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ABSTRACT 

Railcar condition monitoring is an area of high importance 

and global relevance. The economic and safety concerns of 

equipment maintenance in North America mandate efforts 

in prognostics and health management. This paper presents 

the results from the development of a vibration based 

condition monitoring algorithm for freight rail, utilizing 

mutual information feature selection and support vector 

machine classification of bogie component faults. The 

algorithm is an implementation of a previously proposed 

railcar condition monitoring solution by the authors. The 

proposed monitoring solution is a data-driven method which 

was developed with measurements taken at a railroad test 

laboratory under controlled conditions. Vibration data was 

collected from multiple locations on a railcar over several 

test runs, each utilizing wheelsets with different levels of 

wear. The input of controlled wheel wear levels was aimed 

at varying the system outputs to resemble those of cars with 

different levels of mileage in revenue service. The generated 

data sets were processed and a feature set was extracted 

from the acceleration signals. The data was divided into 

training and validation partitions using a cross validation 

scheme to preserve the sequence for both sets. A mutual 

information (MI) estimation algorithm was used to rank the 

features based on their similarity to the classified fault state. 

Both the optimized feature set from the MI feature selection 

algorithm as well as the full, non-discriminate feature set 

were used as inputs to the support vector machine to assess 

classification accuracy. The results of this assessment are 

presented in the paper along with a presentation of the 

methods. The paper concludes with a proposal for a 

monitoring strategy aimed at specifically detecting faulty 

components and practicing predictive maintenance.  

1. INTRODUCTION 

The present work is motivated by a need in the freight rail 

industry to decrease asset maintenance related downtimes 

and to improve the effectiveness of maintenance schedules. 

The authors had previously investigated the viability of 

applying on-board condition monitoring and diagnostics 

methods to freight rail applications (Shahidi, Maraini, 

Hopkins, & Seidel, 2014) and had arrived at the conclusion 

that condition monitoring methods can significantly benefit 

the current state of railroad maintenance practices. The 

study of the authors was concerned only with the railcar. In 

particular, it was focused on the performance of the 

undercarriage, the bogie system, on which the railcar body 

traverses the rail network. Figure 1 shows a standard North 

American three-piece bogie. 

 

Figure 1. Standard North American three-piece bogie 

The focus of the present study remains on the bogie as this 

is the component of a freight rail car which experiences the 

most wear and is most susceptible to fault modes.  

The trade association tasked with rule-making for railroad 

transportation, the Association of American Railroads 

(AAR), has established a set of performance metrics (AAR, 

2007) which all bogies have to meet before they can be 

deployed in service. After they go into service, maintenance 

is performed either as fixed schedule preventive 
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maintenance or as reactive maintenance following alerts 

from wayside detectors. In the first case, maintenance 

downtimes are mostly avoided at the cost of unused capacity 

and premature component replacements. In the second case, 

wayside detectors, which are typically installed on the track, 

monitor passing railcars (Zakharov & Zharov, 2005). The 

two most common types of wayside detectors for rail car 

bogie performance are Truck Performance Detectors (TPD) 

and Truck Hunting Detectors (THD) 1 . Both of these 

detectors consist of strain gage based instrumentation which 

is added to the track to measure the lateral and vertical 

forces that rail car wheels exert on the track. TPDs achieve 

this through instrumentation of two reverse curves with 

strain gages to measure the wheel lateral and vertical forces 

and wheelset angle of attack during curving. THDs use 

strain gages that are placed on tangent track to measure 

lateral wheelset oscillations. As of 2013, approximately 15 

TPDs and 172 THDs were in service across the 140,000 

miles of North American rail network. Other, even less 

common types of wayside equipment include Acoustics 

Bearing Detectors (ABD) and laser/vision-based systems. 

Although these systems are also installed wayside they are 

aimed at the detection of particular component malfunction 

vs. the bogie system’s performance as a whole.  Deployment 

of these systems is in the low double digit numbers across 

the North American rail network. The small number of 

detectors relative to the large size of the US rail network 

makes it clear that wayside detectors do not provide 

sufficient coverage to comprehensively monitor freight train 

bogie performance. 

2. BOGIE CONDITION MONITORING 

On-board freight rail bogie condition monitoring is an area 

with large potential for research. As the name implies, the 

combination of multiple disciplines is the reason that few 

studies have been completed directly targeting the issue at 

hand.  

First, on-board condition monitoring has historically not 

been applied to freight rail applications and is a new 

technology in the realm of freight rail maintenance. 

Typically, condition monitoring in the freight rail industry is 

achieved through wayside equipment and therefore research 

in this area has traditionally focused on efficiency 

improvements. Barke and Chiu (Barke, 2005) published a 

review of existing freight rail bogie condition monitoring 

technologies but excluded on-board methodologies and 

solely focused on wayside technologies. Lagnebäck also 

limited his study of potential cost savings and efficiency 

improvements through condition monitoring (Lagnebäck, 

2007) to wayside techniques. 

                                                           
1 In the context of railroading and for this paper, the terms 

bogie and truck can be used interchangeably. 

Second, most on-board condition monitoring studies have 

been attempted in the area of passenger rail transport (Ward, 

Goodall, Dixon, & Charles, 2010; Ward et al., 2011). 

Passenger rail bogies use complete and rigid frames and 

therefore do not have the issue of non-linearities from the 

friction based suspension elements of a three-piece bogie. 

However, passenger bogies still have to deal with other non-

linearities such as those from the wheel-rail interface. The 

difficulty of modeling a friction wedge freight rail 

suspension was shown in Xia and True’s study to model 

nonlinear dry friction damping with hysteresis and stick-slip 

action in the friction forces on the contact surfaces of 

friction wedges (Xia & True, 2003).     

Third, condition monitoring of freight rail applications is 

not limited to bogies and bogie suspension components 

only. Other areas of interest where significant work has 

been completed include the wheel-rail interface (Hubbard, 

Ward, Goodall, & Dixon, 2013), rail car speed inaccuracies 

due to stick-slip action (Mei & Li, 2008), end-of-car devices 

(Hopkins, Seidel, Maraini, & Shahidi, 2015) and on-board 

weighing (Maraini, Shahidi, Hopkins, & Seidel, 2014) 

applications. It is understandable that the emergence of on-

board monitoring technologies and continuous 

improvements in accuracy lead to a vast scope of interest 

which includes monitoring strategies for components which 

have traditionally not been able to be monitored effectively. 

With the high cost of both preventive and reactive 

maintenance, condition-based maintenance can be 

considered the best solution to the problem at hand. 

Typically, applications follow one of two paths: either that 

of model-based condition monitoring or that of data driven 

condition monitoring.  

For model-based condition monitoring, a physics-based 

model, derived from first principles is used to determine 

required system parameters. In (Li & Goodall, 2004) a two 

degrees-of-freedom, half-vehicle model is developed, and 

simulated to determine parameter deviations. For the data 

driven case, features are extracted from existing data from 

field measurements and are then processed with machine 

learning techniques such as neural networks (Haykin & 

Network, 2004) and support vector machines (Bishop, 2006; 

Cortes & Vapnik, 1995) to identify fault modes from 

measurements.  

In both cases, data is required to either compare against the 

model or else to feed into the machine learning algorithm.  

Typically, this data is taken from inertial sensors such as 

accelerometers mounted on the system under test. If 

prognostics is also part of the monitoring strategy, advanced 

filtering techniques such as particle filters (Arulampalam, 

Maskell, Gordon, & Clapp, 2002) or Kalman filters 

(Kalman, 1960) can be combined with the algorithm to 

estimate future states from the current state accelerometer 

measurements. 
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3. FIELD TEST 

Data collection was conducted at Transportation 

Technologies Center, Inc. (TTCI) in Pueblo, CO. TTCI is a 

transportation research and testing organization which offers 

a wide range of tests for rail applications. The facility has 

seven test tracks which are designed to induce a wide 

variety of fault conditions, including lateral and vertical 

railcar instability modes.  

3.1. Field Test Setup 

One of the test tracks at TTCI, the Railroad Test Track 

(RTT), is a 13.5-mile loop with four 50-minute curves and a 

single 1-degree, 15-minute reverse curve. The maximum 

speed on the RTT is 165 mph and all curves have 6-inches 

of superelevation (difference in rail height on the same 

section of track). The primary purpose of this track is high 

speed stability testing which is well suited for exciting 

lateral vehicle dynamic modes. The selection of lateral 

instability testing was based on the fact that the main drivers 

for this instability mode are the suspension parameters and 

wheel wear levels. Furthermore, increased car loads have 

resulted in wagon bodies with higher yaw/roll moments of 

inertia that under faulty suspension conditions can lead to 

coupled oscillatory resonance modes at speeds as low as 47 

mph (Tournay, Wu, & Wilson, 2009). The constant increase 

in axle loads is certain to affect Mean-Time-To-Failure 

(MTTF) requirements, and as such poses a particularly well-

suited example for an application of condition monitoring 

strategies.  

For this study, one of the 50-minute (0.8 degree) curves 

with 6-inches of superelevation was used to accelerate the 

train to a target speed onto a tangent section of track. The 

target speeds ranged from 40 mph to 80 mph and were 

broken up into approximately 5 mph increments. Figure 2 

shows the profile of the segment of the RTT track that was 

used.  
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Figure 2. Test segment of RTT track 

The upper graph shows the superelevation and the bottom 

graph shows the curvature. Once the target speed was 

reached, data acquisition systems began to measure 

accelerations at multiple locations on the car body and 

suspension until the test ended. Test runs were aborted once 

either 80 mph or prescribed maximum acceleration limits 

per AAR rule MSRP C-II Chapter 11 were reached. The 

instrumentation setup included accelerometers with various 

dynamic ranges from ± 5 G to ± 200 G and gyroscopic 

sensors with rates of 250 °/sec. The sensor specifications 

were chosen to accommodate signal dynamic ranges that 

occurred in various measurement locations. A HBM Somat 

eDAQ rugged data acquisition system was used to acquire 

the data from the sensors with a sampling rate of 1000 Hz 

and aliasing protection through analog filtering. The setup 

was a modified version of the recommended setup from the 

MSRP C-II Chapter 11 rules, with slightly higher 

accelerometer bandwidths and dynamic ranges. 

To test the system with known wear conditions as the input 

signals into the railcar system, wheels with three different 

levels of wear (new, intermediate and worn) were used. For 

each round of testing the wheelsets were swapped out for 

sets with a higher degree of wear. Figure 3 shows the three 

different wheel profiles that were used for the three rounds 

of testing. 

 

Figure 3. Different wheel wear profiles used as inputs 

Every other aspect of the railcar and bogies remained 

unchanged to ensure that the wheel profiles were the sole 

factors influencing the stability of the railcar.   

3.2. Field Test Results 

As mentioned before, each round of testing began with a 

different level of wheel wear at or below 40 mph and 

increased gradually until the prescribed maximum 

acceleration limit per AAR regulations or a test speed of 80 

mph was reached. With these limitations, table 1 lists the 

speeds the rail car was tested with for each wheelset. The 

green measurements indicate the speeds for the test runs 

which remained within the AAR limits and the red test 

speeds indicate where the limits were exceeded. 
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Table 1. Test speeds [mph] for each wheel wear level 

No Wear  Medium Wear Fully Worn 

40  30  40  

50  40  50  

60  50  55  

65  60  60  

67  62  62  

70  64  64  

72   67  

75  70  

 

Figure 4 shows the vibration signals for the 64 mph runs for 

each wheel wear level. Overlaid in red is the averaged signal 

of each time series signal. 

 

Figure 4. Vibration signals for three wear states at 64 mph. 

It can be seen that the signals from figure 4 are reflective of 

the tabulated data. The vibration signal collected for the 

medium worn wheel (second subplot) has the highest 

vibration amplitude amongst the three signals. This 

corresponds with the test speeds from table 1, where the 

medium worn wheel set was run up to only 64 mph before 

the instable situation, pictured in figure 1, began. 

4. ANALYSIS  

The analysis of the acceleration data was broken down into 

multiple subtasks which will be explained in this section. 

The first task was the extraction of the feature set from the 

data for each wheel wear state and test run. Then, the data 

sets with the different wear states but same speeds were 

assembled in a random sequence as the test signal. This was 

followed by partitioning the assembled data sets into 

training and validation sets. The training set was used to 

reduce the dimensionality of the feature vector through a 

mutual information scheme which ranked the features and 

thereby allowed to exclude features with information gain 

below a user defined threshold. Then the reduced 

dimensionality training set was used to train a multiclass 

support vector machine. After training was complete, the 

validation set was used to evaluate the classification 

performance of the multiclass support vector machine in a 

one-versus-the-rest classification scheme.  

4.1. Feature Identification and Extraction 

In the first analysis step, a set of features had to be identified 

for extraction and identification of faulty instability modes. 

The initial feature set was identified as a combination of 14 

features including the standard statistical moments, power 

content in various frequency bands, and spectral measures. 

The frequency bands were selected based on a qualitative 

spectrogram analysis in which the bands with the highest 

frequency content magnitude for faulty conditions were 

identified. In alignment with previous findings, the most 

important frequency band was chosen as the band between 

2.5 and 3.5 Hz which is the typical range for the track-

damaging rigid body rail car oscillation modes. The rigid 

body modes include yaw, roll, pitch and bounce oscillations 

which are mainly driven by wheel wear and bogie 

suspension wear. Since the rigid body oscillation modes 

exist with new components as well, only at lower 

frequencies and magnitudes, the first analysis frequency 

band was selected to be between DC and 5 Hz. Additional 

frequency bands included 7 – 12 Hz and 25 – 50 Hz. It shall 

be noted that these bands required frequent changes 

depending on which one of the measurement locations was 

chosen for analysis. Since a sampling rate of 1000Hz had 

been utilized for the testing, the usable bandwidth was from 

0 to 500 Hz. The decision to use this bandwidth was based 

on knowledge of rigid and flexible modes of rail cars 

experiencing the mentioned oscillation modes. It was also 

observed that at elevated measurement locations on the 

carbody, higher frequency content, identifiable on 

suspension components, became attenuated.  This is 

explicable through the carbody acting as a mechanical filter 

which attenuated much of the frequency content above 10 

Hz. 

Since each test run typically lasted longer than 60 seconds 

and included non-stationary dynamic behavior of the 

carbody, a windowing approach was selected to compute the 

feature sets. Multiple window lengths from 2 seconds for 

statistical features up to 10 seconds for spectral features 

were selected and incremented in one second intervals to 

compute the feature set.  The complete list of all features is 

presented in table 2. 
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Table 2. List of Features 

Feature # Feature  Description 

1 Band Power (1) 0-5 Hz 

2 Band Power (2) 7-12 Hz 

3 Band Power (3) 25-50 Hz 

4 Magnitude at Fund. Frequency 

5 Fundamental Frequency 

6 Mean 

7 Variance 

8 Standard Deviation 

9 Peak to Peak 

10 Skewness 

11 Kurtosis 

12 Hyperskewness 

13 Hyperflatness 

14 Crest Factor 

4.2. Cross Validation 

After the features were extracted, the wheel wear states 

were assigned class labels 𝑦 ∈  {1,2,3}, one for each level 

of wheel wear, and data sets measured at the same speed 

were assembled as a test sequence with random order. 

Figure 5 shows the sequenced test signal order after 

application of the three class labels to the data. 

 

Figure 5. Three-class label classification scheme 

A cross validation scheme was applied to the data to divide 

it into training and validation datasets. In prediction 

problems it is important to separate training and validation 

data to avoid overfitting and test generalization for 

independent datasets. The partitioning scheme was selected 

as a stratified hold out cross-validation which retained the 

proportions of the class labels for the training and validation 

partitions. Additionally, the scheme was reshuffled 10 times 

to provide additional validation data sets. The length of the 

validation partitions was selected as approximately one 

tenth the length of the original set.   

4.3. Feature Selection Using Mutual Information 

In cases with very large feature sets, a means to find and 

select only the most relevant features for the classification 

task is required to improve computational efficiency. 

Mutual information theory is a frequently used feature 

selection algorithm to reduce the number of features. The 

idea is to compute a simple score 𝑆(𝑖) which measures how 

informative each feature 𝑥𝑖  is about the predefined class 

labels 𝑦. The information provided by the algorithm can be 

used then to discard the features with the least amount of 

relevancy. Mutual information uses the entropy as the 

amount of information gain provided by each feature. 

Entropy is defined as 

 𝐻(𝑋) = ∑ 𝑝(𝑥) ∙ log
1

𝑝(𝑥)
𝑥

 (1) 

where 𝑝𝑖is the probability of an event taking place with a 

certain outcome. An approximation of  𝑝𝑖  can be obtained 

through the probability distribution since the algorithm is 

dealing with random continous samples. The joint entropy 

of two events taking place together is defined as 

 𝐻(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦) ∙ log
1

𝑝(𝑥,𝑦)𝑥,𝑦  . (2) 

Together these quantities can be combined to calculate the 

mutual information for each feature and the target class as 

 𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) −  𝐻(𝑋, 𝑌) (3) 

The result is a ranking of the features in the vector together 

with an information gain score for each feature. Table 3 

shows the results for the test sequence of figure 5 and the 

mutual information based ranking of each feature at 65 mph. 

Table 3. Mutual information ranking for 65 mph 

Feature  Mutual Information 

Peak to Peak 0.6768 

Standard Dev. 0.6175 

Kurtosis 0.5839 

Freq.Magnitude 0.4999 

Hyperflatness 0.4905 

Variance 0.4881 

Band Power 1 0.4607 

Fund. Frequency 0.4553 

Band Power 3 0.4512 

Skewness 0.4056 

Band Power 2 0.3677 

Hyperskewness 0.3622 

Crest Factor 0.3066 

Mean 0.1688 
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It should be noted that since a stratified partitioning scheme 

was used in the algorithm, the results may slightly differ 

each time the mutual information algorithm is executed. The 

reason for this is that for stratification, samples are chosen 

from the population in no specific order as long as the 

overall sequence of class labels is maintained. Therefore 

single values can still vary under the same label and the 

variation this introduces may influence the probability 

distribution of the entropy calculation. A threshold can be 

applied after the ranking to exclude features with an 

information gain below a desired limit. 

4.4. Multiclass Support Vector Machine Classification 

A Support Vector Machine (SVM) is a maximum margin 

classifier that can be used for classifying both separable and 

non-separable data. This is achieved by finding an optimal 

hyperplane which defines the maximum margin between 

two target classes. When the target classes are separable, the 

equation for the hyperplane is straightforward. However, for 

non-separable data, kernel based methods must be utilized 

to transform the data into a space whereby it becomes 

separable. In the case of only two indicators for each class 

this is a simple linear line which separates two classes of 

data. However, when data with more than two features is to 

be separated the simple line becomes a plane or hyperplane 

above 3 dimensions. At its core, the classification problem 

is defined as the decision rule 

 𝑦(𝒖) = 𝒘𝑻𝒖 + 𝑏 (4) 

where y(u) is the decision, w a weight vector orthogonal to 

the decision surface, b a bias and u an unknown input 

vector. The optimal hyperplane can be found by solving the 

constrained optimization problem of the form  

 min
1

2
‖𝑤‖2 (5) 

Limited by the constraint 

 𝑡𝑖(𝒘𝑻𝒙𝒊 + 𝑏) ≥ 1 (6) 

For (6), xi represents known positive or negative training 

samples and 𝑡𝑖 ∈  {−1,1} is a factor that is either positive 

negative depending on the sign of xi so that (6) is always 

true. To deal with the constraints, we introduce Lagrangian 

multipliers αi to find the extremum of equation (5). The 

Langragian which combines (5) with the constraints from 

(6) can be expressed as 

 𝐿 =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖

𝑖

[𝑡𝑖(𝒘𝑻𝒙𝒊 + 𝑏) − 1] (7) 

Taking the derivative and setting it to zero gives the 

conditions for the extremum. Those can be plugged back 

into the original decision rule for a two-class classification 

problem of the form 

 𝑦(𝒖) = ∑ 𝛼𝑖

𝑖

𝑡𝑖𝒙𝒊
𝑻𝒖 + 𝑏 (8) 

The vectors in the dot product in equation (8) can be 

transformed for cases when the classes are not linearly 

separable and in turn make them separable again. This is 

achieved using a kernel function of the form 

 𝜙(𝒙𝑻)𝜙(𝒖) = 𝑘(𝒙, 𝒖) (9) 

For the present study all tests were conducted with a linear 

kernel, meaning the dot product was used. 

The support vector machine is fundamentally a two-class 

classifier. To deal with the fact that in this case the problem 

is not only a two-class separation problem but a three-class 

problem 𝑦 ∈  {1,2,3} with one class for each wheel wear 

state, the above introduced support vector machine was 

modified to be a multiclass support vector machine. A 

common approach for this is called the one-versus-the-rest 

approach which constructs K separate SVMs in which the 

kth model Yk(x) is trained using the data from class yk as the 

positive examples and the data from the remaining K-1 

classes as the negative examples. 

4.5. Analysis Results 

The analysis was completed with the above outlined 

algorithm and data from the field test. The focus of this 

testing was on identifying the three wheel wear states while 

testing for robustness of the algorithm against railcar speed 

and assessing which features contribute most to the 

accuracy through the mutual information score of each 

feature.  

Figure 6 shows the progression of the features vs the speed 

for each wheel wear level. The colors in figure 6 were chose 

in accordance with the colors of the wheel profiles in figure 

3: green stands for the no wear wheel profile, blue for the 

medium wear wheel profile and red for the full wear wheel 

profile. As presented in table 1, due to the experimental 

nature of the field data, the data sets for each fault were not 

always recorded at the exactly same speeds. Hence, the 

features are also only available at the same speeds (as in 

table 1). Since for comparison purposes the speed has to be 

the same for each fault, only three speed levels (65, 60 and 

50 Mph), at which data was available for the three faults, 

were selected for analysis.  

For the first case, data from the 65 mph test run for each 

wheel wear state was used to evaluate classification 

accuracy of the algorithm. The sequence of the wheel wear 

levels remained the same as presented in figure 5 in 4.2 and 

the hold out cross validation scheme was reshuffled 10 

times for 10 simulations with the multiclass support vector 

machine. Features were ranked but none were excluded for 

the first case. The first simulation of the first case (65 mph) 

produced a classification accuracy of 93 %.  
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Figure 6. Progression of features versus speed – green 

stands for the no wear, blue for the medium wear and red for 

the full wear wheel profile.   

Table 4 shows the results in a confusion matrix. As the table 

shows, only 7 out of 100 samples were incorrectly 

classified. 

Table 4. Confusion Matrix for 65 mph run 

 Predicted Class 

A
ct

u
al

 C
la

ss
  No Wear Med. Wear  Fully worn 

No Wear 29 0 1 

Med.Wear 0 31 4 

Full Wear 1 1 33 

 

The next 10 simulations yielded similar accuracies and the 

results are presented in table 5. The average classification 

accuracy for the first case with speeds at 65 mph was 92%.  

 

 

Table 5. Classification accuracies for 65 mph 

Simulation # Classification 

Accuracy 

1 0.91 

2 0.90 

3 0.93 

4 0.95 

5 0.96 

6 0.94 

7 0.91 

8 0.90 

9 0.94 

10 0.89 

 

For the second case, the same classification runs were 

repeated for a test speed of 60 mph. The first simulation 

produced a dramatically decreased classification accuracy of 

81%. Table 6 shows results in the confusion matrix. 

Table 6. Confusion Matrix for 60 mph run 

 Predicted Class 

A
ct

u
al

 C
la

ss
  No Wear Med. Wear  Fully worn 

No Wear 30 0 0 

Med.Wear 0 31 4 

Full Wear 0 15 20 

 

It can be observed that the majority of the incorrect 

classifications happened for the full wear class label being 

incorrectly classified as medium worn. The next 10 

simulations yielded accuracies as presented in table 7. The 

average classification accuracy for the second case at a test 

speed of 60 mph was 76% 

Table 7. Classification accuracies for 60 mph 

Simulation # Classification 

Accuracy 

1 0.73 

2 0.73 

3 0.74 

4 0.77 

5 0.79 

6 0.77 

7 0.75 

8 0.77 

9 0.78 

10 0.76 
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For the last case, the same simulations were run for a test 

speed of 50 mph. The first simulation produced an accuracy 

of 79%. Table 8 shows the results in the confusion matrix. It 

can be observed again that class label “Full Wear” created 

the most inaccurate classification events out of the three 

class labels. 

Table 8. Confusion Matrix for 50 mph run 

 Predicted Class 

A
ct

u
al

 C
la

ss
  No Wear Med. Wear  Fully worn 

No Wear 30 0 0 

Med.Wear 0 28 7 

Full Wear 0 14 21 

 

The accuracies of the following reshuffled classifications 

are presented in table 9 below. The average classification 

accuracy at 50 mph was 79% which was just slightly above 

that of the 60 mph simulations.  

Table 9. Classification accuracies for 50 mph 

Simulation # Classification 

Accuracy 

1 0.76 

2 0.77 

3 0.76 

4 0.77 

5 0.78 

6 0.88 

7 0.83 

8 0.78 

9 0.79 

10 0.78 

 

Next, the feature rankings were added to the analysis and a 

minimum information gain threshold for the features to be 

included in the analysis was enforced. The data from the 

three test speeds was tested for mutual information 

thresholds that ranged from 0.5 to 0 where 0 meant that all 

features will be included for classification. Each speed and 

mutual information threshold was evaluated for 10 

simulations and the approximate number of selected features 

of the 10 simulations as well the average accuracy with the 

selected feature set was recorded. The results are presented 

in table 10. A number of relationships can be observed in 

the results: first, the speed has a large influence on the 

number of selected features for each MI cutoff. This can be 

explained by virtue of the fact that the faster the train moves 

on the track, the more reflective of the fault condition the 

features become and hence higher mutual information 

between the features and classes exist. Second, of course a 

clear trend towards higher accuracy with more features can 

be observed for each of the test speeds. In the case of this 

study, this is not surprising since not a large number of 

features were used and no contradicting feature trends, 

which would require exclusion of features, existed.  

Table 10. Results with applied feature selection 

Speed 

[mph] 

Simulations MI  

cutoff 

Selected  

features 

(approx) 

Average 

Accuracy 

65 

10 0.5 5 0.85 

10 0.25 12 0.90 

10 0.1 13 0.92 

10 0 14 0.92 

60 

10 0.5 0 0 

10 0.25 6 0.68 

10 0.1 12 0.76 

10 0 14 0.76 

50 

10 0.5 1 0.34 

10 0.25 5 0.52 

10 0.1 13 0.80 

10 0 14 0.80 

 

As an example, the features excluded by the MI feature 

ranking algorithm for low cut offs typically include the 

mean, crest factor and hyper skewness. However, it must be 

noted that this should be only cautiously considered as 

representative, since the stratified partitioning scheme here 

too causes a level of variation as explained in section 4.3. 

5. DISCUSSION 

Analysis for the detection of wheel wear states from the 

vibration signature of acceleration data taken on the rail car 

was completed. A success rate of 92% was achieved for the 

ideal case of high test speeds. Particularly, the “1” class 

label achieved ideal classification accuracy which can be 

interpreted that the identification of normal operation would 

be most reliable in an implementation. Performance of the 

algorithm at lower speeds was worse but still acceptable and 

of high value with a success rate of approximately 80% 

classification accuracy. 

A few interesting points emerged from the analysis which 

require a deeper discussion. The first and most important 

observation was that speed influences the classification 

accuracy. In the case of this testing the test runs were 

completed with incrementally increasing test speeds until 

failure occurred. Failure was considered a lateral instability 

mode which was more likely to occur with worn wheels 

than with new wheels at a certain speed. This instability 

mode, which is linked to wheel wear and entered by the 

train above a certain speed, creates high amplitude lateral 

oscillations which severely change the vibration 

characteristics of the acceleration signal. Therefore it is not 
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surprising that the directly linked wheel wear state was 

clearly discernible at higher speeds in the analysis.  The 

simulations supported this conclusion with an average 

classification accuracy of 92% at 65 mph.  

In the second set of simulations with reduced test speeds of 

approximately 60 mph, the average accuracy dropped to 

76%. The plot in figure 6 shows that majority of the 

misclassification occurred for the samples labeled “3” in the 

test set. These data samples were typically incorrectly 

classified as having the label “2”. Conversely, the opposite 

misclassification of label “2” values as label “3” values did 

not occur, which leads to the question of why these 

unidirectional classification inaccuracies occur. One 

explanation may be that at speeds below 65 mph which do 

not excite the lateral instability mode, distinction between 

wear states of medium to fully worn states can be a 

challenge.  Interestingly, this trend does not prevail when 

the speed is further reduced to 50 mph. Although speeds 

lower than 65 mph had significantly lower classification 

accuracies, the 50 mph had higher classification accuracy 

than 60 mph. This non-linear dependency on speed remains 

subject to further research. However, in preliminary 

experiments it has been discovered that by implementing 

support vector machines with kernels that are more 

sophisticated such as polynomial or Gaussian radial basis 

function kernels, improved accuracies can be achieved. 

Another aspect which will require future work is the 

addition of a probability score for the one-versus-the-rest 

multiclass support vector machine. Without a probability, 

score samples may be assigned to multiple states and 

training sets will be imbalanced. In the above example, the 

test set had a length of 100 samples but less than one third 

belong to each class therefore giving the rest class label an 

undue overweight and loss of symmetry may occur. 

Additional techniques for multiclass support vector 

machines shall be explored as alternatives.  

Other improvements for future iterations of the algorithm 

include the addition and grouping of features, such as ratios 

and derivatives. Furthermore, the investigation of additional 

measurement locations and the addition of more 

components for wear estimation can provide insight into 

additional failure modes. Finally, an extension of the 

algorithm to also include non-parametric data into the 

feature set will further be able to enhance classification 

accuracy. 

6. CONCLUSION 

On-board condition-based maintenance for North American 

freight rail applications is an underdeveloped yet promising 

field for the application of condition monitoring and 

machine learning techniques. Past efforts were mainly 

focused on passenger rail and wayside detection 

technologies. In this study an algorithm to estimate wear 

levels of freight rail bogie components based on mutual 

information and multiclass support vector machines was 

developed and tested with field data. Promising results were 

achieved with classification accuracy above 90% for test 

speeds which excite relevant failure modes. Lower speeds 

still yield an accuracy of approximately 80% with the full 

feature set. Very high potential for improved results in the 

future exists based on the proposed improvements for the 

algorithm and the expansion of test locations. For the 

algorithm, feature set extension and improved kernel 

function will most likely yield the highest improvements.  
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