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ABSTRACT

The goal of gearbox prognostics, once a failure has been de-
tected, is to estimate the degree of damage. Development of
probabilistic damage assessment requires high quality ground
truth. The present report describes practical analysis, pro-
cessing, and interpretation of signals from crack-propagation
sensors and damage estimation during gear teeth crack prop-
agation. The study considers two types of crack propaga-
tions: one for a fatigue-tester-based crack propagation, and
the other for a propagation in a gearbox. Crack closing occurs
in both types of crack propagation and must be accounted for
in assessing the damage. The analysis is conducted for sen-
sors connected as a voltage divider. Signal conditioning and
wire breakage inference are examined in detail. In addition,
we discuss how equipping each gear tooth with two crack-
propagation sensors, one on each gear face, can provide a
better damage estimation.

1. INTRODUCTION

Of the four dominant modes of gear tooth failure (breakage,
wear, pitting, and scoring), breakage is the most catastrophic
and occurs precipitously, often with no advanced warning.
From the fatigue viewpoint a life time of a gear can has two
phases: crack initiation and crack propagation (Kramberger,
Šraml, Potrč, & Flašker, 2004; Kramberger, Šraml, Glodež,
Flašker, & Potrč, 2004; Glodež, Šraml, & Kramberger, 2002).
Gear research community has developed many vibration-based,
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condition indicators (CIs), to detect these features and assess
damage, as summarized in (Lebold, McClintic, Campbell,
Byington, & Maynard, 2000; Samuel & Pines, 2005). To val-
idate the performance of these CIs, researchers has been em-
ploying crack propagation (CP) sensors (see e.g. (Zakrajsek
& Lewicki, 1998; N. Nenadic et al., 2013)). The physical
principle of CP sensors is the change in resistance as a func-
tion of crack length. These sensors consist of thin, parallel
strands of known resistance which snap as the crack propa-
gate through and the total resistance increases.

Crack propagation sensors are typically used to measure crack
lengths on the surface of mechanical structures. This study is
focused on the analysis of signals from CP sensors imple-
mented on spur gears. Two types of tests are considered:
crack propagation in a single-tooth fatigue-based tester and
crack propagation inside a gearbox. The initial cracks were
not notched but imparted using fatigue overload (N. G. Ne-
nadic, Wodenscheck, Thurston, & Lewicki, 2011; Stringer,
LaBerge, Burdick, & Fields, 2012). In both cases the CP sen-
sors provide measurable ground truth for the level of damage.

After the signals are conditioned and interpreted, they can be
used to assess the damage on the face and predict the inter-
nal crack. In the first approximation the damage is expressed
as the crack length. For a conservative approach, the selected
length would be the longer of the two crack lengths, visible on
the faces of the gear. However, the cracks often do not prop-
agate uniformly across the face of a gear tooth. Lewicki et al.
(Lewicki, Sane, Drago, & Wawrzynek, 1998) studied crack
surfaces computationally, using boundary element methods.
The information of crack lengths on both gear faces can be
used to estimate these wavefronts and, more generally, to es-
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Figure 1. (a) Histogram of cycles needed to initiate the cracks (b)Life remaining in cycles distributions vs. the crack size as
measured on gear faces with crack-propagation sensors.

timate the overall crack damage.

The importance of damage estimation becomes immediately
clear when considering a large number of individual crack
propagations. Because crack propagation on a fatigue tester
is a less expensive and less complex experiment than a crack
propagation in a gearbox, a statistically large collection of
cracks was obtained on the single-tooth, fatigue tester. Fig-
ure 1a shows a histogram of the of cycles to induce a crack
under fixed conditions for 166 gear teeth. Fatigue cracks were
initiated on 93% of gear teeth before 50,000 cycles and 85%
before 30,000 cycles. With an excitation frequency of 5 Hz,
85% of cracks were initiated within 100 minutes.

While the large uncertainty in crack initiation is to be ex-
pected, crack propagation is considered much better under-
stood. For example, Paris Law (Paris, Gomez, & Anderson,
1961) has a long history of successful practical use; it is given
by

da

dN
= C(∆K(a))m, (1)

where a is the crack size, N is the number of cycles, and
m, C, and K(a) are material properties. However, the ex-
periments show that evolution of small cracks can also have
considerable uncertainty, especially initially, when fatigue-
induced cracks are small and asymmetric.

After crack initiation, the tooth was subjected to a cycling
excitation until the crack propagated until all the strands on
both crack propagation sensors were broken. Figure 1b shows
the remaining useful life (RUL) vs damage size for 11 of the
166 tested gear teeth, with the statistical information super-
imposed. Individual propagations are indicated by markers,
with normal distributions estimated for each number of bro-
ken strands. Two different colors signify the crack lengths on
two different sides of a gear. Note the square markers at the

bottom: they denote a propagation where the crack lengths
were about equal on both faces. In our experiments, these
symmetric cracks propagate considerably faster than their asym-
metric counterparts. The shaded area signifies two standard
deviations about the mean. For small cracks (low number of
broken strands), the life remaining is not normally distributed
and the uncertainty is very large (note that the y-axis scale
is logarithmic). After the 4th strand broke (which is corre-
sponds to crack length of about 1.3 mm), the propagation ac-
celerated for most of the gear teeth. Thus, crack length of
1.3 mm denotes prognostics horizon and in this region, Paris’
Law given by Eq. (1) can be reasonably fitted. Note, however,
that for this gear and this loading, there is only 12,000 cycles
left after the horizon is reach. An angular speed is needed
to translate the prognostic horizon in time. For example, for
an angular speed at ω = 1200 rpm = 20 rad/s, the prognostic
horizon is only 600 seconds, or 10 minutes.

2. SENSOR PLACEMENT AND SENSING CIRCUIT

While our results are quite general, further elements of the
particular implementation are described in detail. This sec-
tion provides specific aspects of sensing during the test of
this study. Each sensor is placed so that it strands are approx-
imately perpendicular to a typical path of crack propagation
(Lewicki et al., 1998). We designed a mask, shown in Fig-
ure 2, to ensure close agreement in sensor placements among
samples.

Figure 3 shows the circuit diagram for the CP sensor, based
on Kelvin (four-wire) connection, where Rs is the pull-up
source resistor, Vss is the power supply voltage, Rcp signi-
fies the resistance of the crack-propagation sensor, and I is
the current. Four-wire measurement method is employed to
minimize the effect of the lead wires indicated byRW in Fig-
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Figure 2. Design mask overlaid on top of a gear.

Figure 3. The circuit diagram for 4-wire connection of a CP
sensor. The inset shows an image of a real, instrumented
tooth.

ure 3. Voltage drop across lead resistance RW can be im-
portant when measuring small resistances. Two additional,
sensing leads create a high-impedance loop, which minimizes
the current the current through RW and thus minimize the
voltage drop across RW ; see e.g., (Yeager & Keithley, 1998)
for more details on four-wire connection and low (resistance)
level measurements..

The output voltage vout is the voltage divider across the CP
sensor, given by

vout =
Rcp

Rcp +Rs
Vss (2)

The resistance of individual strand Ris is 50 Ω. The total
resistance of the CP sensor with k unbroken strands is Rcp =
Ris/k and the output voltage vout is

vout =
Ris

Ris + kRs
Vss (3)
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Figure 4. Computed voltage levels of the CP sensor for Rs =
100 Ω and Vss = 5 V.

Table 1. Theoretical voltage levels for three different values
of the pull-up resistor Rs and supply voltage Vss = 5 V.

Broken vout [mV] vout [mV] vout [mV]
wires k (Rs = 100 kΩ) (Rs = 1 kΩ) (Rs = 100 Ω)

0 0.25 24.9 238.10
1 0.28 27.6 263.16
2 0.31 31.1 294.12
3 0.36 35.5 333.33
4 0.42 41.3 384.62
5 0.50 49.5 454.55
6 0.62 61.7 55.56
7 0.83 82.0 714.29
8 1.25 122.0 1000.00
9 2.50 238.1 1666.67

10 5000.00 5.000 5000.00

The manufacturer of CP sensors does not recommend their
utilization with pull-up resistor Rs smaller than 100 kΩ to
limit the current through the CP sensor. However, to increase
the sensitivity we reduced the value of the pull-up resistor
down toRs = 100 Ω. We have not observed any damage to the
sensor during our testing. Figure 4 shows the output voltage
vout as a function of the number of the broken strands for the
supply voltage Vss = 5 V. The voltage level for each state of
the CP sensor are indicated in the plot. Table 1 shows the
computed voltage levels for three different pull-up resistors
(recommended 100 kΩ, and employed 1 kΩ /100 Ω).

3. INTERPRETATION OF CP SIGNALS IN SINGLE-TOOTH
CRACK PROPAGATION

The first type of tests propagated a crack on a single-tooth
test fixture. After the crack is initiated on a single tooth and
verified using magnetic particle inspection (N. G. Nenadic et
al., 2011), the crack is propagated by applying a sinusoidal
load with an offset F (t) = Fo + Fmax sin(2πft), with Fo

= 750 lb (3,336 N), Fmax = 650 lb (2,891 N), and f = 20
Hz (see the right axes of the inset of Figure 6). The drawing
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Figure 5. Single-tooth crack-initiation and crack-propagation fixture. (a) Drawing. (b) Photograph. (c) Sketch depicting point
of contact.

of the fixture is shown in Figure 5a. The anvil pushes a sin-
gle tooth at the prescribed load, while the reaction is shared
among three reaction teeth. The photograph of the assembled
fixture is shown in Figure 5b. The anvil applies the force at
the highest point of single tooth contact (HPSTC). Figure 5c
shows a close-up diagram of the contact between the tooth
under test and anvil.
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Figure 6. Raw data captured on the single-tooth for Rs = 1
kΩr and Vss = 5 V.

Figure 6 shows an example raw voltage signal obtained from
a CP sensor during a test on the single-tooth tester. The infor-

mation of the crack propagation is contained in the envelope
of the signal. The raw signal is not strictly non-decreasing
because of the crack closing. The effect of crack closing is
further illustrated in the inset of Figure 6, which shows the
voltage signal over much shorter time scale. The waveform
of the force applied via the anvil is overlaid (with the scale
provided on the right-hand side). The step levels of the en-
velope of the measured signal do not perfectly line up with
the computed levels, indicated by the grid lines. The imper-
fect match between measured and computed levels is hypoth-
esized as due to the resistance of individual wires of the CP
sensor are not precisely 50 Ω.

An example of a processed data is shown in Figure 7. The
blue traces correspond to the left y-axis and indicate the pro-
cessed crack propagation voltage; the solid trace correspond-
ing to one of the crack-propagation sensors, denoted as front,
and the other to the other sensor, denoted as back. The red
traces correspond the right y-axis and indicate the length of
the crack estimated based on the number of broken strands of
the crack-propagation sensor in inches. The estimated length
of the crack is simply as the normal distance between the
strands dn (see Figure 3) of a CP sensor multiplied by the
number of broken strands k: l̂ = kdn. The normal distance
between the strands is dn = 0.01′′ = 0.254 mm. For simplicity,
the plot assumes linear growth between cycles.

4. INTERPRETATION OF CP SIGNALS IN A GEARBOX

The second type of test propagated a gear tooth crack inside
a gearbox loaded using dynamometer fixture. This proved to
be a much electrically noisier environment due to a slip-ring
requirement. The gear was rotated at ω = 1500 rpm produc-
ing a toothmesh period of 2π/(28ω) ∼ 9 ms (a gear has 28
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Figure 7. Processed cracks on tooth

Figure 8. Gearbox fixture built on a dynamometer (a ) open
gearbox (b) slip ring

teeth). This tooth loading duration is a fraction of that experi-
enced on the fatigue tester. Thus, the tooth loading duration is
∼4.5 ms. Relative duration of the applied load to the cracked
tooth is much shorter 3.6% (100/28) of the cycle. In ad-
dition, to connect to the rotating instrumented gear teeth the
signals are transmitted via slip-rings which add more noise to
these feeble electrical signals. Figure 8a shows a part of a dis-
assembled fixture with two gears meshed directly. Figure 8b
shows the slip ring.

Figure 9 shows example waveforms midway through a propa-
gation (compare the time line of Figure 9 to that of Figure 10).
The subplot on top shows the waveform of the tachometer.
The middle subplot shows a waveform of a less developed
crack and the bottom shows the waveform of a more devel-
oped crack, where the effects of crack opening and closing
can be readily observed.

Post-processing of the CP sensor signals was performed in
order to remove noise artifacts prior to use as ground truth in
detection and assessment tasks. As mentioned earlier, these
artifacts took two forms: false “open” readings caused by in-
termittent slip ring failure, and voltage “jitter” caused by in-
constant power supply. Correction for these artifacts was per-

Figure 9. Raw CP data from a gearbox with a tach signal.

formed using global and local outlier rejection, respectively,
as summarized in Algorithm 1.

Algorithm 1 CP Postprocessing Algorithm

1: procedure POST-PROCESS(s, n, ε)
2: // s is raw CP signal
3: // n is length of signal
4: // ε is ∆ voltage threshold (%) for step detection
5: Global(s, n)
6: Local(s,Steps(s, n, ε))
7: end procedure

False openings are characterized by short, disconnected pe-
riods of approximately-full voltage observation, rapidly re-
turning to baseline behavior at the current level of propaga-
tion. These observations arise from periods of slip ring de-
coupling, where the rotating brushes become disconnected by
sudden impulses. In our experiments, these impulses were
most likely to occur periodically in conjunction with particu-
lar tooth compression and release, although not all impulses
strictly matched these mesh periods. In order to remove false
openings, we performed outlier suppression at twice the stan-
dard deviation of the raw signal values, replacing spurious
readings with the global mean, as written in Algorithm 2.

Once false openings are corrected, the remaining artifacts are
modeled as the result of a multiplicative noise factor resulting
from aperiodic variation in input power supply and an addi-
tive base factor resulting from regular systemic loss. Given
our interest in using the CP sensor signals for discrete base-
line classification of propagation (used in conjunction with
accelerometer-based vibration features), we chose to ignore
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Algorithm 2 Suppress Global Outliers

1: procedure GLOBAL(s, n)
2: // s is raw CP signal
3: // n is length of signal
4: FIR(s, 0.0001)
5: for i← 1, n do
6: if abs(mean(s)− s[i]) ≥ 2 ∗ std(s) then
7: s[i]← mean(s);
8: end if
9: end for

10: end procedure

the additive factor as it would not affect computational ability
to distinguish between propagation levels. For the multiplica-
tive factor, we hypothesized that it was well approximated by
a Gaussian process with mean of 1 (zero impact) and mag-
nitude no greater than the minimum factor between two ad-
jacent propagation levels, confirmed empirically. In order to
remove outliers that could lie within the output range of other
propagation levels, we first identified all voltage changes in
excess of this process, indicative of steps from one propaga-
tion level to another. This is shown in Algorithm 3, where we
explicitly identify and lock in observable steps as new voltage
baselines.

Algorithm 3 Identify Voltage Steps

1: procedure m = STEPS(s, n, ε)
2: // s is global-filtered CP signal
3: // n is length of signal
4: // ε is ∆ voltage threshold (%) for step detection
5: c← 1
6: k ← 0
7: i← 1
8: while i < n do
9: while abs(s[c]− s[i])/s[c] ≤ ε do

10: i← i+ 1
11: end while
12: k ← k + 1
13: m[k]← c
14: c← i
15: end while
16: end procedure

Once voltage steps were identified, we then identified and
suppressed all local outliers that could result in level confu-
sion (i.e., those with multiplicative factors in excess of half
of the minimum factor between adjacent propagation levels);
suppression was done via mean replacement, as shown in Al-
gorithm 4. The result of this process was a CP signal with
minimized potential for label confusion when used in classi-
fication, allowing us to progress with further experiments in
crack detection and assessment.

The final result of a damage extraction is shown in Figure 10.

Algorithm 4 Suppress Local Outliers

1: procedure LOCAL(s,m)
2: // s is global-filtered CP signal
3: // m is vector of voltage step indices
4: m[0]← 1
5: for i← 1, k do
6: for j ← m[i− 1],m[i] do
7: if abs(mean(s[m[i − 1] : m[i]]) − s[j]) ≥

std(s[m[i− 1] :m[i]]) then
8: s[j]← mean(s[m[i− 1] :m[i]])
9: end if

10: end for
11: end for
12: end procedure

Figure 10. An example voltage levels parsed after a crack
propagated in a gearbox
.

5. DAMAGE ESTIMATION AND FUTURE WORK

While cracks are typically thought of as lengths, in reality,
they are surfaces. This quickly becomes apparent when one
attempts to reconcile two different lengths, one on each gear
face. Considerable information on damage and its likely fu-
ture states may be contained in the relationship between the
two lengths. For example, one can use breakage of CP strands
to visualize a crack propagation, as illustrated in Figure 11.
Here the data from CP sensors was used to plot two 3D stem
plots (black traces), where the x-coordinates signify their phys-
ical location (the stem plots are separated by gear width w),
y-coordinates signify propagation, expressed in terms of cy-
cles N , and z-coordinates crack lengths (CP voltage levels
mapped onto physical locations of particular strands and crack
length estimated as the normal distance between strands). The
blue traces indicate plausible wavefronts of the crack surface
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propagation. These are not accurately estimated but can be
nonetheless useful in assessing actual damage.

Figure 11. Estimated propagation wavefronts based on the
CP data.

To obtain a better estimate of these damaged surfaces, it is
necessary to perform a post-mortem analysis of the fractured
surface. For example, Figure 12 shows a cracked surface of
a gear tooth. Crack initiation phase, with larger forces and
intergranular fracture, is readily distinguished from the crack
propagation, with smaller forces and transgranular fracture
(wavefront 1). Wavefronts 2-4 show different stages of crack
propagation and wavefront 5 marks the boundary of the crack
propagation and full fracture (in our experiments, propaga-
tion was stopped once the crack had propagated through both
CPs and a large force was applied to fully fracture the tooth).

Future work will further investigate the opportunity of im-
proving damage assessment of cracked teeth on spur gears by
establishing correlations (in a broad sense) between the time-
domain condition indicators extracted from non-destructive
measurements and analysis of images of cracked surfaces dur-
ing the post-mortem analysis. After applying material science
expert knowledge to identify important damage features in
the images, the correspondence between image features and
temporal features will be sought. The ultimate objective is
to enable damage assessment in the noisier, gearbox environ-
ments, which, in turn, would allow better damage assessment
for diagnostic and prognostics, and thereby condition based
maintenance.

6. CONCLUSIONS

Crack propagation sensors can provide valuable ground truth
information on crack damage, which is essential for develop-
ment of practical prognostics metrics. It may be important to
capture the ground truth in more than one location because
empirical results that show that crack lengths on two gear

Figure 12. Cracked surface of a broken tooth with a few esti-
mated wavefronts.

faces can differ considerably during a crack propagation and
that the asymmetry may significantly affect the rate of the
propagation. This paper describes extraction of this ground
truth information on damage from noisy measurements. Two
types of measurement settings were discussed: crack prop-
agation on a fatigue tester and crack propagation in a gear-
box. In both cases cracks close when the force is either re-
moved or reduced. Information extraction from CPs is eas-
ier in the case of fatigue-tester propagation because gearbox
instrumentation requires that slip rings, with their additional
noise sources, be employed and because the relative open-
ing of the crack in a gearbox is considerably shorter than the
crack opening in the fatigue fixture. Finally, visualization of
crack propagation, based on information from CPs is illus-
trated and the next steps of relating the temporal data and
image features from the post-mortem analysis are
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