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ABSTRACT

Traditional fault diagnosis and prognosis (FDP) approaches
are based on Riemann sampling (RS), in which samples are
taken and algorithms are executed in a periodic time inter-
val. With the increase of system complexity, the real-time
implementation of this Riemann sampling-based FDP (RS-
FDP) becomes a bottleneck, especially for distributed appli-
cations. To overcome this problem, a Lebesgue sampling-
based FDP (LS-FDP) is proposed. LS-FDP takes samples on
the fault dimension axis and provides a need-based diagnos-
tic philosophy in which the algorithm is executed only when
necessary. In previous Lebesgue sampling-based FDP, the
Lebesgue length is a constant. To accommodate the change
of fault dynamics, it is desirable to execute FDP algorithm
more frequently when the fault growth is fast while less fre-
quently when fault growth is slow. This requires to change
the Lebesgue length adaptively. The goal of this paper is to
deliver an improved LS-FDP method with varying Lebesgue
length, which enables the FDP to be executed according to
needs. The design and implementation of varying Lebesgue
length LS-FDP based on a particle filtering algorithm are il-
lustrated with experimental results on Li-ion batteries to ver-
ify the performances of the proposed approach. The experi-
mental results show that the new varying LS-FDP is accurate
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and time-efficient on long term prognosis and also keeps a
closer monitoring on the fast increase of fault size.

1. INTRODUCTION

The utilization of embedded systems are increasing in mod-
ern vehicle and other complex system design. There are more
than 70 distributed microcontrollers (also known as electronic
control units-ECUs) in one high-end car (Pattipati, Wang,
Zhang, Howell, & Salman, 2011). The ECUs in modern cars
perform variety of functions such as stability control, cruise
control, oil and coolant monitoring, energy-efficient propul-
sion, turbo on-and-off, navigation with real-time traffic, and
even autonomous driving. To ensure these functions, diagno-
sis and prognosis are needed to monitor and predict the health
condition of safety critical components, such as engine, bat-
tery, and transmission.

With the increase of components and subsystems in a com-
plex system, more and more diagnostic and prognostic al-
gorithms are deployed on local processors and embedded
systems to alleviate the requirements on the communication
bandwidth, power, and computation, thus to improve the re-
liability of the whole system (Schwabacher & Goebel, 2007;
Zhang et al., 2011; Vachtsevanos, Lewis, Roemer, Hess, &
Wu, 2006). However, these local processors and embedded
systems have very limited computational resources. It is dif-
ficult or even impossible for traditional fault diagnosis and
prognosis (FDP) algorithms to be deployed.

To overcome this bottleneck that prevents the distributed
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FDP in complex systems, Lebesgue sampling-based FDP
(LS-FDP) algorithms are developed (Zhang & Wang, 2014),
in which a novel FDP philosophy is employed on an “as-
needed” basis. It can efficiently reduce the computational
cost compared with the traditional RS-FDP. Different from
RS-FDP, LS-FDP divides the state axis by a number of pre-
defined states (also called Lebesgue states). The FDP will be
triggered when the feature value changes from one Lebesgue
state to another, or an event happens. After the fault is de-
tected, the prognosis is executed to estimate a distribution
of operating time for the fault state reaching each Lebesgue
state.

With the characteristic of “execute only when necessary” the
computation demands are significantly reduced by eliminat-
ing unnecessary computation. When the fault growth is slow,
the FDP is executed in a low frequency. While when the fault
growth is fast, the FDP is executed more frequently. In previ-
ous LS-FDP, the Lebesgue length is constant and fixed, this is
not an optimal solution for most fault dynamics that the fault
growth is nonlinear. To accommodate the non-linearity of
faulty dynamics, it is desirable to adjust the Lebesgue length
adaptively and optimally.

Since the Lebesgue states in LS-FDP are selected to ensure
the performance for the fastest fault growth scenario, the LS-
FDP algorithm can be executed more frequently than neces-
sary when the fault growth is slow. This results in significant
over-provisioning of the real-time system hardware. In prac-
tice, the system may have multiple fault modes, and different
faults have different growth speeds. The computational re-
sources can be dynamically distributed among different FDPs
to optimize the performance of microcontroller.

To achieve this goal, the fault growth speed estimated
from previous Lebesgue states is used to optimize current
Lebesgue state length, from which a new set of Lebesgue
states is achieved. Compared with the initial Lebesgue
state lengths, the new Lebesgue state lengths are shrunk or
stretched, and is re-adjusted every time when prognosis is ex-
ecuted. The prognosis algorithm then predicts the distribu-
tions of operating time on these updated Lebesgue states.

The paper is organized as follows: Section 2 provides an
overview of the framework of varying Lebesgue length sam-
pling FDP (VLS-FDP). Section 3 develops a particle filtering
based VLS-FDP method. A case study based on lithium ion
battery is presented to demonstrate the advantages of VLS-
FDP in Section 4. Conclusions and future research topics are
given in Section 5.

2. VLS-FDP

2.1. Fault Growth Modeling

Assume that the fault growth model can be described by a
continuous-time differential equation:

ȧ = F (a, u) (1)

where a is the fault dimension, u is the system control inputs
which can influence the fault growth, and F (·) is a nonlinear
function that describes the fault growth under current operat-
ing scenario. The feature, denoted by y , is extracted from
testing data and serves as the measurement for the FDP algo-
rithm. To simplify the problem, the mapping between y and
a is described as y = a, and y is employed as the indica-
tor of the fault state, which is the measured real-time battery
capacity in the case of battery life prediction.

Lebesgue sampling-based model for the fault growth dynam-
ics in discrete-time can be described as:

â(tk+1) = â(tk) + ft(D, ˙̂a(tk)) (2)

where ˆa(tk) is the Lebesgue state of fault dimension, tk is the
kth sampling instant, and D is the Lebesgue state length.

2.2. Lebesgue Sampling based Diagnosis

The LS-based diagnosis is described as follows:

1. Divide the state range into a series of Lebesgue states
{F1, F2, ..., Ff};

2. If the feature value y causes a transition from one
Lebesgue state to another (Astrom & Bernhardsson,
2002; McCann & Le, 2008), i.e., an event happens, the
diagnostic algorithm is executed. Otherwise update the
time stamp and wait;

3. Calculate the current fault state distribution and deter-
mine whether a fault is detected.

2.3. Lebesgue Sampling based Prognosis

For LS-FDP, the prognosis is conducted along the state axis
to calculate the time to failure (TTF) or remaining useful life
(RUL) distributions of operation time to reach the defined
Lebesgue states. The model for LS-based prognosis is given
as:

tk+1 = tk + gt(D, ˙̂a(tk)) (3)

This function describes the time distribution of the fault state
to arrive at each Lebesgue states. The prediction horizon is
the number of Lebesgue states from the current Lebesgue
state to the state defined as failure threshold. Compared to
RS-based prognosis, this prediction horizon is usually small
and will significantly reduce the computation cost.

Figure 1 shows the flow chart of Lebesgue sampling-based
prognosis. Suppose at state Fd, the diagnosis algorithm de-
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tects a fault and prognosis needs to be implemented to cal-
culate the distributions of operating time when the fault size
reaches Lebesgue states {Fd+1, ..., Ff}.

Figure 1. Flow chart of Lebesgue sampling-based prognosis

The initial condition for prognosis is the time distribution to
reach the current Lebesgue state Fd. In a particle filtering-
based algorithm, this time distribution can be obtained by
conducting prediction based on the fault growth model in
Equation (2) for all particles with Fd being set as the thresh-
old.

2.4. The concept of VLS-FDP

This section will develop the complete VLS-FDP framework
with an overview of the proposed solutions to overcome the
limitations of the fixed Lebesgue length LS-FDP. The inno-
vation of this method is that Lebesgue length of the diagnosis
and prognosis algorithm is no longer fixed. Instead, Lebesgue
length is online adjusted adaptively to accommodate the non-
linearity of the fault dynamics. The concept is illustrated in
Figure 2, the battery degradation data is from (He, Williard,
Osterman, & Pecht, 2011). In LS-FDP method, as shown
in Figure 2(a), the Lebesgue states are equally distributed on
the state axis, which means the state changes are the same,
no matter the fault grows fast or slowly. In VLS-FDP, the
Lebesgue state length are changed based on the fault growth
speed. The fault growth speed is characterized as the ratio be-
tween the Lebesgue state length of two successive Lebesgue
states and the operation time between them. It is clear in Fig-
ure 2 (b) that the Lebesgue states are nonuniform.

3. ALGORITHM DESIGN

In this section, a particle filtering-based algorithm is designed
in the framework of varying length Lebesgue sampling.

Figure 2. Illustration of VLS-FDP. (a) LS-FDP with fixed
Lebesgue state length; (b) VLS-FDP with varying Lebesgue
state length

3.1. Particle filter for VLS-based diagnosis

An unobserved fault process X is assumed to be a Markov
process characterized by initial distribution p(x0) and the
transition probability p(xk | xk−1) defined by xk =
fk(xk−1, wk) with wk being the process noise. The subscript
k represents the kth events. The observation is assumed to
be conditionally independent on X . The distribution of Yk
given Xk, (Yk | Xk), is defined by yk = hk(xk, vk) and
vk is the measurement noise. Let x0:k = {x0, ..., xk} and
y1:k = {y1, ..., yk} denote the states and measurements from
beginning to the kth event. The objective is to estimate the
posterior distribution p(x0:k | y1:k), which in the framework
of Bayesian theory is achieved by prediction and filtering.

In nonlinear cases, most of the analytical solutions do not ex-
ist. Sequential Monte Carlo (SMC) methods, such as par-
ticle filter, are widely used to provide approximate solu-
tion. The particle filter approach approximates the posterior
distribution at the (k − 1)th event by a set of N particles
(w(i)

k−1, x
(i)
0:k−1), where superscript i denotes the ith particle,

w
(i)
k−1 and x(i)0:k−1 are the weight and location of the particles

at the (k− 1)th event, respectively. The purpose is to achieve
a new set ofN particles (w(i)

k , x̄
(i)
0:k) to approximate the distri-

bution πk(x0:k), where x̄(i)0:k is the location of new particles.
In SMC framework, a Monte Carlo approximation can be ob-
tained as:

πk(x0:k) =

N∑
i=1

w
(i)
k δ(x0:k − x̄(i)0:k) (4)

where δ denotes the Dirac-Delta function,
∑N

i=1 w
(i)
k = 1.

The weight of the particle is updated by a recursive method:

w(x̄
(i)
0:k) = w

(i)
k−1hk(y1:k | x̄(i)0:k)

w
(i)
k =

w(x̄
(i)
0:k)∑N

i=1 w(x̄
(i)
0:k)

(5)

An LS-based diagnostic model is used to implement the par-
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ticle filtering based fault diagnosis. The model is augmented
from (2) and is given as:

xd(tk + 1) = fb(xd(tk) + n(tk))

â(tk+1) = â(tk) + ft(D, ˙̂a(tk)) · xd(tk) + wa(tk)

y(tk) = â(tk) + v(tk)
(6)

where the nonlinear mapping fb(x) is given by:

fb(x) =

{
1, if ‖ x− 1 ‖≤‖ x− 0 ‖
0, otherwise

where xd is a boolean value that indicates the normal (0) or
faulty (1), respectively, â is the Lebesgue state that indicates
the fault size, wa and v are process and measurement noises,
n is an independent and identically distributed uniform white
noise, the initial condition is given as xd = 0, indicating that
there is no fault initially.

In this model, tk is the event stamp indicating there is a state
transition, the measurement y(tk) is directly mapped from the
fault size â(tk), for battery case, it is the capacity measured
by Coulomb counting method.

During the diagnostic process, the algorithm will be executed
only when two successive measurements trigger a transition
of Lebesgue states.

3.2. Particle filter for VLS-based prognosis

In LS-FDP framework, the prediction horizon is reduced to
the Lebesgue state number from the current Lebesgue state
Fd to the state that indicates a failure threshold Fj . Due to
the switching of prediction horizon from the time axis to the
state axis, the prediction horizon is greatly reduced, which
results in reduction of a large mount of computation and the
accumulation of uncertainties.

The prognostic model for LS-FDP is given as:

tk+1 = tk + gt(D, ˙̂a(tk)) + wt(tk) (7)

where D is the Lebesgue state length and wt(tk) is the model
noise.

With this model, the particle algorithm estimates the time dis-
tribution on the time axis. Note that the output of diagnosis
is a fault state distribution defined on the state axis, which
cannot be used in LS-based prognosis. The reason is that
LS-based prognosis needs an initial condition of time distri-
butions on the current Lebesgue state. To address this prob-
lem, a new set of M particles (w(i)

L , t
(i)
L ) is adopted to initial-

ize the prognostic process, where the subscript L denotes the
Lebesgue state,w(i)

L and t(i)L are particle weights and particles
on the time axis, respectively. The initial weights of the par-
ticles are uniform (w(i)

L = 1/M ). The RUL pdf is calculated
under the condition of Lebesgue state L = Ff by (7).

The difference between LS-FDP and VLS-FDP is that the
Lebesgue state length D in VLS-FDP is not a constant, but
changed based on the diagnostic result. The whole process is
illustrated in Figure 3 and is described as follows:

Figure 3. The process of Lebesgue state length update during
the prognosis process.

The procedure is described as follows:

1. With a new measurement, check if an event happens. If
an event happens, run diagnosis algorithm to detect the
fault with the initial set of Lebesgue states and Lebesgue
state length;

2. When the fault is detected at the Lebesgue state Fd,
the prognostic algorithm is executed with an initial
Lebesgue state length D0 and the Lebesgue states are
(F1, ..., Fd−1). The time interval between Lebesgue state
Fd−1 and Fd is N0 (in the diagnostic process), the slope
is calculated S0 = D0/N0;

3. Lebesgue state length for prognosis isD0 when the prog-
nosis is initialized on Lebesgue state Fd. The time inter-
val to reach Fd+1 calculated by (7) is N1 = TTF1 − Tc
for the prognosis on Lebesgue state Fd, where TTF1 is
the mean of the predicted time to failure (TTF), Tc is
the current time instant. The Lebesgue state length be-
tween Lebesgue state Fd and Fd+1 is updated by D1 =
S0 ×N1, and the TTF and time interval are also updated
to ˆTTF 1 and N̂1, and the new slope is S1 = D1/N̂1;

4. The prognosis at Lebesgue state Fd+1 starts with
Lebesgue state length D1 and slope S1, time interval
N2 is also calculated by (7). Lebesgue state length D2

is given as D2 = S1 ×N2, then update the time interval
N̂2 to calculate the slope S2 = D2/N̂2;

5. Repeat the step 3) and 4) until the Lebesgue state reaches
the prognosis threshold Ff . This step yields the TTF and
RUL distribution;

6. At the next time instant, when a new measurement be-
comes available, repeat step 1) to 5). Note that the
Lebesgue state lengths for diagnosis are also updated
based on the calculation result in the previous prognostic
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process. When a new event happens, the time interval is
updated by the ground truth of cycle life to N̄1, the slope
S̄1 = D1/N̄1 and D2 are used as the initial condition for
the new recursive prognostic loop.

Note that, after the prognostic process, the length of each
Lebesgue state is changed. The new Lebesgue states are
used for the following prognostic process as the initial set of
Lebesgue states. So the whole FDP process will be executed
with a different frequency, which is determined by the fault
growth speed.

4. EXPERIMENTAL RESULTS

In this section, the proposed VLS-FDP scheme will be
demonstrated with a particle filtering algorithm with an ap-
plication to the prediction of the capacity degradation of a
Li-ion battery. Battery is a safety critical component that pro-
vides power for most autonomous systems, such as comput-
ers, robots, electrical vehicles, and unmanned aircraft (Saha,
Goebel, Poll, & Christophersen, 2009; Zhang, Tang, DeCas-
tro, Roemer, & Goebel, 2014). Since the life and state of the
batteries are not directly observable, diagnosis and prognosis
are critical for estimating the battery state (K. Goebel, Saha,
& Saxena, 2008; K. F. Goebel et al., 2006; Sidhu, Izadian, &
Anwar, 2015), such as state-of-health (SOH), state-of-charge
(SOC), and remaining useful life (RUL).

In this experiment, the SOH of a Li-ion battery with 1.1 Ah
rated capacity is used to verify the proposed VLS-FDP al-
gorithm, which is compared with RS-FDP and LS-FDP al-
gorithms. The degradation of the capacity is obtained from
charge-discharge cycle tests carried by an Arbin BT2000 bat-
tery test system under room temperature at a discharge cur-
rent of 1.1 A. The charge-discharge cycle is cut off at pre-
determined cut-off voltages. The failure threshold for the
SOH is set to be 0.25Ah and the battery capacity reaches this
threshold at 854th cycle.

4.1. RS-FDP

To implement diagnosis and prognosis, a fault growth model
for RS-FDP is developed by model fitting:

C(t+1) = C(t)−α ·p1· | p2 +p3 · t+p4 · t2 |p5 +w(t) (8)

where C is battery capacity, t is the time index
which is cycle number in this experiment, p =
[5e−5,−225, 5.6,−0.0135, 0.5] are parameters, α is a hyper
model parameter with mean of 3.8e−3 and variance of 5e−5,
and w is a model noise.

For RS-based diagnosis, a set of 500 particles are used in
the algorithm based on our computational resource. Figure
4 shows the diagnostic results at the 472nd cycle. The mean
of capacity estimation is 0.87414 and the 95% confidence in-
terval is [0.8497, 0.8945]. The upper sub-figure of this fig-

ure is the measurement compared with the filtered estima-
tion. The bottom sub-figure shows the comparison of initial
baseline pdf compared with the real-time estimated pdf at the
472nd cycle. Note that the diagnostic algorithm is executed
472 times, i.e., every time when a new measurement becomes
available.

Figure 4. Experimental result of RS-based diagnosis.

With an estimation of the current battery capacity as the ini-
tial condition, the prognosis is executed to conduct the long-
term prediction and estimation of RUL. Figure 5 shows the
expected value, upper and lower bounds of 95% confidence
interval of the battery capacity pdf at each future cycle. Note
that only 20 particles are used for prognosis because of a large
prediction horizon of 525 cycles. The battery capacity pdf at
each cycle is compared against the failure threshold to ob-
tain the RUL pdf, as shown in the histogram on the horizontal
axis. The law of total probabilities is used in this process.

In this figure, the predicted result of the mean of the failure
time is at the 748th cycle and the RUL life is 276 cycles.
The distance between the prediction and ground truth is 106
cycles. The 95% confidence interval of the RUL pdf is [628,
987], which means that the uncertainty accumulated along the
prediction horizon is very large.

4.2. LS-FDP

In LS-FDP, the input of the algorithm is the feature, which
is divided into a series of Lebesgue states. If the new mea-
surement causes a transition of Lebesgue state, i.e., an event
happens, the diagnostic algorithm is executed. The time in-
stant when an event happens is called the “event stamp”. The
sequence of the event stamps formulates a time series that is
used as the input of real time diagnostic algorithms. The out-
put of fault diagnosis is the fault state distribution, which is
used to calculate the probability to declare a fault. The test is
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Figure 5. Experimental result of RS-based prognosis.

performed between the estimate pdf of fault and the baseline
pdf from healthy condition.

To implement LS-FDP for the battery capacity degradation,
40 Lebesgue states are defined based on the battery’s full ca-
pacity of 1.1Ah and the computation resource. With this set-
ting, the diagnostic algorithm is executed only when the ca-
pacity degrades from one Lebesgue state to another, i.e., an
event happens. The model for diagnosis is given by:

C(tk+1) = C(tk)−pd ·D ·sgn(C(tk)−C(tk−1))+wC(tk)
(9)

where pd is the model parameter, tk is the event stamp in-
dexes, sgn(·) gives the sign, and wC is the model noise.

Figure 6. LS-based diagnosis for battery at the 472nd cycle.

Figure 6 shows the diagnostic results with a particle filtering
algorithm at the 472nd cycle. In the upper sub-figure, the
blue curve is the trajectory of capacity from Coulomb count-
ing and the magenta curve is from the particle filtering. Note
that the flat magenta segments mean no event and diagnosis is
not executed. The lower sub-figure shows the capacity distri-

bution at the current cycle, where the black distribution is the
baseline probability density function (pdf) while the magenta
histogram is the real-time capacity pdf from diagnosis. In
the past 472 cycles, although 472 measurements are received,
there are only 76 events. Therefore, the LS-based diagnosis
only runs 76 times. Compared with traditional RS-based di-
agnosis that needs to run 472 times, the reduction of compu-
tation is (472-76)/472=83.9% and computation is 6.21 times
faster.

Different from the diagnosis that yields fault state distribution
at each time instant when an event occurs, prognosis estimate
the time distribution on fault state reaching each Lebesgue
state. The output of diagnosis is a capacity distribution at
current time instant. It cannot be used for prognosis directly
and has to be transformed into the operation time distribution.
To implement prognosis in LS-FDP framework, the operation
time distribution is achieved by predicting all the particles to
the current Lebesgue state.

LS-based prognosis is conducted on fault dimension axis to
predict the time-to-Lebesgue-state directly. The diagnostic
model (9) cannot be used in prognosis. A new model for
prognosis is proposed as:

tk+1 = tk + pp ·D · exp
(
−Ċ(tk)

)
+ wk(tk) (10)

where pp is the model parameter and wk is the model noise.

Figure 7 shows the prognostic results with 500 particles
at the 472nd cycle. Compared to RS-based prognosis
with large horizon (525 cycles) and small number of par-
ticles (20), the LS-based prognosis only has a prognathic
horizon of 24 Lebesgue states and can afford 500 parti-
cles. The reduction of computation time is (2.822281-
0.011541)/2.822281=99.59% and the computation is about
244 times faster. Note that in RS-based prognosis, only 20
particles (at the cost of performance) are used to make real-
time implementation possible. Note also that LS-FDP offers
better performance than RS-FDP in terms of TTF prediction
due to short prognostic horizon.

Figure 7. LS-based prognosis at the 472nd cycle.
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4.3. VLS-FDP

VLS-FDP is developed based on LS-FDP, the battery’s full
capacity range is divided into 40 Lebesgue state as in LS-
FDP. When fault is firstly detected, this Lebesgue state length
is the initial Lebesgue state length in VLS-FDP. The model
for diagnosis is the same as LS-FDP in model (9).

Figure 8. VLS-based diagnosis for battery at the 472nd cycle.

Figure 8 shows the diagnostic results at the 472nd cycle.
The upper sub-figure is the battery capacity measurement by
Coulomb counting method (blue curve) compared with the
filtered capacity estimation (magenta). Note that the length
for each Lebesgue state has been changes after the fault being
detected compared with the case before fault being detected,
which is an indicator of a closer monitoring on fault growth.

The lower sub-figure shows the fault distribution at the 472nd
cycle, in which the black histogram is the baseline distribu-
tion, and the magenta one is the real-time battery capacity
distribution from diagnosis.

The VLS-FDP prognosis is conducted on the state axis to pre-
dict the time-to-Lebesgue-state, the diagnostic model is the
same as (9).

Figure 9 shows the prognostic result at the 472nd cycle. In
this figure, the prediction horizon is 50, which is a little big-
ger than the LS-FDP with uniform Lebesgue length. This is
the trade-off for closer monitoring of SOH when the capacity
degradation becomes faster.

To make the figure clear, only the time distribution at selected
Lebesgue states are plotted. As shown in Figure 9, the pre-
dicted TTF for this battery is 846.9 and the RUL is 374.9
cycles. The 95% confidence interval of the TTF is [819.6
861.9]. Compared with the ground truth TTF of 854, the
difference is 7.1 cycles. Note that Lebesgue states for VLS-
based prognosis are distributed unequally along the state axis,

which is different from the case of LS-based prognosis. When
the growth speed is fast, the prognosis is executed with a
higher frequency and the length of the neighboring execution
is reduced.

Figure 9. VLS-based prognosis at the 472nd cycle.

4.4. Comparison of RS-FDP, LS-FDP, and VLS-FDP

Diagnostic and prognostic results of RS-based, LS-based,
and VLS-based algorithms are compared in Table 1 with the
same benchmark. Compared with RS-based prognosis with
a horizon of 525 cycles and small number (20) of particles
at the 472th cycle, the LS-based and VLS-based prognosis
have a horizon of 24 and 50 Lebesgue states, and can af-
ford 500 particles. The computation time for LS-based and
VLS-based prognosis are only 0.41% and 1.36% of the RS-
based prognosis, respectively. Compared to LS-based prog-
nosis, VLS-based prognosis is a little computational expen-
sive. The reason is that VLS-based prognosis keeps a closer
monitoring on the SOH after the 472nd cycles by shrinking
the Lebesgue state length dynamically to accommodate an
accelerated degradation speed.

Table 1. Comparison of Traditional RS-FDP, LS-FDP and
VLS-FDP for Battery

RS-FDP LS-FDP VLS-FDP
Diagnosis particles 500 500 500
Capacity expectation 0.8741 0.8854 0.8854

Capacity 95% CI [0.8469 0.8986] [0.8285 0.9422] [0.8290 0.9432]
Execution numbers 472 (100%) 76 (16.1%) 78 (16.5%)
Prognosis particles 20 500 500

True TTF 854 854 854
Estimate TTF 748 831.8 846.9

95% CI of TTF [628 987] [795.3 850.3] [819.6 861.9]
Prognostic horizon 525 24 50
Computation time 2.822281 (100%) 0.011541 (0.41%) 0.038488 (1.36%)

Accuracy is one of the most important properties in FDP. In
order to compare the accuracy of three FDP methods, α -
λ matrix is introduces in (Saxena, Celaya, Saha, Saha, &
Goebel, 2010), as shown in Figure 10 with α = 0.3. The
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matrix is defined as:

[1− α] · rt(tk) ≤ rl(tk) ≤ [1 + α] · rt(tk) (11)

where rl is the predicted RUL at the lth time instant, rt is the
ground truth TTF, α is the accuracy modifier (Saxena et al.,
2010).

Figure 10. Prediction accuracy comparison among RS-FDP,
LS-FDP, and VLS-FDP.

Because of the short prediction horizon and small uncer-
tainty accumulation, the prediction accuracy for LS-FDP and
VLS-FDP are higher than that of RS-FDP, as shown in Fig-
ure 10. The TTF of LS-FDP and VLS-FDP reach the ac-
curacy zone quickly, and the prediction results are stable.
The result of RS-FDP exceeds the accuracy limits sometimes,
which means the estimation of TTF is not uniformly accu-
rate. The high prediction accuracy of LS-FDP and VLS-FDP
is achieved with much lower computation cost compared with
RS-FDP.

The advantages of varying Lebesgue length in diagnosis and
prognosis are obvious by the comparison in Table 1. For diag-
nosis, these three methods have comparable performances. In
terms of prognosis, the VLS-FDP shows better performances
in different aspects. First, VLS-FDP has better accuracy and
precision than RS-FDP by comparing the confidence interval
(CI) of the TTF. It reduces the computation resource greatly
with similar diagnostic performance. RS-FDP has a large pre-
diction horizon, which requires more computation time and
resources. Second, VLS-FDP also avoids the large amount of
uncertainty accumulation during the long-horizon prediction.
Third, VLS-FDP dynamically distributes the limited compu-
tation resources between different fault growth stages, which
is an improvement of LS-FDP.

The application of Lebesgue sampling method in FDP pro-
vides a natural solution for real-time FDP implementation,
especially for those systems with limited computation re-
sources. The improved Lebesgue sampling varying length
method distributes the computation resources dynamically
within a system. Similar to LS-FDP, the prediction horizon
of VLS-FDP is very small compared with that of RS-FDP,

which is beneficial for managing the uncertainty in progno-
sis.

5. CONCLUSIONS AND FUTURE WORKS

Many diagnostic and prognostic methods were developed
based on traditional Riemann sampling framework with great
success in the past decades. The application of RS-FDP on
distributed FDP is limited because of its high computation
cost. A new FDP methodology is introduced with a philos-
ophy of ”execution when needed” to reduce the computation
cost, which makes the long-term online prognosis possible
to be computed on an embedded system, such as the micro-
controllers in a car and a mobile phone. However, the close
monitoring on the fault size is sacrificed to some extend, es-
pecially when the fault growth is accelerated. This paper pro-
poses varying Lebesgue state length in the LS-FDP frame-
work. A particle filtering-based algorithm is developed with
an application to the diagnosis and prognosis of Li-ion battery
SOH.

In the VLS-FDP, models for diagnosis and prognosis are de-
signed separately because diagnosis and prognosis are carried
on state and time axis, respectively. The Lebesgue length for
the diagnostic and prognostic models changes according to
the past fault growth speed. Experimental results for RS-
FDP, LS-FDP, and VLS-FDP on a Li-ion battery SOH are
presented to demonstrate the effectiveness of the proposed
algorithms.

In the future work, data collected from partial
charge/discharge cycle and non-constant current charge/discharge
with different current will be used to test our methods, new
parameter adaption methods will be adopted to accommodate
the real vehicle scenarios.
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