
Analyzing high-dimensional thresholds for fault detection and
diagnosis using active learning and Bayesian statistical modeling

Yuning He1

1 UARC, NASA Ames Research Center, Moffett Field, CA, 94040, USA
yuning.he@nasa.gov

ABSTRACT

Many Fault Detection and Diagnosis (FDD) systems use dis-
crete models for fault detection and analysis. Complex indus-
trial systems generally have hundreds of sensors, which are
used to provide data to the FDD system. Usually, the FDD
wrapper code discretizes each sensor value individually and
ignores any non-linearities as well as correlations between
different sensor signals. This can easily lead to overly con-
servative threshold settings potentially resulting in many false
alarms.

In this paper, we describe an advanced statistical framework
that uses Bayesian dynamic modeling and active learning
techniques to detect and characterize a threshold surface and
shape in a high-dimensional space. The use of active learning
techniques can drastically reduce the effort to study threshold
surfaces. Automated Bayesian modeling of complex thres-
hold surfaces has the potential to improve quality and perfor-
mance of traditional wrapper code, which often uses hyper-
cube thresholds.

1. INTRODUCTION

Many Fault Detection and Diagnosis (FDD) systems use dis-
crete models for detection and reasoning. To obtain categor-
ical values like ”oil pressure too high”, analog sensor values
need to be discretized using a suitable threshold. Time se-
ries of analog and discrete sensor readings are discretized as
they come in before processed by the diagnosis engine. This
task is usually performed by the “wrapper code” of the FDD
system, together with signal preprocessing and filtering.

In practice, selecting the right threshold is very difficult, be-
cause it heavily influences the quality of diagnosis. If a thres-
hold causes the alarm to trigger in nominal situations, false
alarms will be the consequence. On the other hand, if thres-
hold setting does not trigger in case of an off-nominal condi-

Yuning He et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

tion, important alarms might be missed, potentially causing
hazardous situations.

Usually, each sensor is handled individually and different
threshold values might exist for different modes of the plant.
For example, the threshold for the oil pressure for a cold en-
gine (mode: cold) might be different from that for a hot en-
gine (mode: hot). For complex industrial systems with hun-
dreds of sensors and dozens of modes, a large number of
thresholds must be selected and validated.

The use of a threshold for the discretization of a sensor sig-
nal, however, ignores any dependencies and correlations be-
tween different signals. Therefore, discretization with in-
dividual thresholds can only form a coarse approximation.
Essentially, the thresholds form a hypercube in the high-
dimensional space of sensor signals. This approach can eas-
ily lead to over-conservative settings. In those cases, proper
thresholding would need non-linear high-dimensional thres-
hold surfaces to accommodate dependencies between system
components and different sensors (Figure 1).

unsafe region

x

actual

threshold

mode−specific threshold

mode−specific threshold

pMode 2Mode 1

safe region

false alarms

false alarms

Figure 1. Mode-specific thresholds (blue) for two modes for
value x over a parameter p. The curve for actual threshold is
shown in red separates the safe region (top) from the unsafe
region. Areas, where false alarms occur are shaded.

Often, dependencies between system components and dif-
ferent sensors are complicated and often not fully under-

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

stood. Therefore, experiments need to be carried out to deter-
mine the threshold surface. Because of high dimensionality
and lack of analytical solutions, straight-forward grid-based
methods are not applicable in general.

In this paper, we describe an advanced statistical method that
uses Bayesian dynamic modeling and on-line learning tech-
niques to estimate threshold surfaces in a high-dimensional
space. Once a representation of the threshold surface has been
obtained, techniques for fitting its shape and estimate shape
parameters (He, 2015, 2012) can be applied. Our approach
can incorporate domain knowledge about these surfaces. This
approach goes way beyond traditional algorithms, which ob-
tain thresholds in the form of hyper surfaces. By selecting
the most likely shape of a surface from a domain-specific “li-
brary” and estimating it’s parameters, the domain expert can
immediately recognize and understand that shape—a very
important prerequisite for Verification and Validation (V&V)
of FDD systems. This is in stark contrast to other well-known
techniques like neural networks, where this information is
hidden in a representation that is not suitable for human un-
derstanding. Here, however we will focus on statistical mod-
eling and active learning for the detection of threshold sur-
faces.

The rest of this paper is structured as follows: Section 2 gives
background on fault detection and diagnosis. In Section 3,
we present an overview of our statistical modeling method.
Section 4 focuses on the use of active learning for finding
threshold surfaces. Active learning is discussed and a novel
metric for the threshold-aware selection of new data points is
presented. In Section 5, we discuss how Bayesian analysis of
the threshold surfaces can result in a compact representation
that is easy to understand by the domain expert. Section 6
illustrates our approach using artificial data sets and data from
aerospace applications. Section 7 presents future work and
concludes.

2. FAULT DETECTION AND DIAGNOSIS

Typically, Fault Detection and Diagnosis (FDD) systems are
used to continuously monitor complex systems, e.g., an air-
craft or spacecraft. Observable information obtained by sen-
sors is used to detect any off-nominal situation and to per-
form root cause analysis. A number of different approaches
for FDD or vehicle health management exist, but for this
paper we focus on a very generic architecture as shown in
Figure 2. The plant is observed using a number of analog
sensors (e.g., pressure, temperature, battery voltage). Each
signal is discretized by the wrapper code using thresholds
θ in order to obtain discrete values comprising the outcome
of a test. For example, for measurements of oil pressure p,
(p < θp) ≡ true might indicate a dangerously low pres-
sure. Often, one analog signal is discretized into various dis-
crete ranges like “too low”, “nominal”, and “too high” using

thresholds θlow and θhigh. The discrete outcomes of the tests
are then fed into the diagnosis engine where hypotheses about
the most likely set of failure modes (e.g., pump faulty, fuse
open) is produced. That information can then be used to initi-
ate mitigation and recovery actions. Diagnostic engines could
be, for example, TEAMS/RT,1 TFPG (Abdelwahed, Dubey,
Karsai, & Mahadevan, 2011; Mahadevan & Karsai, 2000–
2014), or a Bayesian Network (Pearl, 1988), just to mention
a few. In practice, discretization thresholds are, in most cases
defined during design time. There might be different thresh-
olds for different modes or configurations of the plant.

PLANT

signals

sensor

wrapper

tests

Reasoning
FDDR

diagnosis hypotheses

Figure 2. High-level architecture of an FDD system

3. METHODOLOGY OVERVIEW

We propose a sequential method for the estimation of param-
eterized threshold surfaces in high dimensional spaces. We
represent this problem as learning the response surface for the
function f , where f(x) = 1 − ε for some small ε > 0 if the
experiment succeeds and f(x) = 0+ ε otherwise. In this rep-
resentation a classification threshold surface is determined by
points x with f(x) = 0.5.

Given an initial set of labeled data D0, our approach builds
a hierarchical Bayesian representation. Using active learning
and computer experimental design, the number of required
experiments and simulation runs can be kept small. The hier-
archical representation provides information and confidence
intervals for subsequent estimation of shape parameters Θ for
the threshold surface.

The overall process is depicted in Figure 3. The active learn-
ing algorithm builds an initial classifier based uponD0. Then,
candidate points (i.e., sets of input parameters) are selected by
the algorithm and handed over to the computer experiment,
which executes the system under consideration at the candi-
date point and returns a categorical result (success or failure).
Since each run of the simulator can require substantial com-
putational resources, the overall number of new data points
should be kept as small as possible.
1http://www.teamqsi.com

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

ca
n

d
id

a
te

 p
o
in

t

result

D
0

hierarchical model

DynaTree

estimated shape parameters

Threshold Surface

X

Detection

Shape Estimation

n

Experimental Design

Computer

Active Learning

S
y
st

em
 u

n
d

er
 A

n
a
ly

si
s

Figure 3. Overview of active learning architecture

Our algorithm is based upon the sequential classification and
regression framework as given by DynaTree (DT) (Taddy,
Gramacy, & Polson, 2011; R. B. Gramacy, 2007). It features
dynamic regression trees and a sequential tree model. Parti-
cle learning for posterior simulation makes Dynatrees a good
candidate for applications, where new data points are pro-
cessed sequentially. At any given point in time, the classifier
is represented by a DynaTree. Figure 4 shows the individual
steps of our overall algorithm. In the initial phase, a classi-
fier using the data set D0 is constructed. It provides an initial
partitioning of the space and provides the information to es-
timate posteriors over given sets of data points. The main
body is an iterative loop where, by adding new data points,
the classifier will be extended and improved with the main
goal of identifying and characterizing the threshold surfaces.
In the first step, the current classifier is used to estimate a set
of data points, which are close to the current prediction of
the threshold. These comprise a subset of data points from a
regular grid or a Latin hyper square, for which their entropy
measure is high or the estimated response value is close to
0.5. The location of these points do not only depend on the
actual threshold surface, but also on the shape of the dynamic
tree and the size of the partitions, because points in the same
partition have the same values. This set of data points is then
used to estimate the best parameters Θ for each of the thres-
hold surfaces, together with a confidence interval for each of
the parameters.

The candidate point selection in this active learning algorithm
can use as much information as is available at the current
stage, for example, information and entropy of the current
data set. It then selects a new point (i.e., set of input param-
eters), for which the label is obtained by running the system
simulator. Next we present the individual steps in detail.

priors: theta1, ..., thetak

models (shapes): M1, ..., Mk

initial data set: D0 = (X0, y0)

Initialize DT with linear model and D0

1. Estimate most likely parameters thetai

for Mi over a set of data points Dx

Changes in

2. Select candidate point which

 maximizes E(I(X,a,alpha))

3. Run simulation with candidate point

 and obtain actual label

4. Update DT with the candidate point

theta?

with y_hat close to 1/2

stop

Figure 4. Overview of active learning procedure

4. ACTIVE LEARNING AND EXPECTED IMPROVEMENT

4.1. Threshold surfaces

Each data point describing one simulation run (experiment) is
defined as x = 〈P1, . . . , Pp〉, where Pi are the input param-
eter settings and the outcome o(x) ∈ {success, failure}.
Thus these data define a classification problem with C = 2
classes. We can view a threshold surface as a classification
boundary between regions, where all experiments yield suc-
cess p(x = success) = 1 and those, where the experiments
do not meet the success criterion p(x = failure) = 1.
Therefore, we can define a point x to be on the threshold
surface if p(x = success) = p(x = failure) = 0.5. Be-
cause of the strong relationship between threshold surface
and boundary, we will be using these terms interchangeably
in the following sections.

A common metric to characterize points on the bound-
ary is based upon the entropy. The entropy entr =
−
∑
c∈c1,..,cC p(x = c) log p(x = c) becomes maximal at

the boundary. In cases of more than two classes, R. Gramacy
and Polson (2011) uses a BVSB (Best vs. Second Best) strat-
egy. Wickham (2008) defines a metric advantage as essen-
tially adv(x) = |p(x = success) − p(x = failure)|. Then
he considers points with minimal advantage to be close to the
boundary.

In general, there are two basic methods to approach this clas-
sification boundary problem: explicitly from knowledge of
the classification function, or by treating the classifier as a
black box and finding the boundaries numerically. For some
classifiers it is possible to find a simple parametric formula
that describes the boundaries between groups, for example,

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

LDA or SVM. Most classification functions can output the
posterior probability of an observation belonging to a group.
Much of the time we do not look at these, and just classify
the point to the group with the highest probability.

Points that are uncertain, i.e., have similar classification prob-
abilities for two or more groups, suggest that the points are
near the threshold surface between the two groups. For ex-
ample, if a point is in Group 1 with probability 0.45, and in
Group 2 with probability 0.55, then that point will be close to
the boundary between the two groups. We can use this idea
to find the threshold surfaces. If we sample points through-
out the design space we can then select only those uncertain
points near the threshold. The thickness of the threshold sur-
face can be controlled by changing the value, which deter-
mines whether two probabilities are similar to each other or
not. Ideally, we would like this to be as small as possible
so that our boundaries are informative. Some classification
functions do not generate posterior probabilities. In this case,
we can use a k-nearest neighbors approach. Here we look
at each point, and if all its neighbors are of the same class,
then the point is not on the boundary and can be discarded.
The advantage of this method is that it is completely gen-
eral and can be applied to any classification function. The
disadvantage is that it is slow (O(n2)), because it computes
distances between all pairs of points to find the nearest neigh-
bors. In general, finding of the boundaries faces the “curse
of dimensionality”: as the dimensionality of the design space
increases, the number of points required to make a perceiv-
able boundary (for fitting or visualization purposes) increases
substantially. This problem can be attacked in two ways, by
increasing the number of points used to fill the design space
(uniform grid or random sample), or by increasing the thick-
ness of the boundary.

4.2. Active Learning

Computer simulation of a complex system like those dis-
cussed above, is frequently used as a cost-effective means
to study complex physical and engineering processes. It
typically replaces a traditional mathematical model in cases
where such models do not exist or cannot be solved analyti-
cally.

Active learning, or sequential design of experiments (DOE),
in the context of estimating response surfaces (in our case
boundaries), is called adaptive sampling. Adaptive sampling
starts with a relatively small space-filling input data, and
then proceeds by fitting a model, estimating predictive un-
certainty, and choosing future samples with the aim of min-
imizing some measure of uncertainty, or trying to maximize
information. We perform active learning with new data until
the threshold surface is characterized with sufficient accuracy
and confidence, and the whole space has been sufficiently ex-
plored to not miss any boundaries in the space.

Consider an approach which maximizes the information
gained about model parameters by selecting the location x,
which has the greatest standard deviation in predicted output.
This approach has been called ALM for Active Learning-
Mackay, and has been shown to approximate maximum ex-
pected information designs (MacKay, 1992). An alterna-
tive algorithm is to select the variance minimizing the ex-
pected reduction in the squared error averaged over the in-
put space (Cohn, 1996). This method is called ALC for Ac-
tive Learning-Cohn. Rather than focusing on design points
which have large predictive variance, ALC selects configura-
tions that would lead to a global reduction in predictive vari-
ance.

The ALM/ALC algorithms are suitable for classification but
not primarily for boundary detection (R. B. Gramacy, 2005).
These heuristics are in general not suited for modeling the
boundary because they do not take the specifics of the bound-
aries into account and they tend to also explore sparsely pop-
ulated regions far away from current boundaries.

4.3. Boundary Expected Improvement

Finding a threshold surface corresponds to finding a bound-
ary between two classes and can be considered as finding
a contour with a = 0.5 in the response surface of the sys-
tem response. Inspired by (Jones, Schonlau, & Welch, 1998)
and work on contour finding algorithms, we loosely fol-
low (Ranjan, Bingham, & Michailidis, 2008), and define our
heuristics by using an improvement function. In order to use
the available resources as efficiently as possible for our con-
tour/boundary finding task, one would ideally select candi-
date points which lie directly on the boundary, but that is un-
known. Therefore, new trial points x are selected, which be-
long to an ε-environment around the current estimated bound-
ary. This means that 0.5 − ε ≤ ŷ(x) ≤ 0.5 + ε. New data
points should maximize the information in the vicinity of the
boundary. Following (Jones et al., 1998) and (Ranjan et al.,
2008), we define an improvement function for x as

I(x) = ε2(x)−min{(y(x)− 0.5)2, ε2(x)}

Here, y(x) ∼ N(ŷ(x), σ2(x)), and ε(x) = ασ(x) for a con-
stant α ≥ 0. This term defines an ε-neighborhood around the
boundary as a function of σ(x). For boundary sample points,
I(X) will be large when the predicted σ(x) is largest.

The expected improvement E[I(x)] can be calculated easily
following (Ranjan et al., 2008) as

E[I(x)] = −
0.5+ασ(x)∫

0.5−ασ(x)

(y − ŷ(x))2φ

(
y − ŷ(x)

σ(x)

)
dy

+2(ŷ(x)− 0.5)σ2(x) [φ(z+(x))− φ(z−(x))]

+(α2σ2(x)− (ŷ(x)− 0.5)2) [Φ(z+(x))− Φ(z−(x))] ,

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

where z±(x) = 0.5−ŷ(x)
σ(x) ± α, and φ and Φ are the stan-

dard normal density and cumulative distribution, respectively.
Each of these three terms are instrumental in different areas
of the space. The first term summarizes information from re-
gions of high variability within the ε-band. The integration
is performed over the ε-band as ε(x) = ασ(x). The second
term is concerned with areas of high variance farther away
from the estimated boundary. Finally, the third term is active
close to the estimated boundary. After the expected improve-
ment has been calculated, the candidate point is selected as
the point, which maximizes the expected improvement.

5. SHAPE ESTIMATION OF THRESHOLD SURFACES

Given a classifier Pn based on a data set Dn consisting of n
data points, we want to fit simple, parameterized shapes (from
a dictionary provided by experts) to areas of high entropy that
approximate the boundaries between the two classes.

5.1. Notation

Suppose there arem shape classesM1, . . . ,Mm withm ≥ 1,
which are parameterized by Θ1, . . . ,Θm. The task is to fit l
shapes S1, . . . , Sl, l ≥ 1, where S1 = (i1,Θ1), . . . , Sl =
(il,Θl) and ij denotes the shape class for the jth shape with
ij ∈ M = {M1, . . . ,Mm}. Several of the ij can be the
same to accommodate more than one shape belonging to the
same class. The Θi should be different since we do not want
to represent the same boundary shape twice. We also seek to
determine the correct number of shapes l that represents the
input point set Xn.

For example, we may consider the m = 2 shape classes
M1 = hyperplane and M2 = sphere in Rd. Hyperplanes
are represented as a1x1 + · · ·+adxd+ad+1 = 0 with param-
eter vector Θ1 = (a1, . . . , ad, ad+1) ∈ Rd+1. In the same
d-dimensional space, a sphere of radius r with center c =
(c1, . . . , cd) is described by (x1−c1)2+· · ·+(xd−cd)2 = r2

with parameter vector Θ2 = (c, r) ∈ Rd+1.

5.2. What is a Good Shape Set S?

There are three conditions that specify when a shape set S
provides a good fit to the data Xn:

(i) Summary: each point on a shape S ∈ S is close to some
classifier boundary point in Xn,

(ii) Completeness: each classifier boundary point in Xn is
close to some shape point on some shape S ∈ S, and

(iii) Minimality: the shapes in S are as different from one
another as possible.

Let us now explain why the above properties are desirable in
a fitted shape set. These properties are illustrated in Figure 5

Condition (i) encourages each shape S ∈ S to be a good
summary of one of the parts of the boundary of classifier Pn.

A
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Shape set (solid)
ground truth shapes (dotted)

input pointset (squares) from ground truth plus noise

B
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Shape set (solid)
ground truth shapes (dotted)

input pointset (squares) from ground truth plus noise

C
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Shape set (solid)
ground truth shapes (dotted)

input pointset (squares) from ground truth plus noise

D
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Shape set (solid)
ground truth shapes (dotted)

input pointset (squares) from ground truth plus noise

Figure 5. A: The shape is a poor summary of any part of the
input point set. B: The shape is a good summary of the points
on the left. But this shape set is not a complete summary
of the point set. C: This shape set is a complete, minimal
summary of the point set. D: This shape set is a complete
summary, but it is not minimal.

That is, the points of a shape should lie along high entropy
areas of Pn.

The shape in Figure 5A is not a good summary of any part of
the input point set. The shape in Figure 5B is a good sum-
mary of the points on the left side. Condition (ii) encourages
S to be a complete summary of the boundary input points.
In a complete summary S, each classifier boundary point is
”covered” by S in the sense that it is close to a point in S. The
shape set in Figure 5B is not a complete summary because it
does not cover the points on the right side. On the other hand,
the shape set in Figure 5C is a complete summary.

Condition (iii) encourages that shape set S to be minimal.
This means that S will not use any extra shapes to form a
complete summary of the boundaries of classifier Pn. A com-
plete summary S (i.e., one satisfying (i) and (ii)) remains a
complete summary if one of its shapes S ∈ S is added to S
either exactly or after a small perturbation. In fact, adding
a small perturbation Ŝ of S may actually improve complete-
ness slightly since Ŝ can be even closer to some high entropy
points than S. And if S were a good summary, then so too
would Ŝ. We need the minimality condition (iii) to be able to
obtain the simplest (i.e., smallest) shape set that is a complete
summary of the classifier boundaries.

The shape set in Figure 5D is minimal, but the shape set in
the bottom-right is not minimal.

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

5.3. Statistical Modeling

The shape set posterior is

P (S|Xn) =
P (Xn|S)P (S)

P (Xn)
∝ P (Xn|S)P (S).

We build the posterior model P (S|Xn) by modeling the like-
lihood P (Xn|S) and the shape set prior P (S). In the pos-
terior P (S|Xn) ∝ P (Xn|S)P (S), we will model the like-
lihood P (Xn|S) to encourage completeness and the prior
P (S) to encourage distance between shapes and therefore
minimality. It makes sense that the data likelihood accounts
for completeness because completeness requires observed
points to be close to a shape and the observed points arise
from the ground truth shapes with the addition of noise. We
will encourage good summary using a Bayesian loss function
that grows with increasing distance of the shapes to the point
set. Finally, we determine the number of shapes l by mini-
mizing the expected posterior loss.

A complete shape set with an extra shape near the observed
points will have a low posterior probability because apriori
we encourage separation between the shapes. An example of
such a shape set is shown in the left column of Figure 6. If

low Posterior
low Loss

high Posterior
high Loss

high Posterior
low Loss

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Shape set (solid)
ground truth shapes (dotted)

input pointset (squares) from ground truth plus noise

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Shape set (solid)
ground truth shapes (dotted)

input pointset (squares) from ground truth plus noise

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

Shape set (solid)
ground truth shapes (dotted)

input pointset (squares) from ground truth plus noise

Figure 6. Shape Set Posterior versus Bayesian Loss.

we remove the extra shape near the data from the previous
example as in the right column of Figure 6, then the prior
is high because the shapes are separated and the likelihood
is high because the shape set is complete and therefore the
posterior probability is high as well.

While our posterior decreases when an extra shape is added
near the data points to a complete shape set, it will not de-
crease if an extra shape is added far from the data points.
This case is shown in the middle column of Figure 6. In this
example, the posterior is still high because the shape set is
complete and the shapes are separated from another. In or-
der to make this configuration unattractive, we need to use
the summary property and encourage all shapes to be close
to data points. Combining the shape set prior with summary
will ensure that good shape sets do not have any extra shapes,
as the prior prevents extra shape sets near the data and the
summary prevents extra shapes far from the data.

We will encourage good summary using a Bayesian loss func-
tion that increases with increasing distance of the shapes to

the point set. The Bayesian loss is low for the left column
of Figure 6 because this configuration has good summary –
all the shapes are close to data points. The loss is obviously
high for the middle column because the shape on the left is
far from the data points. The right column shows the desired
case of the correct number of shapes with high posterior and
low loss. Thus we will determine the number of shapes l by
minimizing the expected posterior loss.

Likelihood Our likelihood will encourage completeness.
For the completeness condition (ii), we are interested in mak-
ing the average squared distance D

2

Xn,S of boundary points
in Xn = {x1, . . . , xn} to shapes in S small:

D
2

Xn,S =

∑
x∈Xn

d2Xn,S(x)

|Xn|
=

∑n
j=1 d

2
Xn,S(xj)

|Xn|
, (1)

where
d2Xn,S(x) = min

s∈S
||x− s||22 (2)

is the minimum squared distance of a high entropy point x to
a point on any shape in the collection S = (S1, . . . , Sl).

An observed point xj ∈ Xn is assumed to have been gener-
ated from a shape Szj , where zj gives the shape number that
explains xj . Given zj , we model the likelihood of xj as a
decreasing function of the minimum distance from xj to Szj .
The closer xj is to shape Szj , the higher the likelihood of
xj . The observations xj are assumed to be independent and
modeled as

xj = sj + εj = sj + rjnj , rj ∼ N(0, σ2
r),

where nj is a unit normal to Szj at sj and rj = (xj−sj) ·nj .
Here the noise vector εj = rjnj is along a unit normal nj to
the shape Szj at the closest shape point sj to xj . The scalar
residual rj is the signed distance along nj from the shape Szj
to xj . We model the observation error εj by modeling the
signed residual as a N(0, σ2

r) random variable.

Note that the squared residual r2j is just the minimum distance
squared from xj to the closest point sj on shape Szj :

r2j = min
s∈Szj

||xj − s||22,

where the minimum occurs at s = sj . Let Z = (z1, . . . , zn).
Assuming independence of points and that xj depends only
on shape Szj , then P (Xn|Z,S) =

∏n
j=1 P (xj |zj , Szj) =∏n

j=1N(rj |0, σ2
r). Since rj ∼ N(0, σ2

r), it follows that

P (Xn|Z,S) = Kσ−n
r exp

(
− 1

2σ2
r

n∑
j=1

min
sj∈Szj

||xj − sj ||22

)
,

(3)
for a constant K. Note that if the observed point set Xn is
close to the shapes in S, then P (Xn|Z,S) is high. This state-

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

ment assumes, of course, that the correct shape Szj explain-
ing each point xj has also been identified.

We can obtain the likelihood P (Xn|S) by model-
ing Z|S and integrating out Z as in P (Xn|S) =∫
Z
P (Xn|Z,S)P (Z|S)dZ. We could, for example, model

Z|S by modeling a count vector C = (c1, . . . , cl) which
holds the number of observations ci explained by shape Si.
Here ci =

∑n
j=1 1zj=i. We can encourage good summary by

modeling C ∼ multinomial(n, (1/l, 1/l, . . . , 1/l)) where
each of the l shapes in S has the same probability 1/l of
generating an observed point. This would make shape sets
with any shapes that are from the data quite unlikely because
we would expect to see points around each shape according
to the given multinomial distribution.

It is difficult, however, to optimize over shape sets with the
hidden random variables Z in our models. Instead, we make
a simple but accurate and effective approximation in our mod-
els and assume that the shape Szj that explains observation xj
is the shape in S which is closest to xj . Thus we replace the
minimization in equation (3) over sj ∈ Szj with a minimiza-
tion sj ∈ S over the entire shape set to obtain the approxima-
tion

P (Xn|S) = Kσ−n
r exp

(
− 1

2σ2
r

n∑
j=1

min
sj∈S

||xj − sj ||22

)
. (4)

From equations (1),(2), we can see that the inner sum in equa-
tion (4) is just a scaled version |Xn|D

2

Xn,S of our complete-
ness measure. We can easily write our likelihood in terms of
the completeness measure D

2

Xn,S . To do so cleanly, define
σ2
complete = σ2

r/|Xn|. Then

P (Xn|S) = Kσ−ncomplete exp

(
− 1

2σ2
complete

D
2

Xn,S

)
,

where another constant factor has been absorbed into K.

Shape Set Prior We build the shape set prior P (S) based
on the distances of points on each shape Si to the rest of the
shape set S−i = S\{Si}. To keep shapes apart from one
another, we want a large average squared distance from points
on each shape to the rest of the shapes. Let d2Si,Sj

(si) be the
minimum squared distance of a point si ∈ Si to another shape
Sj :

d2Si,Sj
(si) = min

sj∈Sj

||si − sj ||22.

Then the squared distance of si ∈ Si to the shape set S−i is

d2Si,S−i
(si) = min

Sj∈S−i

d2Si,Sj
(si),

which finds the closest point in the rest of the shapes S−i to
si ∈ Si. Finally we average the inter-shape squared distances

over all points on all shapes to get

D
2

S =

∑
Si∈S

∑
si∈Si

d2Si,S−i
(si)∑

Si∈S |Si|

To keep the shapes apart a priori, we want D
2

S to be large,
indicating that on average the inter-shape distance is large.
Equivalently, 1/DS should be small. Therefore we model
the prior for S using the normal distribution

S ∼ N(D
−1
S ; 0, σ2

shapesim).

Bayesian Loss Next we define a Bayesian loss function
that encourages good summary. We can think of the sum-
mary condition (i) as requiring a small distance from each
shape S ∈ S to the set of classifier boundary points Xn.
Let d2S,Xn

(s) denote the squared distance from a shape point
s ∈ S to the point set Xn:

d2S,Xn
(s) = min

x∈Xn

||s− x||22.

We capture the average squared distance D
2

S,Xn
from the

shape set S to the input pointsXn by averaging over all points
on all shapes in S = (S1, . . . , Sl):

D
2

S,Xn
=

∑l
a=1

∑
s∈Sa

d2Sa,Xn
(s)∑l

a=1 |Sa|
.

We define our Bayesian loss function as

loss(S, Xn) = λsummaryD
2

S,Xn

The smaller the distance from each shape in S to the point
set Xn, the smaller the loss. Thus minimizing the loss will
encourage good summary.

5.4. Shape Fitting Method

Our shape fitting method has two main steps:

Step 1 Minimize the expected posterior loss

g(l) = E[loss(S, Xn)], |S| = l

over l to obtain the number of shapes l∗

Step 2 Compute the MAP shape set S∗,l∗ for sets of size l∗

As we shall see, our method in Step 1 for choosing the num-
ber of shapes l∗ to fit requires sampling from the shape set
posterior. While drawing shape set samples, we can keep
track of the maximum posterior probability shape set for each
l to obtain the MAP shape set output in Step 2. Another op-
tion in Step 2 is to return an entire posterior shape set sum-
mary with confidence intervals around posterior mean shape
sets of size l∗. During Step 1 processing, we can save all the

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

posterior shape set samples for an l that gives a new mini-
mum expected loss. Then we will have the shape set samples
for the chosen number of shapes l∗ and we simply compute a
summary of those samples to output.

Determining the Number of Shapes We assume that we
can apriori limit the number of shapes l to some set L. For
example, if we know that there will not be more than five
boundaries then we can set L = {1, 2, 3, 4, 5}.

For each l ∈ L, we compute the expected posterior loss

g(l) = E[loss(S, X)] =

∫
{S:|S|=l}

loss(S, Xn)P̂ (S|Xn)dS.

Here we denote the shape set posterior probability distribu-
tion for shape sets with a fixed number of shapes as P̂ (S|Xn).
Then we choose the number of shapes to minimize the ex-
pected posterior loss:

l∗ = arg min
l∈L

g(l).

The integral in equation (5.4) is difficult to compute analyt-
ically. Therefore we approximate the integral for g(l) by
drawingK shape set samples S(k) of size l from the posterior
S|Xn:

g(l) = E[loss(S, X)] ≈
K∑
k=1

loss(S(k), Xn)P̂ (S(k), Xn).

Thus our method for determining the number of shapes to fit
requires the ability to draw posterior shape set samples of a
fixed number of shapes l.

For a fixed shape set size |S| = l, we will draw samples from
the posterior P (S|Xn) ∝ P (Xn|S)P (S) using an iterative
procedure. Shape set samples S with a small value for

− log(P (Xn|S)P (S)) = − log(P (Xn|S))− log(P (S))

should be more likely to occur.

6. EXPERIMENTS

6.1. Active Learning

We illustrate the behavior of our approach using 2D artificial
data sets and a quadratic threshold curve normalized to the
unit square. Starting with a low number of Ninit = 126 ran-
domly selected initial data points, the active learning proce-
dure selects N = 500 data points according to different can-
didate selection rules (random, ALC, ALM, EI, and boundary
EI).N has been selected this large for visualization purposes.
Figure 7 shows, how the different selection algorithms be-
have. Our goal is to find many data points near the threshold
curve in order to enable accurate representation and to fa-

cilitate subsequent shape estimation. Thus random selection
(Figure 7A) and the classical ALC (Cohn, 1996) (Figure 7B)
are not suitable for our purpose, because they require pro-
hibitively large N for reasonable results. On the other hand,
the entire area should be considered as well in order not to
miss any other boundary. Other algorithms are too localized
and do not even explore the entire threshold curve (Figure 7C,
D). Our approach (Figure 7E) tries to find a suitable balance
between both requirements.

A B

C D

E

Figure 7. Candidate points during active learning: (A) ran-
dom selection, (B) ALC, (C) ALM, (D) EI, and (E) boundary-
EI. Circles: initial data points. Solid: points added during
active learning (colored according to experiment outcome).

Our boundary metric is parameterized by the parameter α
(see Section 4.3). This parameter influences the width of the
”band” around the threshold surface that is considered for the
selection of the candidate point. Figure 8 shows runs with
several values of α. It seems that values around α = 0.8 pro-
duce the best results; values of α that are too small or too large
tend to lead to a situation, where the new points are located
too far from the threshold surface.

A B C D

Figure 8. Boundary-EI for α = 0.2, 0.5, 0.8, 1

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

Active learning−2D (random (red), ALC (black), our method(green))

Index

B
ou

nd
ar

y
E

rr
or

Figure 9. Convergence C for random (red), ALC (black), and
boundary-EI (green) over learning iterations.

The performance of our active learning method can also be
assessed by analyzing the algorithm convergence, i.e., how
many new data points are necessary, before the estimated
shape parameters are close to the ground truth that has been
used to generate the artificial data set. Figure 9 compares, for
a single hyperplane threshold surface, the convergence of ran-
dom selection, ALC, and our method over 10 runs and shows
a superior performance of our method.

6.2. Shape Selection

6.2.1. Artificial Data

For illustration of our shape selection algorithm, we gener-
ated artificial data sets in 2 and 5 dimensions. The ground-
truth data, normalized to a unit hypercube contain one or two
threshold surfaces in the shape of hyperspheres.

Our active learning algorithm starts with an initial 126 data
points. Then, 700 data points were selected by the algorithm.
The resulting model was used for shape estimation. Table 1A
shows the results for the two-dimensional case. 25 runs with
different randomly generated initial data points were exe-
cuted. In all 25 runs, sphere S1 was correctly recognized;
the parameters for S2 were only correctly estimated in 5 of
the runs. The table shows the ground-truth values, means and
variances for those runs where the shapes were detected.

A
true value µ̂(σ̂2)

x0 0.3 0.295(1.4e-5)
y0 0.3 0.289(3e-5)
r0 0.2 0.20(6.6e-6)
x1 0.7 0.715(8.5e-5)
y1 0.7 0.72(8.6e-5)
r0 0.2 0.20(5.2e-5)

B
true value µ̂(σ̂2)

c1 0.3 0.29(7e-3)
c2 0.3 0.26(5e-3)
c3 0.3 0.32(8e-3)
c4 0.3 0.31(7e-3)
c5 0.3 0.27(9e-3)
r 0.3 0.29(8e-4)

Table 1. Parameters for 2D (A) and 5D spheres (B).

Table 1B shows the situation in a 5-dimensional space.
The centers of the hypersphere are located at ~c1 =
(0.3, 0.3, 0.3, 0.3, 0.3)T , and ~c1 = (0.7, 0.7, 0.7, 0.7, 0.7)T ,
respectively and the radius is r = 0.3. Active learning se-
lected 1000 data points. Here, the results are worse. E.g.,
the second sphere was not recognized in any of the 10 runs,
indicating that for a 5-dimensional space, the number of data
points must be considerable larger.

6.2.2. Intelligent Flight Control

The Intelligent Flight Control System (IFCS) is a damage-
adaptive Neural Networks (NN) based flight control system
developed by NASA and test-flown on a manned F-15 aircraft
(Rysdyk & Calise, 1998). An on-line trained NN provides
control augmentation to dynamically counteract damage to
the aircraft. For our experiments, we considered this system
as a black box, controlled by numerous parameters (e.g., NN
weights, controller gains, or learning rate). A simulation run
was considered to be successful, if, after an injected damage,
the aircraft remained stable for at least 20 seconds. After an
initial parameter sensitivity analysis, we selected the param-
eters wp, wq, wr,Klat, and ζ for further analysis, where the
wi are proportional gains of the controllers, Klat the lateral
stick gain, and ζ a damping coefficient. We generated a com-
binatorial data set of 32,768 data points, out of which 7,992
runs were successful.

A boundary over these parameters exist in a shape of a hy-
persphere. This spherical shape is a consequence of the
IFCS design, and the shape can be described by (

wp−x0

φ1
)2 +

(
wq−φ2−y0

φ3
)2 +(wr−φ3−z0

φ4
)2 = ζ×φ5−Klat. This stability

boundary is is parameterized by unknown φi. x0, y0, z0 are
design-time constants.

Figure 10A shows the actual and estimated boundary in a pro-
jection into wp, wq , and Klat. For our shape fitting and esti-
mating experiment, we used 1000 initial data points. 5000
data points were selected by active learning. The shape
parameters for the boundary in Figure 10B were estimated
based upon 485 points near the boundary within an ε-band of
width 0.2.

A B ��
��

����

Figure 10. A: Actual boundary (blue) and estimated boundary
(green) over wp, wq,Klat. B: Estimated hypersphere shape.

7. CONCLUSIONS

In this paper, we addressed the discretization of sensor values
for Fault Detection and Diagnosis systems. Traditionally, the
wrapper code uses hypercube thresholds, which ignores non-
linear threshold surfaces and dependencies between different
system components and sensors. We described an advanced
statistical methodology that uses Bayesian dynamic model-
ing and active learning techniques to detect and characterize
threshold surfaces and shapes in a high-dimensional space.
We presented an active learning algorithm, which can dras-

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

tically reduce the effort for determination and modeling of
threshold surfaces.

Our Bayesian modeling approach for shape characterization
and parameter estimation for the threshold surfaces incorpo-
rates domain knowledge in the form of a dictionary of suit-
able shape candidates. This enables insights for the domain
expert and provides a way to implement compact and efficient
wrapper codes for real-time diagnostic systems.

Future work will address metrics for the assessment of dis-
cretization quality with respect to false and missed alarms
and will thus provide a statistical method to decide when
hypercube-based thresholding is not sufficient. Of major im-
portance will be the synergistic combination our active learn-
ing approach with shape estimation. Here, intermediate re-
sults from shape estimation could improve the candidate se-
lection during active learning. Finally, we aim to evaluate our
approach with a realistic FDD application.

REFERENCES

Abdelwahed, S., Dubey, A., Karsai, G., & Mahadevan, N.
(2011). Model-based tools and techniques for real-
time system and software health management. Ma-
chine Learning and Knowledge Discovery for Engi-
neering Systems Health Management, 285.

Cohn, D. A. (1996). Neural network exploration using opti-
mal experimental design. Advances in Neural Informa-
tion Processing Systems, 6(9), 679–686.

Gramacy, R., & Polson, N. (2011). Particle learning of
Gaussian process models for sequential design and op-
timization. Journal of Computational and Graphical
Statistics, 20(1), 467–478.

Gramacy, R. B. (2005). Bayesian treed Gaussian process
models (Unpublished doctoral dissertation). University
of California at Santa Cruz. (http://faculty
.chicagobooth.edu/robert.gramacy/
papers/gra2005-02.pdf)

Gramacy, R. B. (2007, June 13). TGP: An R package for
Bayesian nonstationary, semiparametric nonlinear re-
gression and design by Treed Gaussian Process mod-
els. Journal of Statistical Software, 19(9), 1–46.

He, Y. (2012). Variable-length functional output prediction
and boundary detection for an adaptive flight control

simulator ((Unpubl. doct. dissertation)). UC Santa
Cruz.

He, Y. (2015). Online detection and modeling of safety
boundaries for aerospace applications using active
learning and Bayesian statistic. In Proc. International
Joint Conference on Neural Networks (IJCNN).

Jones, D., Schonlau, M., & Welch, W. J. (1998). Efficient
global optimization of expensive black box functions.
Journal of Global Optimization, 13, 455–492.

MacKay, D. J. C. (1992). Information–based objective func-
tions for active data selection. Neural Computation,
4(4), 589–603.

Mahadevan, N., & Karsai, G. (2000–2014). Fact tool suite.
https://fact.isis.vanderbilt.edu/.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. Morgan Kauf-
mann.

Ranjan, P., Bingham, D., & Michailidis, G. (2008). Se-
quential experiment design for contour estimation from
complex computer codes. Technometrics, 50(4), 527–
541.

Rysdyk, R., & Calise, A. (1998). Fault tolerant flight control
via adaptive neural network augmentation. AIAA Amer-
ican Institute of Aeronautics and Astronautics, AIAA-
98-4483, 1722–1728.

Taddy, M. A., Gramacy, R. B., & Polson, N. G. (2011). Dy-
namic trees for learning and design. Journal of the
American Statistical Association, 106(493), 109-123.

Wickham, H. (2008). Practical tools for exploring data and
models ((Unpubl. doctoral dissertation)). Iowa State.

BIOGRAPHIES

Yuning He is a research scientist with the Robust Software
Engineering Group in the Intelligent Systems Division (Code
TI), at NASA Ames Research Center, employed by the Uni-
versity of California Santa Cruz. She obtained her PhD in
Applied Mathematics and Statistics from UC Santa Cruz,
and M.S. in Statistics from Stanford University. Her re-
search interests include applied Bayesian statistics with em-
phasis on computer experiment, statistical learning, using sta-
tistical models and tools in combination with traditional for-
mal methods for the analysis and verification and validation
(V&V) of complex safety critical and online software sys-
tems.

10

