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ABSTRACT 

Keeping up with the technological advances, turbo-

machinery industry aspires to integrate manufacturing, 

servicing and maintenance of their plants. Typically, these 

objectives may be accomplished by adoption of condition 

monitoring services and diagnostic solutions, resulting in 

improved plant operations, lower maintenance cost, and 

impart safety and reliability. Specifically, failure analysis, 

within systematic diagnostics, is a fundamental feature of 

design and maintenance phase, as it allows fault 

identification, and its causes and effects that propagate at 

different system levels. With the large number of 

subsystems and process flows, failure analysis for industrial 

gas turbines is non-trivial, and requires expertise of system 

mechanics, aerodynamics, thermodynamics, etc. 

Consequently, in order to realize an efficient system 

analysis, we device an automated model-based approach to 

failure analysis for industrial gas turbine applications. This 

paper presents context-independent qualitative models of 

key turbine components, which are most error-prone, 

together with their potential failure mode descriptions, and 

their impact at different system levels. Using an existing 

reasoning engine, we present behavior models and results 

for two most vulnerable turbine subsystems i.e. Lubrication 

Oil System and the Core Gas Turbine Engine. Finally, we 

evaluate the practical use-cases of this model-based solution 

implemented for diagnostic services at Siemens AG. 

1. INTRODUCTION 

Over the decades, the turbo-machinery industry has been 

operating complex and expensive machines, with a long 

history of providing quality products and services to their 

customers. In addition, this industry has been successful in 

utilization and implementation of various degrees of 

diagnostics, prognostics and health management 

capabilities, which has helped the entire turbo-machinery 

industry to manage and keep up with the desired efficiency 

of their massive systems, and most importantly, gain 

customer loyalties. Nevertheless, the automation curve is 

still pretty steep, and the plant performance is highly 

dependent on diverse and time-variant technical, 

operational, environmental and financial conditions 

(Siemens AG, 2014).  

From the customer perspective, large process units produce 

daily revenue in excess of 5 million US dollars. In this 

context, component availability, reliability assessment and 

optimization are an important part of plant revenue and 

profits, as stated by Forsthoffer (2011). Consequently, 

industrial communities remain concerned to maximize 

reliability and product throughput, and at the same time 

minimize the maintenance and operating cost. This can be 

achieved by adopting a new business model that integrates 

manufacturing, service and maintenance, and furthermore, 

employs intelligent diagnostics and prognostics 

technologies. This integration would aim to boost the 

industrial plant operations, its longevity, impart safety, 

reliability, asset integrity, mitigation of risks, and help to 

continuously improve plant’s compatibility to variable 

conditions. According to the current trend, following are the 

key areas being explored as a part of automation and 

reliability improvement programs (Forsthoffer, 2011): 
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 Site reliability audits 

 Assessment methods 

 Availability improvement plans 

 Condition monitoring techniques 

 Diagnostics Solutions 

 Prognostics and maintenance plans 

Focusing on the practical implementation of aforementioned 

solutions, numerous industry leaders emphasize on failure 

analysis as an input to diagnostic framework. Failure 

analysis serves as a baseline to identify and analyze the 

most error-prone units, and strengthen the tangible problem 

solving capabilities. This approach serves to determine 

system and component or sub-component failures, and its 

impact across the subsystems. Therefore, failure analysis is 

a key enabler and attributes to “enlighten” the diagnostic 

capabilities. It also improves the design, service and 

maintenance decisions by anticipating required actions, and 

provide unprecedented insight into the system’s health. 

Thus, it is widely adopted as a successful approach.  

From stakeholder’s perspective (including senior managers, 

end-users, service engineers, design engineers etc.), failure 

analysis is a way to quantify reliability, and improve the 

quality of the plant. These stakeholders are a part of design 

and maintenance cycle and contribute in their own capacity. 

The motivation and role of the computer scientist is to 

provide next-generation technology tools, in order to match 

the diverse requirements set by the stakeholders (see Fig. 1). 

 

Figure 1. Stakeholder Interest and Influence Matrix 

Fig. 2 shows the current environment and infrastructure of 

the turbo-machinery industry that provides opportunities to 

enhance the software services for diagnostics and 

prognostics. These services can be data-driven or 

knowledge-based expert systems. The services are mainly 

translated by using the available sensor technology, central 

database technology and feature requirements from a large 

group of data consumers.  

Considering the different perspectives described above i.e.; 

i) the reliability management and improvement process, ii) 

adoption of failure analysis approach, iii) requirements from 

the stakeholders, and iv) opportunities within the existing 

infrastructure (software services), the experts themselves 

have to decide a methodology and tools that best fits for 

them for failure analysis and which also align with the 

standards. This is indeed a task because it requires them to 

understand the properties of the system failures, the standard 

requirements and how to achieve it.  

 

Figure 2. Environment and Infrastructure for Turbo-industry 

 

Another constraint to the practical implementation of failure 

analysis for turbines is a diverse set of configurations of 

every unit. Every power generating plant has different 

operating and process requirements and thus, often differs in 

its design. In addition to this, it is non-trivial to capture the 

behavioral properties and dependencies of critical units in 

the rotating equipment because it requires greater expertise 

of mechanics, thermodynamics and aerodynamics as 

discussed by Ceschini and Saccardi (2002).  Currently, 

several off-the-shelf approaches are available that conduct 

failure analysis manually and/or take support from semi-

automated tools. The results from these approaches are high 

in efforts and costs, while still compromise the quality with 

respect to the completeness and accuracy of results. This 

identifies the demand for a systematic and innovative 

solution as an addition to the available software services.  

The solution should be reliable, easy to use and cost 

effective. 

To address the above mentioned challenges, this paper 

presents a model-based solution to automate the task of 

failure analysis for diagnostic purposes. The high demand of 

a sophisticated tool would justify to the design and service 

recommendations, especially when the changes in the 

system design happen on yearly basis. We adopt a software 

engineering approach at a very abstract level in order to 

make a context-free solution that is independent of a fixed 

structure or architecture design. 
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The core of our solution task is devising a software system 

to identify faults and their impact. Elements for this task, 

are:  

 specifications of the faults modes of the components, 

turbine situations and ambient conditions;  

 the failure modes, which are violations of system 

functions;  

 and impacts such as turbine trip or low shaft speed. The 

impact can be monitored at different system-levels such 

as component-level, sub-system level and in the entire 

system.  

Our software solution follows the knowledge-based systems 

and software engineering principles for problem solving and 

is based on so-called qualitative deviation models (Werthne, 

1994) to capture the domain application. These models can 

capture how significant deviations from nominal behavior 

are generated and propagated by components models. By 

using an automated model-based reasoned along with an 

existing constraint-based predictive algorithm (Raz’r 

OCC’M, 2014), we provide a model-based generation of 

failure analysis results (which has been developed for the 

physical components of the system, and also extended to 

include electrical control units) along with its effects. Our 

solution has been successfully introduced at Siemens AG 

and this paper presents some industrial use-cases of our 

implementation. 

The paper follows with Section 2 describing the application 

task at hand with an overview of industrial gas turbines. 

Section 3 presents the proposed model-based solution 

architecture and its foundations. Section 4 presents the case 

study and two use-case scenarios for industrial gas turbines 

along with the results. Finally, we conclude in Section 5 

with discussion and future outlook. 

2. THE APPLICATION BACKGROUND 

2.1. Reliability Perspective of Industrial Gas Turbines 

In the context of rotating equipment engineering, gas 

turbines moves product i.e. gases; either for power 

generation or mechanical drive applications. In general, 

every unit of a plant consists of a driven machine, driver, 

transmission device and is supported by auxiliary equipment 

as discussed by Forsthoffer (2011). Fig. 3 shows topology 

of an industrial plant. 

  

 
Figure 3. Industrial Plant Landscape 

Each of the equipment mentioned above can be classified 

further and have different configurations. For example: 

drivers can be classified as steam turbines, gas turbines, 

motor (Induction, synchronous or vari-speed) or engines 

(Internal combustion, Diesel or Gas).  The key is to 

understand the functionality of its critical components in 

order to effectively monitor and maximize plant safety and 

reliability. Reliability is commonly defined as the amount of 

time equipment operates in one year. It is an ability of the 

equipment unit to perform its specified function without a 

forced (unscheduled) outage in a given period of time 

(Forsthoffer, 2011). In case of an outage, the loss of revenue 

can exceed a million U.S. Dollars a day as shown by 

Forsthoffer (2011). The cause of an outage is usually the 

shutdown of a critical component. Many leading companies 

including our industrial partner recognize the reliability 

management of the critical component and adopt following 

strategies (Ceschini and Saccardi, 2002): 

 

 Involve the end-user in the specification, design and 

installation phase of the plant.  

 Determine the life span of the plant and its component 

which is extremely long compared to development 

phases.  

 Analyze the instrumentation and location of the plant 

that directly impact the equipment’s reliability. 

 Focus the design and installation because it has a 

substantial influence on the maintenance requirements, 

its cost and availability of particular piece of 

machinery. 

2.2. Failure Analysis 

Failure analysis fulfills the reliability requirement by 

predicting what could go wrong in the system. It determines 

the severity and probability of a component’s failure mode 

that can occur in a given system and is considered to be a 

bottom-up inductive technique which starts from 

faults/failure modes and ends at the resultant effects (Dobi, 

Gleirscher, Spichkova, & Struss, 2013).  

2.2.1. Requirements on fault identification and impact 

determination 

The pre-requisite of performing model-based failure 

analysis is to check the system design for completeness and 

consistency of the models. The analysis could go wrong 

when the rules and component models are wrongly 

designed. Furthermore it can be applied to many different 

levels in a hierarchy of an industrial plant shown in Fig. 4. 

The effects are produced at the boundaries of the systems 

and subsystems, and for this reason it is necessary that the 

intermediate effects keep track of fault/failure modes at each 

level (Dobi et al, 2013). The analysis can be performed by 

using parameters such as severity, probability of occurrence, 
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and detect ability. In our system, we consider the effects of 

(single) faults on the system behavior. 

 

Figure 4. Decomposition of an Industrial Plant 

In Fig. 5 we draw an example of an axial bearing using a 

traditional failure analysis template as presented by Abilla 

(2011). The process starts by defining failure modes as a 

first step, the functional aspect, type, failure impact, causes 

and detection mode. The criteria i.e. severity, occurrence 

and detection levels are calculated to quantify the decisions, 

setup priorities and corrective measures. 

 

 
Figure 5. Axial Bearing Failure Mode Analysis 

 

The tool is acquired to address the reliability and quality 

aspects of the system. Though, manual adoption of failure 

analysis can be very expensive. But with automation, it can 

be cost effective in terms of design changes and can 

increase satisfactory level of manufacturers and customers. 

In our presented solution, we automate by using behavior 

models and check for implication or entailment to the 

functions.  

3. A SYSTEMATIC MODEL-BASED APPROACH TO FAILURE 

ANALYSIS FOR INDUSTRIAL GAS TURBINES 

The proposed approach has been applied to a specific 

product line of Siemens industrial gas turbines. The 

following section describes the application details and 

solution implementation. 

3.1. High-level System Design 

Fig. 6 shows the high level system design of our solution. 

Using remote monitoring service database (i.e. MS SQL 

database in our case), first we formulate interesting turbine 

scenarios by adopting sensor signal processing techniques. 

These scenarios are presented as set of complex event 

processing rules using physical parameters that define 

different states of the turbine. In the next step, we instantiate 

complex event processing for each unit under consideration. 

Few examples of these events are “modelX01 startup 

condition”, “modelX02 turbine operating high ambient 

conditions”, “modelX03 operating low ambient conditions” 

etc. In parallel to this, we develop a component library to 

model various critical components of the turbine system. 

The nominal (OK mode) and faulty behaviors (failure 

mode) of each component is captured as qualitative 

constraints along with its impact on the system level as 

presented by Struss (2004). Structure for a given physical 

system is defined separately as interface variables that will 

connect components together. Once the component library 

and structural description is made available, we construct a 

system model for analysis. System model comprises of 

different configurations supported by connecting the 

components in various styles. Once the system model is 

ready, we run an existing automated model-based reasoner 

for failure analysis task. Part of this algorithm is presented 

by Struss and Fraracci (2014) which solves for the finite 

constraint satisfaction problem. The reasoner considers the 

complex events as scenarios and a specific system model 

description for each plant to check if the propagation of a 

failure would entail the local or system level impact or not. 

Finally the model-based failure analysis results are 

presented as recommendation and alert messages. The 

solution determines the impact that may occur under a 

particular failure mode and predicts whether it can lead to a 

critical situation or violate any reliability requirement. 

These results serve as in input to the diagnostic framework. 

They are useful together with other methodologies to 

strategize and follow for root-cause analysis and other 

diagnostic tasks. The qualitative model-based system 

development and its foundation concepts are described in 

the following sections.  
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Figure 6. High-level System Design 

3.2. Model-based Solution Foundations 

The key feature of model-based approach is the re-use of 

models and easy adaption to new structures/topologies and 

variants (physical system, software architecture). Some key 

features described by Struss (2008) of the models used in 

our work to produce successful results are: 

 The models are context-free and compositional. 

 The models should realize how the faults in one 

component of the system propagate to the rest of the 

system. 

 The model’s qualitative deviations from their nominal 

behavior serve as a basis for detecting faulty 

components. 

The failure analysis formalization as shown by Struss and 

Fraracci (2014) considers a set of scenarios and a set of 

relevant component failures and checks whether they can 

lead to an unwanted effect (violations of the system 

functionality). If we consider one component and one faulty 

mode MODELF, for a given input scenario SCEN, we need 

to check whether it entails the specified effect EFFECT, or 

that they are all consistent with each other. The check can 

be performed by a constraint satisfaction algorithm (Dobi et 

al, 2013).  

SCEN   MODELF ⊢ EFFECT 

SCEN   MODELF   EFFECT ⊬ 

E.g. consider the scenario where the gas turbine is in 

operating phase, compressor is on and the rotor shaft is 

active. If the compressor falls into the high pressure faulty 

mode, then it is possible that the rotor shaft speed will turn 

less than it should which is also the effect. Formally the 

inference of the system is: 

(GasTurbine_Demand = “Operating”)   (Compressor 

FaultMode = “High_Inlet_Pressure”) ⊢ Low_ShaftSpeed 

(GasTurbine_Demand =“Operating”)   (Compressor 

FaultMode = “High_Inlet_Pressure”)    Low_ShaftSpeed 

⊬ 

3.3. Tasks 

The task is to make the failure analysis of the turbine 

system, the causal relationships between faults which occur 

in the system and their effects which are unintended 

behavior of the different components such as bleed valve 

stuck opened etc. These effects are part of series of 

situations such as turbine is in operating condition, coasting-

down, and stopping, with high ambient conditions or normal 

ambient and so on. The overall impact is either the 

automatic trip or effects on exhaust pressure, temperature 

and mass flow. The purpose of this work is to identify 

possible faulty components that can lead to trips of the 

turbine or high exhaust conditions that can cause high C02 

emission, with the objective to reduce these risks by 

maintenance, redesigning the existing components, or 

adding others in some cases e.g. more sensors. Information 

provided from the industrial partner includes information 

about the modes of operation of the turbine, system 

functions, list of faults, turbine situations, and impacts. 

Our task is achieved by modeling two sub-systems 

components that is of the core engine and lube oil system, 

identifying the failure modes and their effects along with the 

overall impact on the turbine system. 

4. CASE STUDY: AUTOMATED FAILURE 

ANALYSIS OF AN INDUSTRIAL GAS TURBINE 

The case study was conducted to demonstrate the feasibility 

of the approach described in section 3 for one of the 

product-line of Siemens industrial gas turbines. The turbine 

system in general has a number of sub-systems that work 

together to perform a specific task such as power generation 

or mechanical drive. Fig. 7 gives an overview of turbine 

model at sub-system level.  These subsystems are functional 

and can be configured differently for every model/design of 

the industrial plants.  In this paper, we present our solution 

for two of the most vulnerable sub-systems i.e. lubricating 

oil system and the core gas turbine engine. It is important to 

note that the main system which is evaluated is the gas 

turbine at system level, which has: turbine driver, the 

physical subsystems containing both electrical and 

mechanical subsystems; the software controlling part and 

the electrical subsystem. The turbine driver gives commands 

to the turbine like start up, coast-down and stop. The 

physical system contains all the necessary mechanisms to 

allow the physical phenomena like gas flow path, 

combustion, etc., to occur. The electrical system offers the 

platform to send commands initiated from the software 

package of the turbine, which in the end are needed for the 

mechanical system and its components.  

In the following sections, we present the component models 

and results for Siemens use-cases respectively, including 

fault modes, effects, the turbine conditions (e.g. turbine 

driving situations), and the impacts.    
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Figure 7. Schematic view of an Industrial Gas Turbine 

4.1. Use-case #1: The Core Gas Turbine Engine 

The core gas turbine engine is the heart of any industrial gas 

turbine. Its purpose is to generate a flow of pressurized hot 

gas which is converted into mechanical energy, which 

drives the load (e.g. an electric generator) via a gear box. 

The specified model under consideration operates in an 

open cycle with straight air and gas flow through the 

turbine. The core engine can be divided into three major 

sections: namely the compressor, the combustor and the 

turbine section. 

4.1.1. The Physical Model 

The main mechanical, thermo-dynamical, hydro-dynamical 

and software (control unit) components considered in the 

study of the core engine are presented in the Fig. 8.  The 

ambient air is captured and either cool down or heated up by 

the heat exchanger component. Later the compressor draws 

this air and compresses it by using an adiabatic process of 

thermo-dynamics. The compressor is dependent on startup 

motor in the turbine startup phase and uses variable guided 

vanes and bleed valves to control the pressure ratio and 

prevent surge. The compressed air enters the combustor 

where it is heated up. The burner mixes the gas fuel coming 

from the fuel system with the compressed air in the 

combustor and maintains stability of the main and the pilot 

flame. Finally, the hot gas from the combustor enters the 

turbine section. The turbine section expands the air and 

drives the compressor and the generator. The gearbox 

transmits power from turbine to the generator. Ultimately 

the generator is being operated to generate electricity for the 

power grid and the hot gas is exhausted by the diffuser to 

the air exhaust system. The rotor assembly is associated 

with the rotor shaft speed and considers the rotor welded on 

the shaft. It consists of casing, blades, discs and bearings. 

Here we only consider the radial and thrust bearing that 

affects the shaft speed when faulty. The cooling system 

maintains the temperature of the bearings. These mechanical 

components are controlled from specialized Electronic 

Control Units (ECUs) which controls the heat exchanger, 

start-up motor, variable guided vanes, bleed valves, rotor 

assembly and the gas fuel system. 

 

Figure 8. Physical Model: The Core Gas Turbine Engine 

4.1.2. Component Models 

In this section, we show the basic examples of component 

models, their physical quantities, domain types, connecting 

terminals and conventions that we have modeled so far for 

the physical system with the intention to connect them as in 

Fig. 8. The components exchange variables which represent 

physical quantities through the interfaces (terminals). The 

physical quantities exchanged between them are: 

temperature (T), pressure (P), flow rate (F), position (pos), 

Speed (V), Active power (A), signal/commands etc. and 

their deviations from nominal values expressed as 

∆”Physical_Quantity”, e.g. for pressure it would be 

∆Pressure. Most models variables and all deviations have 

values from the domain Sign = {-, 0, +}, whereas he 

commands and states have Boolean values {0, 1}. 

The core purpose of the core engine model is to determine if 

the pressure ratio in the compressor is sufficient enough, 

temperature in combustor is nominal; rotor speed is up to 

the setting point and power output of the turbine can 

synchronize with the load (e.g. generator). 

Example Component: Variable Guided Vanes 

The purpose of variable guided vanes, VGV, is to control 

the compressor inlet mass flow. It is controlled by ECU, 

which send signals (command = {0, 1}) to position the 

VGV depending on the inlet temperature and rotor shaft 

speed. The qualitative behavior model of VGV is described 

as: 

Position = function(Command) 

The faulty modes: 

 “Stuck_at_PositiveSwirl” is when Position is greater 

than the function(Command)  
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 and “Stuck_at_NegativeSwirl” is when Position  is less 

than the function(Command). 

The position of the VGV depends on the signal received by 

the ECU which can either be correct or wrong. . This will 

have an effect on the whether the VGV is positioned 

correctly or wrongly also what effects it will produce. If the 

command received from the ECU is wrong, e.g. the 

ECU.Command = False (meaning the VGV should be 

closed) but there is a deviation in the command 

ECU.∆Command = True, and in the mean time the VGV is 

actually Open (i.e. Position > function(Command) ), even 

though there is no deviation in the physical component 

(∆Position =0) due to the SW error, the valve still results to 

be in the faulty mode: Stuck_at_PositiveSwirl. This faulty 

mode leads to a ΔPosition different from zero, as the VGV 

will transfer increase the inlet mass flow when it should 

have not. 

Example Component: Compressor 

The compressor model captures the pressure balance, heat 

flow and mass flow equations in a qualitative fashion. These 

equations are dependent on quantities exchange by rotor 

assembly, bleed valves, VGVs, heat exchanger, motor, and 

turbine section. The model for Pressure Balance is described 

as:  

Pressure_from_Compressor  = pressure_ratio  

Pressure_from_heatexchanger 

Where pressure ratio is a function of rotor shaft speed:  

Pressure_ratio = function(Speed_from_Rotor)  

The temperature rise is modeled as:  

Temperature_from_Compressor =  Temperature_from_HX 

 (Pressure_ratio)  (gamma_constant -1 / 

gamma_constant).  

where (gamma) is ratio of specific heat at constant pressure 

to volume.  

The Heat transfer function under the adiabatic process is 

seen as Q = 0 whereas the mass flow is function of the 

pressure ratio, inlet mass flow and VGV angle. 

Flow_from_Compressor = Flow_from_HX  

Flow_from_VGV  pressure_ratio. 

The faulty mode captured as deviations are: 

  “SurgeDetected” happens if ΔPressure_ratio and the 

ΔFlow_from_Compressor is positive 

 ”HighDifferentialPressure” occurs when 

ΔPressure_from_Compressor  is positive;  

 Similarly ”LowDifferentialPressure” occurs when 

ΔPressure_from_Compressor  is negative. 

 

 

 

Example Component: Rotor Assembly 

The rotor assembly defines the rotor shaft speed of the 

turbine and the compressor. The speed is dependent on the 

inlet temperature and it highly affected by the temperature 

of the bearings. The qualitative nominal behavior can be 

described as: 

RotorSpeed = M
+
(inlet_temperature, bearings_ 

temperature)  

and ΔRotorSpeed = 0; where M+ is a monotonic function. 

The fault modes captured as deviation models are: 

 “UnderSpeed” if ΔRotorSpeed is negative  

 “OverSpeed” if ΔRotorSpeed is positive. 

4.1.3. Failure Analysis Results for Core Engine 

Table 1 shows the model-based generation of failure 

analysis results for the core turbine engine produced 

automatically by reasoning engine. The result does not 

outreach the expert knowledge but only supports in analysis 

by automating the mechanistic part of their work. Given the 

current system models, operating scenarios and failure 

modes, the tool is cost effective, correct and complete to 

capture various settings of a complex system, whereas 

presents qualitative results that facilitate the human 

reasoning. These results have been evaluated against the real 

industrial scenarios and fits best to their knowledge. For 

example: under the turbine startup scenario, the motor 

failure may abort the operation while in operating mode its 

failure has no impact. Likewise, under operating with 

normal ambient conditions may trip due to compressor’s 

failure of surge or low pressure ratio or diffuser leakage etc. 

Table 1. Partial Failure Analysis Results of Core Turbine 

Engine 

Turbine 

Scenario 

Turbine 

Component 

Failure Mode  Impact 

Startup Startup 

Motor 

Broken :startup abort 

Operating 

Normal 

Ambient 

Startup 

Motor 

Broken >>no 

system-level  

effect<< 

Operating 

Normal 

Ambient 

Variable 

guided 

vanes 

Stuck at 

Positive Swirl 

:increase 

compressor 

pressure 

Operating 

Normal 

Ambient 

Variable 

guided 

vanes 

Stuck at 

Negative 

Swirl 

>>no 

system-level  

effect<< 
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Operating 

Normal 

Ambient 

Bleed 

Valves 

Stuck at 

Open 

:reduce 

compressor 

pressure 

Operating 

Normal 

Ambient 

Compressor Surge 

Detection 

: turbine trip 

Operating 

Normal 

Ambient 

Compressor High 

Pressure 

:increase 

turbine 

pressure 

Operating 

Normal 

Ambient 

Compressor Low 

Pressure 

>>no 

system-level 

effect<< 

Operating 

Normal 

Ambient 

Diffuser Leakage :reduced 

turbine 

pressure 

Operating 

Normal 

Ambient 

Rotor 

Assembly 

Over Speed :increase 

turbine 

power 

Operating 

Normal 

Ambient 

Radial 

Bearings 

High 

Temperature 

:reduce rotor 

speed 

Operating 

Normal 

Ambient 

Radial 

Bearings 

High 

Vibration 

:reduce rotor 

speed 

4.2. Use-case # 2: Lubricating Oil System 

The second use-case conducted at Siemens AG is the 

lubricating oil system. This is a part of an auxiliary system. 

Its purpose is to supply oil of correct pressure and 

temperature to the gas turbine engine. The pressure and 

temperature of the oil is continuously monitored to secure 

safe operation of the turbine. 

4.2.1. The Physical Model 

The main components of the lubricating oil system are 

shown in Fig. 9. The heater maintains the temperature of the 

oil tank, whereas the pressure in the tank is controlled by the 

fan component. The oil tank is a reservoir of oil and 

supplies the oil to the pumps. There are three pumps; 

primary, backup and emergency pump that operate in 

different conditions. These pumps provide sufficient 

pressure to the oil and transfer to the check valve. The check 

valve component transfers some oil to the cooler and some 

to the temperature control valve. The oil temperature is 

cooled down in the cooler. The temperature control valve 

mixes the cold oil and the hot oil in a specified ratio to 

achieve required temperature of the oil. The filter 

component cleans the oil and transfer the oil to the gas 

turbine components. The electrical control unit (ECU) 

controls the heater, fan, temperature valve and the electric 

motors. 

 

Figure 9. Physical Model: The Lubricating Oil System 

4.2.2. Component Model 

In this section, we show the examples of components of the 

lubricating oil system as mentioned in Fig. 10. The physical 

quantities exchanged between the components are same as 

described above for the core engine.  

The purpose of the lubricating oil system is to determine 

deviations in pressure, temperature and flow rate of the lube 

oil so that the gas turbine system can operate in a safe way. 

Example Component:  Heater 

The heater keeps the oil in the tank at a minimum 

temperature required for the turbine. It is controlled by ECU 

and operates in all the turbine situations except the stopping. 

During standstill when the temperature is above 15 Celsius, 

the heater can be turned off in order to extend the oil life. 

Under OK mode, the heater is described as: 

Heater_State = function(Command);  

and If (State = ‘On’) then Temperature_from_heater is 

positive; Else Temperature_from_heater is zero; 

The faulty mode is described as:  

 “OverHeating” if State = ‘On’ and 

∆Temperature_from_heater is positive;  

 “LowHeating” if State = ‘Off’ and 

∆Temperature_from_heater is negative; 

Example Component: Oil tank 

The oil tank is a reservoir of oil and one of a main 

component of this system. Sufficient level of lube oil is 

required in order to provide sufficient flow of lube oil to the 
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gas turbine. The oil tank interacts with the turbine system 

that drains the oil into the tank. The nominal behavior of the 

tank is model as: 

For the flow out of the tank is related with the state of level 

in the oil:  

 

Flow_from_Tank = Oil_level; 

 

The temperature and pressure output from the tank is simply 

propagated as a sum of gas turbine, heater and fan 

quantities. For example: 

 

Temperature_from_Tank = Temperature_from_bearings  

Temperature_from_heater; 

 

The faulty modes are:  

 “Leakage” if ∆Flow_from_tank and Oil level is 

negative; 

 

Example Component: Electric Motor 

 

The electric motor provides active power to its next 

component e.g. the pump. It is controlled by the ECU and 

given the command ({0, 1}) it either turns ‘on’ or ‘off’ in 

order to drive the pump or shut it off. Such that if 

(Command = 1) then ActivePower_from_Motor = 1 else 

zero.  

 Faulty mode “ElectricDriveFault” is identified where 

active power stays at zero irrespective of the command. 

4.2.3. Failure Analysis Results of Lubricating Oil System 

Table 2 shows partial failure analysis result for lubricating 

oil system. The analysis of auxiliary system is significant in 

the workings of the core engine. It is observed that most of 

the time the fault exists in the auxiliaries whereas the 

engineers waste their efforts in analyzing the core 

components. Therefore, it is important to model auxiliary 

components and their failures to derive complete and correct 

results. Our results produced by reasoning engine comply 

with the specifications provided by Siemens. For example: 

during turbine operation, continuous supply of lube oil is 

required to the bearings with required temperature and 

pressure. Therefore, faulty components of lube system will 

directly affect the pressure, flow rate and temperature in the 

bearings. If all three pumps or motors are faulty during 

operation, the turbine ultimately trips. 

 

 

 

 

 

 

 

Table 2. Partial Failure Analysis results of Lubricating Oil 

System 

Turbine 

Scenario 

Turbine 

Component 

Failure 

Mode 

Impact 

Startup Electric 

Motor 

Broken :startup abort 

Startup Primary 

Pump 

Broken :startup abort 

Operating 

Normal 

Ambient 

Heater Over 

Heating 

:increase 

bearing 

temperature 

Operating 

Normal 

Ambient 

Primary 

Pump 

Broken :turbine trip 

Operating 

Normal 

Ambient 

Vacuum Fan High 

Pressure 

:increase 

bearing 

pressure 

Operating 

Normal 

Ambient 

Oil Tank Leakage :reduce oil 

flow 

5. CONCLUSION 

In this paper, we focus on automating the inference of 

failure modes and its impact for diagnostic tasks. The 

analysis is performed on the physical components and 

electronic control units (software). The component models 

are represented as qualitative relations, and hence, maintain 

their abstraction. We built models using compositional and 

context-independent modeling approach. The primary goal 

of these models is the analysis of component failure and 

propagation of its effect at turbine system level. The failure 

modes and its impact are captured as qualitative deviations. 

The turbine conditions, fault models and effects are 

represented by sets of constraints. The fault analysis iterates 

over the Cartesian product of turbine situations and faults 

checking whether they entail the defined effect via the 

constrain solver. The results we have obtained can also be 

adopted for sensor fault analysis and in particular for root-

cause analysis. Our model-based solution is of greater 

interest for further work on automated failure analysis in the 

turbo-machinery industry (combining model-based 

approaches from artificial intelligence (AI) and software 

engineering). We are currently preparing to extend the 

models to capture more complex behaviors, include other 

sub-systems and integrate all systems to derive results at a 

high level of abstraction that can further improve the 

decision-making as a part of integrated diagnostic 

framework at Siemens AG. 
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