Notice that in this final and extreme
case the mean trace still did not move appreciably from the
first case. The extreme outliers were basically ignored since
such a large noise value was assigned to those estimates and
the rest of the data fit just like the first case.

In practice all of these types of scenarios were prevalent in
some combination or other in the measured data. Focusing
on the mean trace between all these test cases shows the con-
sistency this model had over different occurrences of noise.
When analyzing these cases, this was the most important fac-
tor. The consistency of the fit among different noise cases in-
dicated the consistency of the model. The model consisted of
basic prior domain knowledge of how the data should behave,
and an understanding of when values are too un-realistic to be
modeled like the rest.

3.2. Replacements of Consumables

In order to supplement usage estimation, replacements of the
consumable parts were analyzed. Any ground vehicle has a
set of parts that degrade as a function of usage: tires, breaks,
etc. In military tracked vehicles some examples of consum-
able parts include sprockets, road wheels, shock absorbers,
track adjusters, support rollers, and track idler assemblies. It
was expected for a vehicle to have replacement rates propor-
tional to usage rates. Figure 11 shows a hypothesized rela-
tionship between number of replaced parts and usage incre-
ments associated with maintenance intervals.

Vehicle cost and maintenance histories were analyzed by
sub-system (i.e a collection of components categorized by
their collective purpose). Components with known use-based
degradation, such as road wheels, were analyzed individually.
Replacement frequency and failure rate differences among
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Figure 12. The two inset plots show the correlation between
change in usage and change in replacements (top) and

between cumulative usage and cumulative replacements
(bottom).

vehicles were used to test correlation between consumable
component’s maintenance and vehicle’s usage.

Maintenance orders record the part replaced as well as the
number of parts replaced. Figure 12 shows the cumulative
replacement of road wheels over time and estimated cumula-
tive usage, using the model described in Section 3. The inset
plot on the top axis in Figure 12 shows the change in usage
between maintenance over the change in number of replace-
ments.

The data for the number of replaced parts was inconsistent
over the fleet. The majority of data for these vehicles con-
tained few maintenance records. The average usage between
maintenance for the road wheel component example in Fig-
ure 12 was approximately 230 hours. The average usage
range for the part of the fleet that was analyzed (1,247 ve-
hicles) was approximately 223 hours.

Since the fleet average was less than the road wheel average it
was expected that the vehicles in this analysis contained data
with no maintenance events during the usage period. This is
illustrated in Figure 13. The histogram shows the number of
road wheel replacement across the fleet: 85% of vehicles did
not have any road wheel replacement records in the mainte-
nance data,∼9% of the vehicles have 1-2 wheel replacement,
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Figure 13. Only 17% of records for road wheels have one or
more replacements associated with them.

etc. The maintenance history of most vehicles was insuffi-
ciently long to capture the usage patterns.

Of the several consumable components, road wheels had the
most replacement data. It was expected, however, that there
be few replacements over the usage history of the vehicle.
The jagged edges of the usage estimation line in Figure 12
indicate where usage records existed because usage was esti-
mated with a probabilistic model that followed a piece-wise
linear approximation between all usage events. If there were
replacements at each of those times the vehicle would have
been under constant repair, indicating a larger underlying
problem with the vehicle. This is why the change in usage
to change in number of replacements did not correlate well.
The inset plot on the bottom axis of Figure 12 shows cumu-
lative usage over cumulative replacements. Here, the correla-
tion coefficient was 0.95 indicating these values were highly
correlated. Overall, usage was indicated by the number of
replacements when long term accumulation of data was ob-
served.

Figure 14 shows a count of the computed Pearson correla-
tion coefficients for all vehicles that had usage records and
replacements of road wheels. The average of the correla-
tion between change in usage and change in replacements,
ρ∆, was −0.07. The average of the correlation between cu-
mulative usage and cumulative replacements, ρΣ, was 0.87.
Replacement data are more important to the maintainer than
usage and so usage values were more likely to be entered in-
correctly. Replacements occurred during maintenance events
but usage readings were based on logging from the vehicle
operators and so replacements were expected to be entered
with greater care.

The vehicle shown in Figure 12 used the mean usage estima-
tion from our probabilistic model in comparison to long term
accumulation of replacements of the road wheel component.
This was done for other vehicles as well. In Figure 12 match-
ing usage and number of replacements in time is shown by

Figure 14. Pearson correlation coefficients for all vehicles
that had usage records and replacements of road wheels.

dashed lines connecting the values between the axes. These
pairs were how the inset plots were generated in that figure.

Figure 15 shows cumulative (Σ) usage versus cumulative
number of replacements for fourteen vehicles. The slopes of
these lines did not agree very well. In principle, one could
use replacements of consumables to support usage estima-
tion. There are several reasons we would see such variation
in slope in this case. The usage estimation may not have
been accurate due to bad data from the start for some vehi-
cles. The replacement data may have been incorrect as well
(seems likely for the bottom-right line that goes out to 80 re-
placements after around 100 hours of use). The operating
conditions of different vehicles may vary greatly depending
on their location too. Referring back to Figure 4, unless you
know the circumstances of usage it is hard to relate it to re-
placements. Suppose these vehicles operated under different
location-based conditions that were known to the user. The
differences in slopes attribute to different conditions. If a set
of vehicles were pre-classified by the relation between usage
and replacements then replacement data for new vehicles, that
are known to be part of a specific group, could aid in usage
estimation. Using the slope for that class of vehicle would
support likelihood estimates in the form of prior knowledge
in the Bayesian usage estimator.

4. CONCLUSION

The focus of this study was to use improved methods in es-
timating long term accumulation of data that may be incon-
sistent or missing. Usage records were analyzed from mil-
itary tracked vehicles and the approach to estimating usage
based on noisy data was split into two parts. 1) development
of a probabilistic model, and 2) estimation based on replace-
ment of related consumable parts. The first method was a
knowledge driven probabilistic model that estimated reason-
able values for non-decreasing monotonic measurements that
were inconsistent, incomplete, and sometimes missing in the
data.
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Figure 15. A comparison between hours of usage and
number of road wheel replacements for fourteen vehicles.

The results were consistent for several cases of noise on the
same data. We believe that this modeling approach, that re-
quires minimal prior knowledge, has not been used for usage
estimation. Because the ground truth was not available, we
proposed and executed methods for evaluating performance
of the model based on synthetic data in the absence of targets,
including bi-directional passing through the data. The model
was designed to estimate successive measurements and when
applied to real usage data it was realized that noisy initial val-
ues biased the results. This was reconciled using an averag-
ing method where the same data-set was sampled in a forward
and reverse direction and the results averaged. This proved to
significantly decrease the bias from a bad initial data point.

The second approach was intended to estimate usage as well
but was found to be only supplementary at best. For the road
wheel component, correlation between usage and replace-
ments of consumables was very close to 0 from the mainte-
nance to maintenance perspective, however, long term accu-
mulation of data showed high correlation. This suggests that
cumulative records of replacements of consumables related to
usage can be used to aid in the estimation of usage itself.
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APPENDIX

The goal of the appendix is to enable the reader to repro-
duce the simulations in the seleted computational environ-

ment. Rigourous comparison of the probabilistic frameworks
was out of scope of the present project. In our experi-
ments, which did not attempt to fully optimize frameworks,
Stan marginally outperformed PyMC. The slight performance
edge determined the selection. The language manual can be
found at http://mc-stan.org along with an installa-
tion guide and section on getting started. Stan has several
implementations available including RStan(Team, 2016b) for
R users, and PyStan(Team, 2016a) for Python users. PyS-
tan provides an interface to Stan, where some model code is
written in C + + and implemented in Python (Figure 16). A
C + + compiler is required to be available to Python during
installation and at run-time. We used a Linux machine to run
the probabilistic code because at the time it was most reliable.

1 usage_model = """
2 data {
3 int N; //number of observations
4 real M[N]; //observed usage of dimension N [hours]
5 real<lower=0> dt[N-1]; //delta time of dimension N

-1 [delta days]
6 int F; //forward-reverse condition
7 }
8 parameters {
9 real<lower=0,upper=1> b[N-1]; //usage factor [

usage/days]
10 real M0;
11 real<lower=0,upper=40> sigma0; //initial noise
12 real<lower=0,upper=40> sigma[N]; //noise
13 real n_outlier; //conditional noise parameter for

large outliers
14 }
15 transformed parameters {
16 real u[N]; //estimated (real) usage
17
18 u[1] <- M[1] + M0;
19 for (i in 2:N) {
20 if (F==1) {
21 u[i] <- u[i-1] + b[i-1]*dt[i-1]; //forward case
22 }
23 else if (F==0) {
24 u[i] <- u[i-1] - b[i-1]*dt[i-1]; //reverse case
25 }
26 }
27 }
28 model {
29 M0 ˜ normal(0,sigma0); //First data point
30 b ˜ uniform(0,1);
31 for (i in 2:N) {
32 if (((M[i]-M[i-1])/dt[i-1])>1) {
33 M[i] ˜ normal(u[i], n_outlier); // for clear

outliers
34 }
35 else {
36 M[i] ˜ normal(u[i], sigma[i]);
37 }
38 }
39 }
40 """
41 # Compile model
42 m = pystan.StanModel(model_code=usage_model)
43 # Run Sampler
44 fit = m.sampling(data=data, iter=10000, chains=4)

Figure 16. Stan code example with PyStan implementation
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