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ABSTRACT 

Electro-Hydraulic Servo Actuators (EHSA) is the principal 
technology used for primary flight control in new aircrafts 
and legacy platforms. The development of Prognostic and 
Health Management technologies and their application to 
EHSA systems is of great interest in both the aerospace 
industry and the air fleet operators.  

This paper presents the results of an ongoing research 
activity focused on the development of a PHM system for 
fly-by-wire primary flight EHSA. One of the key features of 
the research is the implementation of a PHM system without 
the addition of new sensors, taking advantage of sensing and 
information already available. This choice allows extending 
the PHM capability to the EHSAs of legacy platforms and 
not only to new aircrafts. The enabling technologies borrow 
from the area of Bayesian estimation theory and specifically 
particle filtering and  the information acquired from EHSA 
during pre-flight check is processed by appropriate 
algorithms in order to obtain relevant  features, detect the 
degradation and estimate the Remaining Useful Life (RUL). 
The results are evaluated through appropriate metrics in 
order to assess the performance and effectiveness of the 
implemented PHM system. 

1. INTRODUCTION 

Flight control systems and their associated flight control 
servoactuators are one of the critical aircraft systems and 
belong to the top operational disruption contributors.  
Developing effective PHM algorithms for primary flight 
control actuators that can be integrated in a health 
monitoring system for the entire aircraft flight control 

system will lead to a valuable technological advancement. 

The benefits achievable from developing an efficient health 
monitoring system able to anticipate the failures of the 
aircraft flight control system fall in two areas: 

• Improvement of the aircraft operational reliability and 
dispatchability by avoiding: 

o Aircraft on ground immobilization 

o Takeoff delays and cancellations 

o Re-routing 

o In-flight turn back 

• Reduction of direct maintenance costs by: 
o Performing maintenance operations of anticipated 

failures at an airline main base  

o Improving troubleshooting of failures 

o Reducing scheduled maintenance operations and 
rescheduling some recurring maintenance tasks  

Costs related to unscheduled maintenance operation and to 
flight disruptions resulting from unexpected failures may 
vary in a relatively large range, depending on the type of 
aircraft and of its flight control system, on the operational 
environment, on the maintenance policies and on the aircraft 
usage.  Though not easily quantifiable, these costs are at 
present a large fraction of the life cycle cost.  

• Assuming an average cost related to unexpected 
failures equal to 30% of the system total life cycle 
cost, which is a conservative underestimate, the 
development of a health management system for the 
aircraft flight controls able to reduce to half that cost 
would provide a tremendous benefit to the aircraft 
operation.   

• It is also generally accepted that the average cost for an 
aircraft downtime is equal to about US$ 10000 per 
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hour (Pohl, 2013), therefore, also a minor reduction of 
the average aircraft downtime for an aircraft fleet 
entails very large savings.  

IATA projection for global spending in 2020 for 
maintenance, repair and overhaul is US$ 65 billion 
2011).  Although the spending for flight control actuators 
will be only a fraction of that total figure, it is evident that 
the contribution gained from the introduction of an effective 
health monitoring system for aircraft flight control actuators 
will still contribute to a large cost saving for maintenance 
operations. Another large cost saving is obtained from the 
reduction of flight disruptions and delays.  A recent study 
on integrated disruption management and flight planning  
shows that suitable planning can mitigate the effects of 
flight disruptions and lead to about 6% cost s
airline (Marla, Vaaben, Barnhart, 2011). Though this study 
did not specifically refer to health monitoring systems, it 
provides an indication of the order of magnitude of the cost 
savings that can be attained by reducing flight disruptions 
and delays.  

It is therefore easy to understand how the 
Health Management (PHM) systems has found
interest in the aerospace area over the past years. 
flight control systems are an engineering area where PHM 
has found so far very limited interest, although they are one 
of the critical aircraft systems.  Some work has been 
reported on PHM for electromechanical flight control 
actuators, but almost very little or nothing for
electrohydraulic servo-actuators (EHSA) for primary fl
controls. However, although electromechanical actuators 
(EMA) for primary flight control systems are 
objectives, sensitivity to certain single point of failures that 
can lead to mechanical jams, results in a reluctance to adopt 
EMAs for flight safety critical applications
primary flight controls have so far been limited to UAVs
(Jacazio, 2008).  It should be pointed out that primary flight 
control actuators for fly-by-wire commercial 
service and for aircraft under development are almost 
invariably electrohydraulic servo-actuators; the only 
exception are some electro-hydrostatic actuators (EHA) 
used as a backup to conventional EHSAs in the flight 
control systems of Airbus A380, A350 a
G650. "Electro-hydraulic servovalves (EHSVs) are a critical 
component of EHSAs, they are made up by a large number 
of parts and can thus fail as a result of several causes. 
research work presented in this paper was therefore 
on developing a PHM system able to 
progressive degradations of EHSVs and 
developing failure.  The research activity will then continue 
addressing the faults of the hydraulic linear actuator"

Research and development of PHM systems for pr
flight controls focused mostly on EMAs due to 
interest in Unmanned Aerial Vehicle (UAV); 
EMAs have a greater probability of critical failure
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on PHM for electromechanical flight control 
very little or nothing for 
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However, although electromechanical actuators 

(EMA) for primary flight control systems are long-term 
, sensitivity to certain single point of failures that 

in a reluctance to adopt 
EMAs for flight safety critical applications. EMAs for 
primary flight controls have so far been limited to UAVs 

that primary flight 
commercial aircraft in 

service and for aircraft under development are almost 
actuators; the only 

hydrostatic actuators (EHA) 
used as a backup to conventional EHSAs in the flight 
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hydraulic servovalves (EHSVs) are a critical 

component of EHSAs, they are made up by a large number 
as a result of several causes. The 
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progressive degradations of EHSVs and alert of a 
The research activity will then continue 

addressing the faults of the hydraulic linear actuator" 

PHM systems for primary 
due to the growing 

Aerial Vehicle (UAV); moreover, the 
critical failure than 

EHSAs. Byington, Watson and Edwards (2004) presented 
one of the few research papers focused on the hydraulic 
actuators for aviation. The authors examine
of developing a PHM system for the F/A
Electro-Hydraulic Servo-Valves (EHSVs). 
approach developed uses neural network error
techniques, along with fuzzy logic classifiers, Kalman filte
state predictors, and feature fusion strat
work was presented by NASA 
(Narasimhan, Roychoudhury, Balaban &
The paper proposed a combined model
driven diagnosis methodology that allows
the common EMAs fault modes. Brown
2009b) have shown the possibility of exploiting
filter for the diagnostics and prognostics

The major objective of this contribution is to develop an 
innovative fault diagnosis and failure prognosis framework 
for critical aircraft components that integrates effectively
and mathematically rigorous and validated signal 
processing, feature extraction, diagnostic and prognostic 
algorithms with novel uncertainty representation and 
management tools in a platform that is computationally 
efficient and ready to be transitioned on

2. EHSA CONFIGURATION 

The EHSA used in this research is a typica
primary flight control actuator.  
hydraulic and the control parts. The first
electrohydraulic servo-valve and a linear hydraulic actuator
The servo-valve is of the flapper-nozzle type
up of two stages with the first stage 
command as the input and using the 
move the flapper thus creating a pressure drop
the second stage spool, which controls the flow to the 
hydraulic actuator. The control structure uses
linear sensor as the feedback sensor
control. The reference system for the EHSA is shown in
Figure 1. In order to ensure redundancy of the drives and, 
consequently, greater safety, two actuators acting on the 
same flight control surface are employed with 
EHSAs operating in an active-active, or active
mode. 

Figure 1. EHSA reference system
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2.1. EHSA signals 

The typical structure of an EHSA for legacy aircraft allows 
for the acquisition of three kinds of information: 

• Position command: corresponding to the position 
request processed by the flight control computer.  

• Real position: information acquired by means of 
the LVDT and used to close the control position 
loop. 

• Servo-valve current: generated by the controller 
coincident with the compensated error. It is used to 
control the valve.  

2.2. Servo-valve degradation 

The types of faults that most commonly occur in the EHSAs 
are well known, although no consolidated models for such 
failure modes exist which can be taken as a basis for 
predicting their fault progression.  Although these fault 
growth models are not yet fully validated, their physical 
based approach ensures that the fault growth pattern is 
described correctly allowing for a virtual testing of the 
efficacy of health monitoring algorithms. 

Possible degradation modes include: 

• Reduction of the torque of the first stage torque 
motor. This can be the result of a shorting of 
adjacent coils of the torque motor due to the 
presence of metallic debris, or to a degradation of 
the magnetic properties of the materials. A 
progressively slower response of the servo-valve is 
obtained. 

• Contamination of the first stage filter and nozzles. 
As dirt and debris accumulate in the first stage 
filter or in the nozzles, their hydraulic resistance 
increases which, in the end, leads to a slower 
response of the servo-valve. 

• Stiffness variation of internal feedback spring, 
which is generally caused by yield in strength due 
to excessive loads or to normal aging of the 
component; involves hysteresis phenomena and 
instability. 

• Increase of the backlash at the mechanical interface 
between the internal feedback spring and spool. 
This is the result of a wear due to the relative 
movement between these two parts giving rise to 
an increasing hysteresis in the servo-valve 
response, which leads to an instability. 

• Variation of the friction force between spool and 
sleeve. This is due to a silting effect associated 
either with debris entrained by the hydraulic fluid 
or to the decay of the hydraulic fluid additives 
which tend to polymerize when the fluid is 
subjected to large shear stresses. 

• Increase of the radial clearance between spool and 
sleeve and change of the shape of the corners of the 

spool lands due to wear between these two moving 
parts. 

In the absence of consolidated degradation models, 
progression of a degradation provisionally assumed to be a 
function of either usage time, or amplitude / frequency of 
commands, or both. In the study of the occlusion of the first 
stage filter it is considered to be a function of the square of 
flight hours.  

3. PROGNOSTICS AND HEALTH MANAGEMENT 

We introduce an integrated framework for fault diagnosis 
and failure prognosis that relies on systems engineering 
principles and takes advantage of physics of failure models, 
Bayesian estimation methods and measurements acquired 
through seeded fault testing and/or on-board the aircraft. 
The proposed Bayesian estimation framework for diagnosis 
and prognosis for nonlinear, non-Gaussian systems begins 
with a systems engineering process to identify critical 
components and their failure models, sensing and 
monitoring requirements and processing algorithms.  
Fundamental to this approach is the development of 
physics-based failure or fatigue models and the optimum 
selection and extraction of features or Condition Indicators 
(CI’s) from raw data that form the characteristic signatures 
of specific fault modes. The latter are selected based on such 
criteria as sensitivity to particular fault modes and their 
correlation to ground truth data.  The proposed framework 
employs a nonlinear state-space model of the plant, i.e. 
critical aircraft component, with unknown time-varying 
parameters and a Bayesian estimation algorithm called 
particle filtering to estimate the probability density function 
(PDF) of the state in real time (Orchard & Vachtsevanos, 
2009). The state PDF is used to predict the evolution in time 
of the fault indicator, obtaining as a result the PDF of the 
RUL for the faulty component/system. A critical fault is 
detected and identified by calling on the particle filter-based 
module that expresses the fault growth dynamics. Prognosis 
has been called the Achilles’ heel of CBM due to major 
challenges arising from the inherent uncertainty in 
prediction. Prognosis may be understood as the result of the 
procedure where long-term (multi-step) predictions - 
describing the evolution in time of a fault indicator – are 
generated with the purpose of estimating the RUL of a 
failing component.  The same particle filtering framework 
and nonlinear state model suggested above will be used to 
estimate the RUL (Roemer, Byington, Kacprszynski, 
Vachtsevanos & Goebel, 2011) 

Particle filtering has a direct application in the arena of fault 
detection and identification (FDI) as well as prediction of 
the time to failure of a critical component. Indeed, once the 
current state of the system is known, it is natural to 
implement FDI procedures by comparing the process 
behavior with patterns regarding normal or faulty operating 
conditions. (Vachtsevanos, Lewis, Romer, Hess & Wu, 
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2006; Arulampalam, Maskell, Gordon & Clapp, 2002). 
Similarly, particle filtering allows for the accurate 
prediction of the remaining useful life accounting robustly 
for uncertainty issues. 

A fault diagnosis procedure involves the tasks of fault 
detection and identification (assessment of the severity of 
the fault). In this sense, the proposed particle-filter-based 
diagnosis framework aims to accomplish these tasks, under 
general assumptions of non-Gaussian noise structures and 
nonlinearities in process dynamic models, using a reduced 
particle population to represent the state pdf (Orchard, 
Kacprzynski, Goebel, Saha & Vachtsevanos, 2008). A 
compromise between model-based and data-driven 
techniques is accomplished by the use of a particle filter-
based module built upon the nonlinear dynamic state model: 

 

����� + 1� = 
�������, �����											���� + 1� = 
�������, �����, �����
���� = ℎ�������, �����, �����									
�. (1) 

 
where fb, ft and ht are non-linear mappings, xd(t) is a 
collection of Boolean states associated with the presence of 
a particular operating condition in the system (normal 
operation, fault condition) xc(t) is a set of continuous-valued 
states that describe the evolution of the system given those 
operating conditions, fp(t) is a feature measurement , ω(t) 
and v(t) are non-Gaussian distributions that characterize the 
process and feature noise signals respectively. For 
simplicity, n(t) may be assumed to be zero-mean i.i.d. 
uniform white noise. At any given instant of time, this 
framework provides an estimate of the probability masses 
associated with each fault mode, as well as a pdf estimate 
for meaningful physical variables in the system. Once this 
information is available within the FDI module, it is 
conveniently processed to generate proper fault alarms and 
to inform about the statistical confidence of the detection 
routine. Furthermore, pdf estimates for the system 
continuous-valued states (computed at the moment of fault 
detection) may be used as initial conditions in failure 
prognostic routines, giving an excellent insight about the 
inherent uncertainty in the prediction problem. As a result, a 
swift transition between the two modules (FDI and 
prognosis) may be performed, and reliable prognosis can be 
achieved within a few cycles of operation after the fault is 
declared. This characteristic is, in fact, one of the main 
advantages of the proposed particle-filter-based diagnosis 
framework.  

4. PHM STRATEGY 

One of the main difficulties for developing a prognostic 
system for EHSAs is the lack of knowledge regarding the 
loads acting on the wing surface and corresponding 
commands. An interesting solution,  proposed from Jacazio, 

Dalla Vedova, Maggiore, Sorli (2010), Mornacchi, Vignolo 
(2014) and Jacazio, Mornacchi, Sorli (2015) , is to exploit 
the pre-flight time to carry out the prognostic analysis 
integrating this new procedure with the pre-flight checks.  

This solution has two interesting advantages: the first is the 
possibility of stimulating the EHSA with any kind of 
command, offering the possibility of developing commands 
that maximize the effect of degradation on the extracted 
features while the second is related to the loads acting on the 
wing surface.  With the aircraft on the ground, the 
aerodynamic force depends only on atmospheric wind; 
therefore, it is small and does not affect the response of the 
servo actuator. 

The strategy implemented in this work provides the 
stimulus, during the preflight operations, of the EHSA with 
a  ramp command with 33 mm/s ratio and a max amplitude 
equal to 50% of half-stroke of  the actuator. 

4.1. Operational Scenario 

The behavior of an actuator is strongly dependent on 
external conditions and the temperature of the hydraulic 
fluid. In order to simulate the EHSA in conditions as close 
as possible to those encountered in flight, a possible 
operating scenario has been suggested. This includes a 
series of flights within the European network and, for every 
situation of pre-flight conditions identified, starting from 
real data, the oil temperature and the average velocity of the 
atmospheric wind are accounted. The data are shown in the 
graph of Figure 2. 

 

Figure 2. Example of oil temperature and wind speed 

5. FEATURE EXTRACTION 

Feature or Condition Indicator (Cis) selection and extraction 
constitute the cornerstone for accurate and reliable fault 
diagnosis. The classical image recognition and signal-
processing paradigm of data→information→knowledge 
becomes most relevant and takes central stage in the fault 
diagnosis case, particularly since such operations must be 
performed on-line in a real-time environment.  

Fault diagnosis depends mainly on extracting a set of 
features from sensor data that can distinguish between fault 
classes of interest, detect and isolate a particular fault at its 
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early initiation stages. The remainder of this section 
evaluates a feature derived from the Hilbert transform to 
identify asymmetries because of turn-to-turn winding 
insulation faults. 

A significant step in the development of robust and accurate 
PHM algorithms involves the extraction and selection of 
appropriate features or condition indicators from raw data.  
In our case, features are extracted  using only the actuator 
position data and the servo-valve current.  The analysis of 
the data obtained from the simulations has identified the 
first stage filter occlusion as a key indicator affecting two 
observable quantities. 

Occlusion of the filter of the first stage of the servo valve 
leads to a lower response of the servo-command causing an 
increase of the time required for the actuator to reach the 

commanded position, as shown in   
Figure 3, with a consequent growth of the error between the 

command and the real position. The increase of the error 
leads to enhancement of the servo-valve current generated 

by the controller (Figure 4). Until the current of servo-valve 
is below its saturation level, the controller can compensate 
for the growth of degradation thus limiting its effects on the 
system. After reaching the saturation threshold, the growth 
of the position error no longer results in an increase of the 
control current and, therefore, the system is no longer able 

to compensate for the growth of degradation. 

   
Figure 3. Influence of degradation on EHSA position 

 
Figure 4. Influence of degradation on current 

The data analysis has led to the definition of four different 
features that can be extracted by combining the acquired 
information. The features identified were then evaluated by 
appropriate metrics and one was selected and used in the 
prognostic algorithms. The features extracted from the data 
include: 

• Mean error between real position and command; 
this is evaluated in the time range [0.15 0.35] s in 
order not to consider the initial and the end portion 
of the response. The feature is calculated as shown 
in following equation, where xc is the command 
and xr is the real position ��������� = �����|����� − �!���|�  

• Mean speed, defined as the average speed of the 
actuator in the time range [0.15 0.35]. 

• The correlation coefficient between the position 
error and the current. In nominal conditions, there 
is a linear correlation between the current 
generated by the controller and the position error; 
this is due to the structure of the control logic, 
which provides a proportional part prevailing over 
the integral part. The presence of a degradation due 
to the saturation of the current and, consequently, 
to an increase of the error.  

• Current fall time, defined as the time required for 
the current to return to a value less than 5% of its 
maximum value.  

The values of the features functions of the occlusion of 
the servo-valve’s first stage filter, as shown in Figure 5. 

  
Figure 5. Features function of degradation 

5.1. Feature performance 

The features were evaluated by means of appropriate 
metrics, which lead to the definition and utility of those 
features that more accurately represent the state of the 
system. The metrics are: 

• Accuracy measure: defined as the linear correlation 
between the occlusion of the first stage filter and 
the feature. 
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• Precision measure: the percent mean deviation of 
the feature with respect to the interpolation line 
used to describe the feature as a 
degradation: 

"�#��� = ∑|��% − �&'�/�&'|� ∗ 100 

Where: x is the real value, x̃ is the
value and n is the sample number. 

• Moving correlation: defined as the linear 
correlation between the degradation and t
inside a moving window. The window size is 100 
points with 99 points of overlap. 

5.2. Feature selection 

The choice of which feature should be used in prognostic 
algorithms was based on two main considerations
metrics and previous (historical) knowledge.
shown in Table 1 and Figure 6, exhibit an acceptable 
average error and are chosen for further processing.
At an operational level, the average error 
best feature, since mean error is strictly related to the nature 
of the EHSAs. An increase of the average error between the 
actual position and the commanded one is easily linked 
degradation of the system. Other features like the 
file time and mean rod speed are also physically
the behavior of the actuator but were not included in the 
targeted set. 

Table 1: Features metrics 
Feature Correlation 

Mean error 0.979 

Mean speed -0.972 

Corr. error/current -0.945 

Current fall time 0.949 

  

Figure 6. Moving correlation coefficient
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6. ACTUATOR MATHEMATICAL MODEL

The mathematical model, implemented in Matlab
is based on physical principles, and it is 
different blocks following the composition of
allowing for rapid reconfiguration of the model 
components have changed.  

 

Figure 7. Scheme of mathematical model
 

The functional diagram of the model
where inputs and outputs of the simulation
highlighted with the latter coincid
available on the EHSA. The EHSA degradation that can be 
addressed by the virtual hardware include:

• EHSV feedback spring degradation (partial 
yielding, backlash increase)

• Increase of radial clearance between EHSV spool 
and sleeve 

• EHSV spool friction increase
• Torque motor degradation 
• Progressive clogging of an EHSV nozzle
• Contamination of the EHSV inlet filter
• Increase of the friction of the actuator spherical 

bearing 
• Actuator seals damage 
• Change of sensitivity of position sensor

The servo-valve torque motor is modelled using the Urata 
(2007a) magnetic circuit shown in 
proposed equations is possible to express
generated as a function of the magnetic flux density of each 
air-gap. 

+ 	 ,-./41- 23% 								�4 	 1,2,3,4� 
where B is the flux density in the air
between the left and right pole, Ag is the cross
of air-gap, µa is the permeability of air. 

The model also takes into account the 
air-gap thickness in servo valve torque motors, 
achieved by expressing the reluctance of the air
function of air-gap thickness 
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The mathematical model, implemented in Matlab-Simulink, 
is based on physical principles, and it is structured in 

the composition of the EHSA, 
reconfiguration of the model when 

 

Scheme of mathematical model 

of the model is shown in Figure 7, 
of the simulation model are 
coinciding with the signals 

The EHSA degradation that can be 
addressed by the virtual hardware include: 

EHSV feedback spring degradation (partial 
yielding, backlash increase) 
Increase of radial clearance between EHSV spool 

friction increase 
 

Progressive clogging of an EHSV nozzle 
Contamination of the EHSV inlet filter 
Increase of the friction of the actuator spherical 

Change of sensitivity of position sensor 

torque motor is modelled using the Urata 
circuit shown in Figure 8. Applying the 

is possible to express the torque 
as a function of the magnetic flux density of each 

 (2) 

is the flux density in the air-gap, La is the distance 
is the cross-sectional area 

is the permeability of air.  

account the influence of unequal 
gap thickness in servo valve torque motors, this is 

by expressing the reluctance of the air-gap as 

	 1,2,3,4� (3) 
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Figure 8. Magnetic torque motor circuit

In Eq. 3 l0 is the nominal thickness and xarm

position and H,W,G are the coefficients
express the misalignment of the armature, signs
the air-gap considered, for a more details see Urata (2007b).

The torque obtained from Eq. 2 combined with the dynamic 
equations of the flapper. The position of the
variation of the flow from the two nozzles
amplifier, and a consequent change in the
chambers placed at the ends of the spool. In the 
relationship between the position of the
pressures at the ends of the spool is modeling diversity
the following equations  

?"@ 	 =A@ ∗ ��B  =C@�D�"E 	 =AE ∗ ��B  =CE�D�� 
where PA and PB are the pressures in the chambers, 
GPB are pressure gains and GQA and GQB

Varying the value of the gains is possible to simulate
contamination of the first stage filter or occlusion of one of 
the two nozzles. 

The pressures determined by the equation (4)
dynamic equation of the spool in order to estimate the 
opening of the flow ports. The equations that describe
kinematic system take into account the influence of the 
feedback spring force, coulomb and viscous friction and 
structural stiffness and damping. Furthermore, each 
parameter can be modified in order to simulate the 
degradation of the components.  

The resulting servo-valve control flows, for each port, from 
the difference of the contributions from the supply and the 
return, the mathematical model calculates
contribution by exploiting the electrical similitude. Each 
port is represented as a circuit composed of two
resistances placed in series RC the laminar resistance and 
the turbulence resistance.  

FG
H
GI7J 	 121K%L��8  �D�2.5 ∗ OD�DP 				
��	�8 Q �D
7J 	 0																															
��	�8 R �D
7@ 	 SK%LTU2VWU.U																																									

� 
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. Magnetic torque motor circuit 

arm is the armature 
position and H,W,G are the coefficients that allow to 

the misalignment of the armature, signs depend on 
see Urata (2007b).   

with the dynamic 
The position of the flapper causes a 

nozzles of hydraulic 
change in the pressure of the 

spool. In the model the 
the position of the flapper and 

modeling diversity with 

� (4) 

pressures in the chambers, GPA and 
QB are flow gains. 

is possible to simulate 
or occlusion of one of 

equation (4) are used in the 
in order to estimate the 

equations that describe the 
the influence of the 

feedback spring force, coulomb and viscous friction and 
structural stiffness and damping. Furthermore, each 
parameter can be modified in order to simulate the 

valve control flows, for each port, from 
from the supply and the 

calculates the individual 
the electrical similitude. Each 

composed of two variable 
the laminar resistance and RA 

� (5) 

where ol is the overlap, hs is the spool radial gap and 
width of servo valve port. A is the area of the 
port. ρoil and µoil are density and
respectively. Q is the flow passing through
is the discharge coefficient function of 
of the ratio between corner radius and port opening.

Using the value of the resistance, the
flow from each port with the equation (6

T 	  7J  X7JU  47@ ∗ Δ"27@ ∗ Z[�
where ∆P is the pressure drop betwe

A 3-DOF model describes the hydraulic linear actuator
(Figure 9): the first two describe the 
position, and the last represents the deformation of the 
attachment point between the actuator and the fixed 
structure. The actuator coulomb friction is a function of the 
dynamic condition of the rod and of the geometrical and 
physical data of the seal as well as t
actuator chambers (Martini, L. J. 1984).

Figure 9. Actuator mathematical model
 
The mathematical model allows simulating
load acting on the wing surface, comprised 
four components: 

• Airplane velocity 
• Atmospheric wind, obtained by a  normally 

distributed random number
• A random number generator determines wind gust, 

whose amplitude and duration
random pattern. 

• Turbulence, implemented using the Dryden model
(Yeager, 2008). 

Oil properties, such density, viscosity and bulk modulus, 
computed using a set of equations that are
temperature. 

A merit of the virtual hardware
representation of each EHSA component,
change of parameters and th
corresponding changes of the EHSA
allowing the assessment of the effects
degradations. 

5 

7 

is the spool radial gap and ws is 
is the area of the servo valve 

are density and absolute viscosity, 
passing through the port and Cd 

is the discharge coefficient function of Reynold number and 
the ratio between corner radius and port opening.  

of the resistance, the model estimates the 
the equation (6) 

Z[��Δ"� (6) 

between the port. 

the hydraulic linear actuator 
: the first two describe the rod, the surface 

and the last represents the deformation of the 
attachment point between the actuator and the fixed 
structure. The actuator coulomb friction is a function of the 
dynamic condition of the rod and of the geometrical and 
physical data of the seal as well as the pressures in the 
actuator chambers (Martini, L. J. 1984). 

 

Actuator mathematical model 

simulating the aerodynamic 
wing surface, comprised of the sum of 

pheric wind, obtained by a  normally 
distributed random number 
A random number generator determines wind gust, 
whose amplitude and duration. Gusts occur in a 

Turbulence, implemented using the Dryden model 

h density, viscosity and bulk modulus, are 
equations that are functions of oil 

virtual hardware is a detailed physical 
of each EHSA component, enabling the rapid 

the evaluation of the 
the EHSA performance, thus 

allowing the assessment of the effects of single and multiple 
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6.1. Validation 

The model validation was carried out using data acquired 
through experimental testing and includes frequency 
responses of the EHSA and system responses to different 
stimuli. As shown by the example of Figure 10, the response 
of the mathematical model to a 2 Hz sinusoidal command, 
output of the model is very close to the actual behavior, 
concerning both the servo-valve and the actuator. The 
validation was carried out only for the hydraulic servo-
system in nominal conditions. 

 

Figure 10. EHSA mathematical model validation 

7. DEGRADATION DETECTION 

In the paper two different methodologies to detect the 
degradation; the first is a data-driven approach based on the 
data and the features extracted from the data while the 
second uses the particle filter in order to estimate the state of 
the system and identify the presence of degradation. In both 
approaches, the presence of the degradation is detected by 
comparing the curve of the feature in nominal conditions 
(baseline) with that obtained at the observation time.  

7.1. Diagnostic performance requirement 

Customer specifications are translated into acceptable 
margins for the type I error and type II errors in the 
detection routine: 

• False alarm rate: defined as the probability of a 
false alarm. It coincides with type I error and equal 
to 5% 

• Confidence: coincides with 100-Type II error 
[%]and it expresses the level of confidence with 
which a degradation is detected. This work is set to 
95%. 

The algorithm itself will indicate when the confidence level, 
define as 100-Type II error [%], has increased to the desired 
level. 

7.2. Data driven approach 

The data-driven approach takes advantage of the data 
acquired during each stage of pre-flight. The histogram of 
the feature distribution that approximates the pdf curve is  

realized by using a moving window of 50 acquisitions with 
an overlap of 49. The baseline is achieved with 50 
acquisitions made on the actuator in nominal conditions.  

Figure 11 shows an example of degradation detection 
occurring after 698 flight hours and in the presence of an 
occlusion of 19% with an accuracy of 97%. 

Figure 11. Detection data-driven 

7.3. Particle filter approach 

This approach exploits the particle filter framework to 
estimate the probability distribution of the extracted feature 
at each time instant for degradation detection purposes. 

Applying the particle filter the system equations reduce to 
the form of Equation 7 allowing to estimate the occlusion of 
the first stage filter (coincident with continuous-valued 
states xc) and the pdf curve of the feature mean error. 
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(7) 

In equation 7: fb, fc and ht are non-linear mappings, xd,1 and 
xd,2 are Boolean states that indicate normal and faulty 
conditions, respectively, xc(t) is a set of continuous-valued 
states that describe the evolution of the degradation those 
operating conditions, dt is the interval between t and t+1, h 
is delta for numerical derivative and ω(t) is noise describe 
like a normal distribution with zero mean. v(t) v(t) is a 
normal distribution noise with mean equal to zero and sigma 
equal to the accuracy of the acquisition system, estimated as 
the sum of the position transducer error, position transducer 
demodulator error and A/D converter error. The initial 
conditions of the equation system (Eq. 7) are xc=0 , xd,1=1 
and  xd,2(0)=0. 

The non-linear mappings fc and ht are functions that express 
the occlusion of the filter of the servo valve as a function of 
flight hours and the feature as a function of degradation, 
respectively. The equations are obtained using a symbolic 
regression tool, which starts with a set of data to identify the 
best fitting approximation. The selected functions for both 
cases offer the best compromise between accuracy of fitting 
and simplicity of the model, reducing the calculation time of 
the implemented algorithms.  

The function fc obtained using the symbolic regression is: 

����� 	 � + \ ∗ �U + ] ∗ �P + W ∗ �^ (8) 

Where a,b,c,d are time-invariant coefficient and t is the 
flight hours. Figure 12 shows the comparison between the 
data and fitting curve, Table 2 shows the parameters related 
to the accuracy of the fitting. 

 
Figure 12. Occlusion model 

Table 2: Occlusion model accuracy 
R2 0.99993 
Correlation coefficient 0.99996 
Mean squared error 0.0436 
Mean absolute error 0.1725 

The function that represents ht, expresses the feature as a 
function of the occlusion of the filter: 
����� = � + 
 ∗ ��U��� + [ ∗ ��P��� (9) 

Where e,f,g are time-invariant coefficient. 

The results of symbolic regression are reported in Figure 3 
and in Table 3 where the parameters related to the accuracy 
of the fitting are shown. 

Table 3: Feature model accuracy 
R2 0.99834 
Correlation coefficient 0.99928 
Mean squared error 0.0022 
Mean absolute error 0.0319 

 

 

Figure 13. Feature model 
 
The algorithm begins the detection process by defining the 
baseline, which is obtained by an estimate of the pdf of the 
features in the absence of degradation using the equation 
(7). The algorithm starts then from the initial condition of 
the filter estimate for each time instant and the new feature 
pdf curve is computed and compared with the baseline in 
order to identify the presence of degradation. 

An example of identification of the degradation, shown in  
Figure 14, occurs after 680 flight hours and in the presence 
of an occlusion of 17% with an accuracy of 95.2%. 

7.4. Results 

The detection algorithms were tested using ten simulated 
responses of the EHSA. The simulations were carried out by 
injecting diverse operational scenarios and different travel 
patterns within the European network; the EHSA behavior 
has been simulated with different environmental conditions 
and temperature profiles of the hydraulic fluid variables. 
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Figure 64. Detection particle filter 

 
The average time to detection is 428 flight hours, which 
corresponds to an average occlusion equal to 19%. 

The algorithm based on the particle filter exhibited better 
performance; it was able to identify the degradation in all 
conditions. Even the average time to detection is 
significantly lower; it is approximately 400 flight hours, 
coincident with about 16% of filter occlusion. 

8. PROGNOSTICS 

Prognosis is understood as the generation of long-term 
predictions describing the evolution in time of a particular 
signal of interest or fault indicator. In the work presented in 
this paper, predictions are based on an estimate of the 
evolution of the features’ mean error. Its evolution is 
predicted using the particle filter presented previously, in 
particular the system of equations (7). The approach 
employs the previous state estimate to generate the a priori 
state pdf estimate for the next time instant. 
We define by td the instant at which fault  detection occurs, 
the particle filter then uses the pdf estimates for the system 
continuous-valued states xc(td), computed at the moment of 
fault detection, as initial conditions for the failure prognostic 
routines.  
By using the state equation to represent the evolution of the 
fault dimension in time (Eq. 3), it is possible to generate a 
long-term prediction for the state pdf, in the absence of new 

measurements, then use the predicted states xc to estimate 
the resulting evolution of the feature. 
The algorithm terminates the prediction when the estimated 
feature pdf for a given point in time completely surpasses 
the set threshold. 
The limit, beyond which the component is considered failed, 
and thus needs to be replaced, has been estimated to be 
equal to a mean error of 4 mm. 
Figure 15 shows example results of the RUL estimation; the 
end of life (EOL) of EHSA is 986 flight hours, which 
corresponds to a remaining useful life, defined as 
RUL=EOL-td, equal to 313 flight hours. 

 
Figure 15. RUL prediction 

8.1. Performance metrics 

The performance of the prognostic algorithm was evaluated 
using the metrics proposed by Saxena, Celaya, Balaban, 
Gobel, Saha B, Saha S, and Schwabacher (2008). In 
particular, the following metrics were used: 

• Prognostic horizon (H(i)): defined as the difference 
between the current time index i and the end of 
prediction (EOP) utilizing data accumulated up to 
the index i, provided the prediction meets desired 
specification. 
;�4� = �_" − 4 

• α-λ performance: which allows to verify that the 
prediction to a generic λ instant has an accuracy α. 
�1 − `� ∗ ���� ≤ ����� ≤ �1 + `� ∗ ���� 
Where rp is the predicted RUL at time t, r is the  
real RUL, α is the accuracy and t is defined as 
� = " + a��_, − "� 
Where P is the first prediction time instant and λ is 
window modifier. 
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• Relative Accuracy (RA): relative prediction 
accuracy at a specific time instance. Perfect score 
is RA=1. 

7.��� = 1 − b���� − �����b����  

Where rp is the predicted RUL at time t, r is the 
real RUL and t is defined as 
� = " + a��_, − "� 
Where P is the first prediction time instant and λ is 
window modifier. 

• Cumulative Relative Accuracy (CRA): normalized 
sum of the relative prediction accuracies. Perfect 
score is CRA=1. 

V7. = 1
�_, − " + 127.���

cde

�f�
 

8.2. Results 

The prognostic algorithm has shown good results with all 
ten data sets used; in all cases, the metrics demonstrated the 
robustness and accuracy of the algorithms. The mean 
prognostic horizon of the algorithm is equal to 292 flight 
hours. Example results for the metric α-λ, shown in   
Figure , demonstrate the accuracy of the algorithm in the 
estimation of the RUL, with the estimated value always 
within the limits of 20% for all data sets. 

 

Figure 16. α-λ performance 
 
Similarly, the RA and CRA metrics have demonstrated the 
accuracy of the algorithm in estimating the useful life; for 
all the data sets the 95% of the RA value is inside the range      
0.98 ÷ 0.88, the minimum value is equal to 0.85.  Figure 17 
exhibits the trend of the metric in the case of a single data 
set. The average value of CRA, for the ten data sets, is equal 
to 0.943. The best CRA is 0.948 while the worst is 0.941.  

 
Figure17. Relative accuracy (RA) 

9. CONCLUSIONS 

This paper presented a particle-filter based fault detector 
capable of detecting the occurrence of a major fault mode in 
its incipient stages for a safety critical aircraft actuation 
system. Furthermore, the same basic estimation method was 
adopted for prediction of the remaining useful life of the 
actuator. An overview of a generic PHM architecture was 
presented and applied to a particular EHSA fault mode 
based on a FMECA study. The primary fault mode was 
modeled using physics-of-failure mechanisms indicating the 
primary failure effect. A feature was derived using statistical 
analysis to quantify the primary failure effect. Then, 
simulation data were acquired to validate the model.  
Although a specific system, an EHSA, was selected as the 
test-platform with a specific fault mode, the overall PHM 
architecture can be applied to an entire range of systems and 
application domains. In fact, similar techniques, which 
allow for early fault detection with acceptable performance 
in the presence of faults, are being developed for a wide 
variety of system actuators in both manned and unmanned 
air vehicles. Therefore, the concept of using system health 
information (diagnosis and prognosis) is at the forefront of 
modern space and avionics applications requiring 
increasingly sophisticated diagnostic and prognostic 
systems that are robust, reliable, and relatively inexpensive.  
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