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ABSTRACT 

At Hydro-Québec (HQ), an integrated diagnostic system 

(MIDA) is currently used to assess hydro-generators health 

index. This system gives the global health index but does 

not propose any understanding of active failure 

mechanisms. At this point, this work needs to be done by 

experts after analysis of the diagnostic data in MIDA. 

To relieve the expert from part of this work, a prognostic 

tool, that uses a Failure Mechanisms and Symptoms 

Analysis (FMSA), is under development. The approach is 

based on the understanding of the evolution of degradation 

processes for each failure mechanism. Failure mechanisms 

are structured as causal trees and defined as a sequence of 

physical states starting from a root cause and ending with a 

failure mode. A physical state corresponds to characteristic 

degradation condition of a component of the generator. Each 

physical state being defined by a unique combination of 

symptoms as measured with diagnostic tools. After 

consigning all possible mechanisms occurring in both the 

rotor and the stator, the symptoms logged into a database 

can be read to automatically identify all active physical state 

and active failure mechanisms. This approach has been 

under development in HQ for the stator for a number of 

years and is now extended to the rotors of hydro-generators. 

The purpose of this paper is to present the structured method 

used to build the failure mechanisms from bits and pieces of 

information (sub-mechanisms) found in the literature and 

from discussions with experts. This new methodology is 

based on a two steps process. First, sub-mechanisms were 

extracted from FMEA in the literature. Then, an algorithm 

was used to generate a set of causal trees from these sub-

mechanisms. The generated results then had to be validated 

by experts to make sure that automatically generated 

mechanisms were logical and plausible. The resulting 

extended failure mechanisms trees built can then be used for 

the purpose of Root Cause Analysis (RCA), model-based 

diagnostics and prognosis. This method was developed to be 

as generic as possible so it could be applied to any complex 

system. 

1. INTRODUCTION 

Significant improvement has been done on fault detection 

and diagnosis during the last decade (Schwabacher and 

Goebel 2007). Many tools such as condition monitoring 

systems have been developed for this purpose in various 

industries to improve health management of complex and 

critical systems. However, the large amounts of data 

generated by those systems are rarely used for prognosis. 

One of the key issues of condition-based prognostic 

approaches is to develop a model providing an identification 

of degradation processes and their future evolution based on 

historical data such as symptoms obtained from 

measurements and observations. Several examples of 

prognostic approaches based on historical data and 

symptoms resulting from diagnostic tools can be found in 

the literature; namely an approach based on Bayesian 

networks (Medina-Olivier et al. 2012), approaches based on 

Fault Trees (Junjie et al. 2011; Sun et al. 2012) and an 

approach based on Decision Trees structure (Lee et al. 

2005). In this paper, the proposed approach uses another 

model to analyze symptoms and historical data. 
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At Hydro-Québec, different diagnostics tools have been 

developed and implemented to evaluate the condition of 

hydro-generators using a web-based application called 

MIDA (Vouligny et al. 2009), which gives the global health 

index of generators. In order to structure and take advantage 

of diagnostic data, a damage propagation model has been 

proposed. It is the backbone of a prognostic model based on 

a Failure Mechanism and Symptoms Analysis (FMSA). 

This approach has been detailed elsewhere (Amyot et al. 

2013). 

The FMSA identifies and structures all possible failure 

mechanisms occurring in a system of causal trees using 

successions of physical state starting from root causes and 

ending with failure modes, as shown in Figure 1. A physical 

state corresponds to a characteristic degradation condition of 

a component of the generator. By defining such physical 

states it becomes possible to discretize each failure 

mechanism in order to track their progression. In the 

example in Figure 1, four failure mechanisms are 

represented and discretized using physical states (ei). For 

example, the failure mechanism starting from the Root 

cause C1 and ending on the failure mode F2 is discretized by 

4 successive physical states (e1, e2, e3, and e4). 

 
Figure 1. Four active failure mechanisms from root causes 

to failure modes before and after discretization by physical 

states. 

 

Each physical state corresponds to a unique combination of 

symptoms with threshold values associated to the recorded 

diagnostic data and visual inspection observations. An 

example of threshold definition is given in Figure 2. The 

degradation symptoms of a generator are automatically 

retrieved from the diagnostic database, and compared with 

the individual thresholds defined by the experts. This makes 

it possible to identify active physical states and 

consequently all active mechanisms in the system. 

 
Figure 2. Failure mechanism with symptoms and thresholds 

defining physical states. Between parentheses are symptoms 

specific to each diagnostic tool. S is the severity ranging 

from 1 to 5. (Amyot et al. 2013) 

 

It is then possible to monitor failure mechanisms 

progression using physical states activation time as shown 

in the Figure 3. Based on historical data and probabilistic 

approach a prognosis can be performed. Moreover, some 

targeted maintenance tasks will eventually be proposed by 

the system.  

 
Figure 3. Discretized Failure Mechanism time evolution 

 

As defined in the review of Schwabacher and Goebel on 

intelligent prognostic approach (Schwabacher and Goebel 

2007), the FMSA is based on a damage propagation model 

and a data driven model (expert system, knowledge-

based).Table 1 present the categorization proposed by 

Schwabacher and Goebel in 2007. 
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Table 1. Possible models (rows) to address specific 

problems (columns) (Schwabacher and Goebel 2007) 
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detection 
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Machine 
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In complex systems such as hydro-generators, failure 

mechanisms evolve in all system components. To build a 

list of all possible failure mechanisms is a complex task; it 

requires many areas of expertise. After several experts’ 

interviews, it was noticed that they usually have a clear view 

of failure sub-mechanism but have more difficulty in 

building complete complex failure mechanisms longer than 

5 successive physical states. This is especially true when 

multiple side branches split from a main common branch. 

Even in the literature, failure mechanisms are indirectly 

described as degradation progress and symptoms but report 

or papers seldom present them in a logical succession of 

physical state. A methodological approach is thus needed to 

build failure mechanisms in a causal tree structure. 

In the literature, some methods and models are already used 

for Root Cause Analysis (RCA) which shows similarities 

with Failure Mechanism Analysis (FMA). A paper written 

by (Medina-Olivier et al. 2012) proposed a survey on 

reliability and risk analysis main approach for RCA. Five 

methods such as Causes and Effect analysis, Hazard and 

operability studies (HAZOP), Bayesian Networks, FMEA 

and Fault tree are compared according to different criteria 

(experience dependence, time and resource consumption, 

providing a path to root causes…). The author concludes 

that a single method does not allow characterizing all causal 

relationship of the degradation process of a system but they 

all give parts of information about it. For complex systems, 

those methods give essential information on degradation 

mechanism allowing fault detection and probable root 

causes categories. However, they do not allow defining the 

failure mechanism from a root cause to a failure mode. The 

authors suggest that the best way to perform a Failure 

Analysis is to combine information from different 

approaches such as FMEA and Fault Tree. 

The approach we propose is doing exactly this by using 

information captured from literature such as FMEA and 

expert knowledge to build structured causal trees step by 

step. As information available only contains parts of failure 

mechanisms, we have built an algorithm to assemble those 

sub-mechanisms into complete failure mechanisms. Once a 

complete set of detailed causal trees have been built, it can 

be used to perform Condition Based Maintenance (CBM) 

and improve asset management. This is true for any 

industry. In our case, it serves as the premise for the 

implementation of a FMSA-based prognostic approach.  

A statistical analysis of hydro-generator failures performed 

by CIGRE in 2003 (CIGRE 2003) revealed that stator 

failures represent 70% of generator failures and the rotor, 

bearings and the excitation system represent all together 

approximately 25% of all failures. As the FMSA of the 

stator has already been performed, this paper will focus on 

hydroelectric rotor failure mechanisms. 

2. METHODOLOGY 

The following section will describe step by step the 

methodology developed to generate a structure causal tree 

from FMEA and from sub-mechanisms found in the 

literature. 

2.1. System definition & delimitation 

The first step is to define and delimitate the scope of the 

work. Each component of the system has to be defined 

precisely by a unique appellation in order to avoid miss-

understanding between experts. A universal terminology has 

to be defined for physical state naming such as 

System/Components/Sub-component/Part/ physical state. 

The system has to be delimitated and external components 

which will interact with the system as input or output on 

failure mechanism should be identified. 

2.2. Sub-failure mechanisms analysis based on FMEA 

interpretation 

Once the system is defined, a survey on its failure 

mechanisms has to be performed by gathering FMEA, 

technical papers, accident reports, RCA… The methodology 

proposed can be defined as a “Bottom Up” strategy. At first, 

failures modes and sub-mechanisms leading to failure have 

to be identified by interpreting the FMEA results. It creates 

a work base. The next step is to identify and build all 

possible logical successions of physical states called sub-

mechanisms (i.e. sets of a few successive physical states) of 

the system by interpreting the information from scientific 

literature and expert knowledge. The analysis can be carried 

out on individual components or on the entire system. 

All sub-mechanisms interpreted have to be listed in a 

database, like the one shown in Figure 4. For example, it 

was found that the rotor degradation state e4 (ex: Rotor 

Interpol connection cracking) is caused by the degradation 

e3 (ex: Rotor Interpol connection mechanical fatigue stress) 

and can induce e5 (ex: Rotor Interpol connection failure). In 

this first rough analysis, all lines are independent and yet no 

links between sub-mechanisms exist. 
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Figure 4. Example of database sub-mechanisms 

2.3. Causal Trees structure assumptions 

A physical state can be represented as a node which has 

inputs and outputs as shown in the Figure 5. 

 

Figure 5 Physical state properties 

 

Some assumptions have been proposed in order to generate 

causal trees from the sub-mechanisms in Eqs. (1, 2, 3, 4): 

 Root Causes (C) are physical states which do not have 

any input: 

 en ∈ C if ∀i Ei,n= ∅ (1) 

 Failure Modes (F) are physical states which do not have 

any output: 

 en ∈ F if ∀j En,j= ∅ (2) 

 All outputs of a physical state are independent of its 

inputs: 

 ∀i,j  Ei,n En,j  (3) 

 All inputs of a physical state are independent of its 

outputs. 

 ∀i,j  En,j Ei,n  (4) 

2.4. Causal tree generation algorithm 

Based on those assumptions, an algorithm has been 

developed in order to assemble sub-mechanisms retrieved 

from the literature into a structured causal tree. The causal 

tree generation methodology is presented in the Figure 6. 

 
Figure 6. Causal Tree generation methodology 

 

Once the Sub-failure Mechanisms Analysis database has 

been finalized, the algorithm scans all sub-mechanisms and 

identifies inputs and outputs of each physical state in a 

matrix. For example, using the fictive sub-mechanisms in 

Figure 4, the resulting input/output matrix is presented in 

the Table 2. 

Table 2. Input/Output Matrix 

 Input (i) 

O
u

tp
u

t 
(j

) 

Ei,j e1 e2 e3 e4 e5 e6 e7 e8 e9 

e1 0 1 0 0 0 0 0 0 0 

e2 0 0 1 0 0 0 1 0 0 

e3 0 0 0 1 0 0 0 0 0 

e4 0 0 0 0 1 0 0 0 0 

e5 0 0 0 0 0 0 0 0 0 

e6 0 0 0 0 0 0 1 0 0 

e7 0 0 0 0 0 0 0 1 0 

e8 0 0 0 0 0 0 0 0 1 

e9 0 0 0 0 0 0 0 0 0 

 

The physical state e2 have one input e1 and two outputs e3 

and e7 as shown in Eqs. (1, 2): 
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 Ei,2= (e1) 

E2,j = (e3, e7) 

(5) 

(6) 

The algorithm will assemble physical states together 

independently of previous sub-mechanisms. Thus, 

generating a large amount of new combinations. 

Based on the proposed assumptions, the algorithm is able to 

identify the root causes and failure modes of the system. In 

our example there is only one root cause e1, and two failure 

modes e5 and e9. Once the root causes are all identified, they 

need to be classified into categories in order to structure the 

causal trees and to allow advanced root cause analysis. The 

categorization chosen has been taken from a report of the 

US. Nuclear Regulatory Commission (Nuclear Regulatory 

Commission 2003). This report proposed more than 20 sub-

categories originating from 7 main categories such as 

Design/Construction/Manufacture or Operation/Human 

Error. In order to categorize identified root causes, each 

corresponding categories should be added as input. The 

algorithm will take the categories into account during the 

tree generation. Our root cause e1 has been affected to the 

fictive root cause category Cat3 as shown in Figure 7. 

To generate a structured causal tree, the algorithm calls each 

root cause and scans the input/output database. Then a 

“While” loop is initiated generating failure mechanisms by 

adding each physical state output by output from a root 

cause up to failure modes. Still based on the same fictive 

example shown in Figure 4 and Table 2, a structured causal 

tree has been generated in the Figure 7. An important 

remark is that this logic can be easily reversed for root cause 

analysis. 

 
Figure 7. Causal tree generated 

 

Next, the algorithm initiate a loop test verifying that each 

physical state appears only once in each failure mechanism.  

The main goal of the algorithm is to allow the transition 

from a simple structure composed of sub-mechanisms to a 

complex structure of all mechanisms. 

2.5.  Expert validation process 

A validation process has to be done on each failure 

mechanism generated. This is one of the most important and 

complex part of the process. For this, two methods were 

used: a validation process based on sub-mechanisms and 

one on the complete causal tree generated as shown in the 

Figure 6. 

3. HYDRO-GENERATOR ROTOR APPLICATION: 

3.1. Hydro-generator Rotor definition & delimitation: 

Hydro-generators are large machines which can measure 

over 12 meters in diameter. They are composed of three 

main components, the stator, the rotor and the excitation 

system. In the current case, the system studied has been 

defined as the rotor. As shown in the Figure 8, the rotor is 

composed of three main internal components which are 

themselves composed of sub-components and parts. Six 

external components related to our main component have 

been identified, such as the stator and the excitation system. 

They may interact with the rotor as input or output in some 

failure mechanisms. 

 
Figure 8. Rotor definition & delimitation 

3.2. Hydro-generator Rotor Failure mechanisms analysis 

A literature review has been done on hydro-generator rotor 

failure mechanisms. Using FMEA such as those from the 

Electric Power Research Institute (EPRI 1999) and other 

sources (Calleecharan and Aidanpa 2011; EEA 2013; EPRI 

2009; Hydro-Québec 2007; Walker 1981), failure modes 

and sub-failures mechanisms leading to them have been 

identified. Then an interpretation of the literature review and 

expert knowledge lead to the creation of 108 rotor sub-

mechanisms based on the combination of 110 physical 
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states. Those sub-mechanisms have an average of 3 

successive physical states. They are listed in a structure 

similar to the one presented in the Figure 4. 

3.3. Hydro-generator Rotor Causal Tree generation 

Based on the 108 sub-mechanisms, an input/output analysis 

has been done and 24 root causes have been identified. 

These causes have been associated with 5 main categories. 

Then, by assembling the sub-mechanisms, a structured 

causal tree has been generated comprising a total of 294 

rotor failure mechanisms with an average of 10 successive 

physical states for each failure mechanisms. An example is 

illustrated in the diagram in Figure 9. In this example, three 

complete rotor failure mechanisms all originating from the 

same root cause (“Over speed excursion”) lead to two 

different failure modes (“Half phase current unbalance “& 

“Rotor guide bearing excessive vibration”). The root cause 

has been categorized in a sub-category (“Incorrect 

procedure”) belonging to the “Operation/Human error” 

category. Since each failure mechanism is defined by a 

unique sequence from a root cause to a series of physical 

state then to the final failure; as soon as a mechanism differs 

from another by one single state, it is considered as a 

separate mechanism. This is the case in figure 9 where two 

of the mechanisms only differ by the failure mode. This will 

become important later when the severity (impact) of 

failures will be considered. 

The algorithm developed has allowed us to generate 

systemically and reliably all possible failure mechanisms in 

a detailed causal tree structure based on sub-mechanisms 

interpreted from the literature. This automatic generation 

makes sure that no possible mechanisms are omitted. 

3.4. Validation process 

After the tree generation process a validation must be done 

by experts. All the mechanisms automatically generated by 

aggregation of sub-mechanisms do not necessarily bare any 

physical meaning. In some case the algorithm may have 

assembled sets of physical states into mechanism according 

to our rules and it is thus mandatory that experts validate all 

proposed mechanisms. Another aspect of the validation 

process is related to the scope of our work, aimed at 

improving preventive maintenance and mainly looks at slow 

degradation process. Thus any instantaneous failure 

mechanisms not giving any warning sign, should be 

discarded by the expert from our analysis. Although these 

modes will be extracted from the FMEA and are part of the 

original 294 rotor mechanisms, they will be discarded by the 

experts, not because they do not exist, but because they are 

not relevant for the sake of prognosis. 

 
Figure 9. Illustration of the Rotor Causal Tree generated 

4. DISCUSSION 

Based on assumptions made on sub-mechanisms and 

physical states input/output analysis, an algorithm has 

allowed to generate all possible failure mechanisms in a 

coherent causal tree structure. We believe that it is much 

easier for expert to discard from all the mechanisms 

proposed by an algorithm, the ones that are not plausible, 

than to generate all possible mechanisms one by one without 

any omission. This constitutes the first step in the rotor 

FMSA process. The next step will be to combine the final 

failure tree with the results of diagnostic measurement from 

rotor using a symptom and threshold analysis. Once this is 

done, automatic identification of active failure mechanism 

will be possible. This will eventually lead to identification 

of personalized maintenance actions suited for each 

generators’ condition and probable timeframes to carry out 

the maintenance while reducing failure risk. This can be 

called a prognosis. 

5. CONCLUSION 

A methodological approach has been developed in order to 

identify and structure all possible failure mechanisms 
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potentially occurring in a complex system as causal trees. 

Based on FMEA reports and expert knowledge, a Failure 

Mechanisms Analysis was built from identification of sub-

mechanisms from short sequences of physical states. Then 

an algorithm has been used to assemble those sub-

mechanisms and propose structured causal trees 

representing all possible failure mechanisms of the system. 

The proposed causal trees have to be validated to ensure that 

all failure mechanisms are coherent and real. This approach 

was used to build a Failure Mechanism Analysis of hydro-

generator rotors and causal trees have been generated. The 

algorithm generated 108 sub-failure mechanisms with an 

average of 3 successive physical states and 294 complete 

failure mechanisms with an average of 10 successive 

physical states. Results have shown that in general 

generated failures mechanisms are coherent and well 

structured. 

The main advantages of this approach are to help experts to 

move from a simple system such as sub-failure mechanisms 

to a complex system (causal trees) using an algorithm to 

give guidelines to experts by presenting them well-

structured causal trees for further validation. 

NOMENCLATURE 

en Physical state n 

Ei,n Physical state input i of the physical state n 

En,j Physical state output j of the physical state n 

C Root Cause Domain 

Cati Root Cause Category i 

F Failure Mode Domain 
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