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ABSTRACT 

Aircraft System Health Management (ASHM) is a web 

application used for Boeing 787® and Airbus A320® and 

A380® aircraft system monitoring by airlines and field 

engineers worldwide which also serves all existing Aircraft 

Condition Monitoring Function (ACMF) reports, Flight 

Deck Effects (FDE) records and aircraft metadata to UTC 

engineering teams to aid in efficient aftermarket support. 

This enables creation, testing and fielding of off-board 

diagnostics and prognostics modules of varying levels of 

sophistication, that convert this abundance of existing data 

into actionable and timely knowledge about a/c fleet health. 

ASHM encourages and promotes cross functional 

collaboration allowing those with the most subject matter 

expertise within the enterprise to access the field data they 

need to observe operational performance and to create, test 

and field modules that can actively diagnose and warn field 

service professionals of problems when and potentially 

before they arise. A practical case study related to 

monitoring of the novel Boeing 787® electromechanically 

driven distributed aircraft environmental systems is 

presented. This use case motivates a discussion of pragmatic 

lessons learned in the fielding of diagnostic and prognostics 

solutions. 

1. INTRODUCTION 

Modern commercial aircraft contain computerized 

maintenance systems that have replaced the dials, indicators, 

switches, and diagnostic read-outs of prior generations of 

aircraft. These systems in addition to performing on-board 

diagnostic functions also record high value parametric data 

that can be used for system and component health tracking, 

fleet data studies, and prognostics. By observing changes in 

component performance or recognizing abnormal response 

behaviors it is possible to observe incipient fault conditions 

before they grow into significant problems that are 

recognized by the on-board Built-in Test (BIT) checks 

which in the worst case may cause a delay or cancellation of 

service. Looking at data trends across a fleet of aircraft can 

identify outlier behaviors that are indicative of degraded 

health, determine the effect of usage factors on component 

life, and optimize maintenance practice. Prognostics goes 

beyond fault assessment to project remaining useful life, 

allowing advanced scheduling of maintenance procedures, 

proactive replacement part allocation, and enhanced fleet 

deployment decisions based upon the estimated progression 

of component life usage. 

This aircraft data and diagnostic information is of high value 

to multiple groups who have interest in the current and 

future health states of these critical systems. First, the airline 

operators of these aircraft are looking for a change in 

aircraft health that can be used to optimize maintenance and 

prevent the occurrence of delays and cancellations. Second, 

the field service engineers who support the airlines benefit 

from information that allows them to better support 

maintenance troubleshooting and logistics. Finally, the 

system engineers who support each of the aircraft systems 

can obtain critical information to characterize product issues 

and develop enhancements to diagnostic capability. To 

serve each of these important user groups, UTC Aerospace 

Systems has developed and continues to improve and 

expand the Aircraft System Health Management (ASHM) 

Tool. 

ASHM takes in ACMF reports for selected subsystems and 

components of each supported aircraft platform, parses and 
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processes the reported parameters against thresholds, 

computes estimated or expected values for some key 

parameters, and serves the report data and the processed 

results as part of a fleet view available to airline, 

maintenance, and engineering users. The application allows 

for the creation, integration, and execution of custom 

analytic modules that extract enhanced diagnostic and 

prognostic information from the raw report data. This 

information is also made available for visualization, 

trending, and alerting. 

In this paper, the sub-systems of the Boeing 787 will be 

used as a case study of how this high value parametric data 

and derived diagnostic and prognostic information can be 

used to enhance commercial aircraft maintenance practice. 

The Boeing 787 is outfitted with a modern computerized 

maintenance system that records key data for each of these 

aircraft systems. The available on-board data is transformed 

by ASHM into actionable component and system fleet 

information to guide fleet troubleshooting, opportunistic 

maintenance, and logistics. In addition to the Boeing 787, 

the ASHM software is also being used to support the Airbus 

A320 and A380 platforms. 

2. AIRCRAFT DATA SOURCES 

The ASHM software tool collects, organizes, and stores 

aircraft data from two different sources. The first class of 

data is comprised of system status flags that report 

anomalous behavior or degraded performance as obtained 

from on-board BIT checks and diagnostic functions. These 

events which are commonly referred to as Flight Deck 

Effects (FDEs) are captured along with linked maintenance 

messages that capture the symptoms of the observed 

condition. The second class of data is recorded by the 

Airplane Condition Monitoring Function (ACMF) and is 

specifically targeted at long term analysis of aircraft health 

and usage (Ramohalli 1992). 

The ACMF report data is of particular interest to the ASHM 

fleet monitoring software. These reports capture aircraft 

parametric data based upon triggering criteria and a format 

that have been established by aircraft system domain 

experts. The specific content in each report can be targeted 

at periods of operation sensor signals that are of particular 

interest for a given component or fault mode. Some reports 

trigger based upon entry into a given operating mode that is 

appropriate for system performance characterization or 

detection of anomalies. Other reports are triggered by the 

occurrence of specific events that are noteworthy, abnormal, 

or perturb the system in a way that makes performance or 

fault conditions more observable. Each report collects an 

assortment of sensor data, state information and contextual 

metadata that is of interest to the system or component 

monitored by the report.  This data includes typical 

operating parameters such as: temperature, pressure, 

position, and speed. The reports in some cases record 

operational state values or calculated values that have been 

derived from the raw parametric data. Often, the aircraft 

system data is reported along with aircraft level data such as 

altitude, air temperature, and Mach number that provide 

important context about the operating conditions at the time 

of acquisition. The data may be acquired as a single 

snapshot in time, a set of statistical metrics such as mean or 

peak value, or as a time series history.  

3. ASHM SOFTWARE ARCHITECTURE 

ASHM is an enterprise application that monitors systems on 

multiple commercial aircraft platforms using ACMF  

reports, automated parameter alerts and notifications and 

diagnostic and prognostic custom analytic modules. The 

overall software architecture is depicted in Figure 1. ACMF 

reports and other information sources are generated by the 

on-board maintenance system. The reports are offloaded and 

automatically processed by ASHM using a fully automated 

workflow. The ASHM application parses and stores 

incoming reports to generate alerts and execute advanced 

algorithms that were developed or adapted using existing 

system models and data. The event driven architecture 

powers the real-time web portal where airlines, maintenance 

support and engineers can analyze reports and be notified in 

advance of potential issues. The portal also displays high 

level dashboards for easy information consumption and 

drill-downs, graphs and report viewers for detailed analysis. 
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Figure 1. ASHM Software Architecture 

An extract, transform, load (ETL) engine is utilized in 

ASHM. As different report types arrive they are bucketed 

by type into directories for further processing. Each 

subsystem has one or more report types, and as ASHM 

grows to process more systems of each aircraft platform, 

and adds more aircraft platforms, the number of report types 

will grow accordingly. In the first parsing step for each 
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report, the report is parsed at a high level to determine the 

specific type of report, specifically the subsystem, report 

type, version that report type, and based on that information 

a determination is made and action taken to move that report 

to the proper staging directory. If the report is not 

recognized it is placed in a separate bucket. Then, the Data 

Transformation agent reads each report as one record of 

input, and parses the parameters from that report. It stores 

each parameter as part a unique record for that report in the 

application database.  

The complex event processing portion of the ASHM 

software is shown in Figure 2. Data flows through 

RulePoint by report type, originating with a SQL Source 

that acquires parameter instance data from the ASHM 

database and pushes it into a RulePoint® Topic. A Rule 

references one or more topics and may use data from those 

topics to 1) determine anomalous conditions, e.g. value out 

of range, 2) compute new values based on those parameters, 

3) send those computed values or detected conditions to a 

Responder that is responsible for storing new data back to 

the same ASHM database. For the ASHM project automatic 

alert rule generation based on thresholds defined in the 

database is employed. This custom tool uses a Java API 

Adapter to 1) connect to the development RulePoint 

instance, 2) remove all previously generated (as opposed to 

hand entered) rules, and 3) generate a new set of rules based 

on those thresholds. 

 

Figure 2. Detail View of Event Processing Software 

The ASHM application checks for out of range “alert” 

conditions on selected incoming report parameters, looking 

for warning or alarm conditions that are higher or lower 

than expected under normal operating conditions. Each 

“alertable” parameter has its own set of thresholds defined 

in the database for low and high warning and alarms. There 

are also mechanisms in place to define two additional 

criteria which are when the thresholds are to be ignored, say 

when some (the same or another) parameter’s value meets a 

certain conditional relationship with a fixed value, e.g. <= 

some value, = some value, or >= some value. The parameter 

alert rules store parameter out of range conditions back to 

the database, where they are used to display those 

anomalous conditions to the end user in the web application. 

In addition to simple thresholds, the ASHM application can 

invoke a custom analytic that performs calculations on the 

report data. This functionality is used to run diagnostic and 

prognostic algorithms that extract refined system health 

information from the raw parametric data. The process for 

developing, vetting, and integrating these custom analytic 

modules is described in detail in the following section. 

4. CUSTOM ANALYTIC DEVELOPMENT PROCESS 

The development and use of custom analytic modules 

enables health monitoring capability that extends far beyond 

what is possible using only parameter alerting and trending 

of raw ACMF data. These modules use ACMF report data 

to extract subtle fault indicators that give advanced notice of 

impending failures at severity levels below that captured by 

the on-board diagnostics. The overall development process 

for the ASHM custom analytic modules is shown in Figure 

3. 

 

 

Figure 3. Custom Analytic Development Process 

The first step in the development process is the 

establishment of need. When deciding where to allocate 

effort to create new diagnostic and prognostic capability, the 

first priority is given to components and fault modes that 

cause flight cancellations and delays. These service 

interruptions (SIs) have significant negative effects for all 

interested parties from the airlines, field service support, and 

product engineers. The primary objective of custom analytic 

development and ASHM in general is the minimization of 

SIs throughout the fleet. The leading causes of SIs are 

established by analyzing fleet reliability data compiled by 

the worldwide network of field service personnel. This data 

is summarized using Pareto chart analysis and the most 

significant contributors to SIs are given the highest priority 

when developing new custom analytics. After SI data, 

priority is given to the components and systems that are 

creating the highest load on aircraft maintainers. This is 

quantified by analyzing LRU removal data compiled by 

field service personnel to determine which components are 

involved in the highest number of maintenance procedures. 

While the removal data aligns with the SI records in many 

situations, there are some cases where the component 
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criticality or the complexity/time-intensiveness of a given 

maintenance procedure may affect priority for a given 

component or system. Lastly, there is the issue of 

component logistics. Replacement of large, expensive LRUs 

like Auxiliary Power Units (APUs) requires careful 

planning due to limited product availability and 

transportation time. Therefore these systems are prime 

candidate for development of PHM technologies that 

provide an assessment of component health, and forecast 

future maintenance needs. 

The second step in the custom analytic development process 

is creation of the diagnostic or prognostic algorithm. In this 

step the PHM design experts collaborate with the subject 

matter experts to determine the available raw materials to 

support algorithm development, and how this information 

aligns with known system issues. When possible, model 

based approaches to diagnostics and prognostics are 

preferred. The raw ACMF report data represents only one 

snapshot in time of system operation. It can be difficult to 

know if a change in a parameter is due to fault or the normal 

variations that occur over the operating range of the system. 

The use of system and component models that simulate 

normal system response can be used to reduce the effect of 

typical system variations on health assessment performance.  

Modern engineering design makes extensive use of 

simulation during the product development phase. For many 

of the systems the component design models have been 

readily accessible for implementation into multiple custom 

analytic modules. However, a suitable model is not 

available in every case, and in some cases the data required 

to exercise the model is not present in the related ACMF 

reports. In those cases, an approach is used that acts directly 

on the raw report data. If there is a good understanding of 

the failure modes, either via documented field or laboratory 

failure data or an understanding of the underlying physics, a 

feature based approach can be developed to extract known 

fault indicators from the parametric data. If there is limited 

understanding of the nature of failure, or if a generalized 

anomaly detection capability is desired, an approach that is 

based purely on the known range of healthy data is used.  

Regardless of the approach, the module must be designed so 

that it has sufficient robustness to accommodate variations 

in the report data that are not associated with system 

performance. The ASHM software package is independent 

of the on-board aircraft software and therefore must 

accommodate changes in report format and content as they 

occur. The nature of the report data may be affected by one 

or more component operating states, and these must be 

observed and tracked to ensure proper operation. The 

software must also be prepared to recognize on-board data 

collection irregularities and screen out the affected values so 

that spurious fault correlations are not reported. 

If the current ACMF data is deemed insufficient for 

enhanced system monitoring, the team turns its focus to 

establishing how the report can be modified to obtain the 

highest value condition information. The reports were 

designed to provide the most important system condition 

information as understood at the time of implementation. 

On a new aircraft like the Boeing 787®, this means that 

these decisions were made based upon a theoretical 

understanding of the system or using the available test data. 

An examination of field data can identify opportunities to 

improve the available system configuration information 

based upon actual usage. 

After the diagnostic or prognostic method has been created, 

it is subjected to a series of validation tests to ensure that it 

provides the desired system heath information with an 

acceptable level of performance. Generally the performance 

of diagnostic methods is evaluated by determining the 

correctness of fault detection results, and the accuracy of 

fault severity assessment metrics. Of particular interest are 

the rates at which two diagnostic results occur: false alarms, 

or when the diagnostic system detects a fault but the 

condition of the system is not significantly degraded, and 

missed detection when the diagnostic system does not 

indicate a fault when one is known to be present. To support 

this activity, again the field SI and removal data is used to 

obtain ground truth information about the health state of the 

fleet. Documented failures, particularly those with a 

conclusive root cause assessment are extremely valuable in 

establishing system response at degraded health states. The 

fleet service history not belonging to known fault cases can 

be used to establish baseline system performance. 

Laboratory test results can be used to supplement field data 

experience, particularly in cases where practical fault 

experience is limited. The validation of prognostic 

approaches is a far more complex topic and has a more 

significant set of input requirements (Byington, Roemer, 

Kalgren, & Vachtsevanos, 2005). Given the long timescale 

of component life, it is generally impractical to complete 

significant validation prior to algorithm deployment. 

However, it is of critical importance to establish the 

accuracy and uncertainty bounds of the models used to 

assess and predict system health progression. 

Validation is difficult in cases where the fault mode does 

not result in a condition that requires documented 

maintenance actions. For example, the air flow pathways in 

environmental control systems or air management systems 

may become contaminated by foreign material that may 

become lodged in components such as heat exchangers 

(Najjar, Hare, D'Orlando, Leaper 2013). This condition is 

problematic and requires a cleaning operation, but may not 

result in a removal or SI. Knowing when these events occur 

is essential to establishing health state ground truth for the 

related fault modes. This example illustrates the importance 

of communication between the operators and field support 

engineering in developing and validating effective PHM 

methods. 
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Validation may be performed at various points throughout 

the development cycle. It is preferable to conduct significant 

validation prior to deployment of the analytic to ASHM. 

This is more realistic for mature platforms that have been in 

service for a significant amount of time. For example, the 

ASHM team has created a custom analytic module to 

evaluate the progression of Airbus A320® APU health. 

There is a wealth of data for over a decade of operation for a 

very large fleet of aircraft, and significant validation was 

possible prior to analytic deployment. By comparison the 

Boeing 787® is a relatively new platform, with significantly 

less observed health progression and field maintenance 

issues throughout the fleet. While is it possible to confirm 

proper basic functionality and baseline response, it may not 

be possible to completely validate algorithm response to 

field failures prior to deployment. In these cases, it may be 

necessary to deploy a version of the algorithm for validation 

against new fleet data as it arrives.  

When a custom analytic reaches a state that is mature 

enough for implementation in ASHM, it enters the 

production rollout phase. The algorithms as created by the 

PHM and system domain experts are translated into 

production software modules. The engineering and software 

teams work together to define a set of verification tests that 

evaluate all relevant logical paths within the software. These 

tests ensure that the production implementation matches 

exactly the approach that was validated during engineering 

sandbox development. The input and output data streams are 

established and any relevant contextual information is 

integrated as meta-data that is cataloged in the production 

database and made available to down-stream processes that 

consume the custom analytic output. Finally, the module 

output is integrated into the downstream ASHM processes 

that will serve this enhanced system condition information 

to the users. This includes configuration of custom data 

visualizations, data plotting and trending, and definition of 

parameter alerts including warning and alarms. 

Upon successful deployment of a custom analytic module, it 

enters the sustainment phase. The output of the module will 

be regularly inspected and compared to the documented SIs, 

field failures and maintenance actions. The report data will 

be monitored for format changes or other updates that 

require reconfiguration of the event processing 

configuration or custom analytic software. If new classes of 

failure or degradation are observed, or the understanding of 

a given fault mode changes, an alternative version of the 

custom analytic can be created and evaluated in the 

engineering sandbox as a software upgrade candidate. 

5. GENERATION OF ACTIONABLE INFORMATION 

ASHM aids the user in extracting actionable information for 

short term proactive fleet support from the raw data sources. 

It does this by raising visibility of event reports (system 

reports that are only generated when an anomaly is 

encountered), automatically interpreting various error codes 

generated by the monitored equipment and triggering 

ASHM alerts based on threshold exceedances on reported 

parameters. 

Custom analytics provide the means of generating more 

sophisticated health indicators from the raw data. These 

health indicators provide actionable information in the 

following ways: diagnostic and or prognostics indicators 

augment the raw report within ASHM’s report viewer; alerts 

based on computed parameters are displayed alongside the 

ones based on raw reported parameters; and finally 

computed parameters can be included in the ASHM graphs 

pages to be monitored and observed visually for trends or 

anomalous behavior. 

The final way that ASHM provides actionable short term 

information is by allowing the user to compare health 

indicator parameters by aircraft across the whole fleet thus 

focusing attention on the aircraft with health indicators that 

are abnormal compared to the fleet. 

ASHM and the associated Data Analytics Tool also provide 

actionable information for a different audience with a longer 

term interest: the Engineering teams responsible for 

supporting fielded systems as well as new product design. 

ASHM aggregates operational field data that is invaluable in 

terms of closing the loop between Engineering and Field 

Support. It provides unprecedented visibility into how the 

systems that Engineering designs are operating in the field. 

This allows a closed loop refinement of all the assumptions 

made at design time, to both improve the current product 

offering and enable better design assumptions for the next 

generation of new products. 

The goal of any deployed custom analytic is to provide the 

user of ASHM with actionable information. The following 

case study is a simple example of extracting invaluable 

information available by implementing a straight forward 

custom analytic. 

6. CASE STUDY – ELECTROMECHANICAL SUBSYSTEMS 

The transition from engine driven hydraulic subsystems to 

distributed electric motor driven subsystems has led to 

ACMF reports that capture characteristics from a wide array 

of systems despite being targeted to one component. A 

smart motor controller may now be responsible for 3 or 

more different tasks throughout the duration of a single 

flight. These tasks range from air management, to motor 

start procedures. The case study presented here will examine 

the complexities of the Boeing 787® motor controller 

system and its effect on the interpretation of ACMF data. 

In previous generation civilian aircraft, the main engines 

generally provide four main sources of auxiliary power: 

electrical, pneumatic, hydraulic, and mechanical. The 

electrical system supplies power for avionics equipment, 

lighting, and in-flight entertainment. The pneumatic bleed 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

 

This document does not contain any export controlled technical data. 
 6 

air system supplies power for cabin pressurization and wing 

anti-ice systems. The hydraulic system provides power for 

flight control systems and auxiliary systems, and the 

mechanical power is used within the engine for oil and fuel 

management. 

The electrical subsystems incorporated on next generation 

electric aircraft combine some of these power systems into 

one, through the use of generators and smart power 

distribution systems. This reduces system hardware 

complexity, resulting in weight reduction and efficiency 

improvements. A secondary result of this change is an 

increase in electrical system complexity. There are multiple 

electrical power distribution systems and new FAA certified 

software accompanied with these systems (Wheeler & 

Bozhko 2014). 

The Common Motor Start Controller (CMSC) ACMF 

reports contain parametric data on component power draw, 

fluid temperatures, power frequency, and active mode 

information. Among these reports, data is provided in two 

different formats; time series data and snapshot data. The 

time series data provides prognostic systems with valuable 

information regarding how a system reacts to applied power. 

With this data it is possible to measure spool up time for an 

engine, or when a starter generator is drawing maximum 

power. ACMF reports which contain time series data 

typically target vital aircraft procedures, like Main Engine 

start or APU start. The snapshot data, in contrast, allows 

maintainers to track and trend parameters and features over 

extended periods of time. ACMF reports, which contain 

snapshot data, capture data at key points throughout each 

portion of a flight, from Taxi to Landing. The snapshot data 

is generally divided into two capture methods, peak data 

value and average data value. Both of these data points are 

useful in application to component fault detection. While the 

ACMF data provides vital information about the functions 

of these subsystems, it is equally as important to understand 

the operational modes and connectivity of the CMSC 

subsystem. Without this understanding, the data loses its 

diagnostic and prognostic value. Figure 4 is a simplified 

representation of the CMSC component assignments. In this 

figure, each CMSC is connected to two unique components, 

Cabin Air Compressors (CAC) and Generators (G), which 

then provide power to critical systems. 

CMSC 1 CMSC 2 CMSC 3 CMSC 4

CAC 2

AC Pack 1

G 1

Motor 1 AC Pack 2 Motor 2

CAC 1 CAC 3 CAC 4G 2 G 3 G 4

 

Figure 4: Representation of CMSC Component 

Assignments 

An important part of establishing component connectivity is 

the operation mode flag. Each CMSC reports an operational 

flag associated with each data point, whether single point or 

time series. That operational flag indicates the CMSC’s 

active mode, which ties to one of the Boeing 787’s 

redundant system components. These operational flags have 

a significant bearing on the development of custom 

analytics for this system. 

In the time series ACMF data, the operational mode flag can 

be used in determining how long the CMSC was driving a 

specific component and, in combination with the parametric 

data, provides information about the response of the 

controller and motor pair. The process involves filtering the 

data based on the operational mode flag. The time series 

ACMF reports contain data for a defined period of time 

after a trigger has occurred. This results in the ACMF report 

containing data from a CMSC driving multiple components 

over the course of that time series. When a CMSC is 

responsible for driving components of vastly different 

power requirements, it becomes clear that it is vital to filter 

the ACMF reports by the operational mode prior to applying 

statistical analyses to the data. Development of analytics 

which harness this time data can assist maintainers and 

engineers in analyzing and categorizing the effect of routine 

procedures on key aircraft components. Figure 5 illustrates 

the operational mode filtering utilized to select a targeted 

subset of data. 
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Figure 5: Filtering of Data Using Operational Mode Flag 

 

By contrast, the snapshot ACMF reports contain peak or 

average data from the CMSC at specific points in each flight 

leg. In this data, the operational mode flag is useful in 

plotting component trends over time. For example a motor 

which draws more power each flight, while performing the 

same duty cycle, might indicate that the motor or driven 

component is experiencing degradation. Pairing this 

information with removals, allows for the development of 

fault detection thresholds which can be alerted on in ASHM, 

notifying the maintainers that maintenance action should be 

taken to avoid future Service Interruptions. 

It is not enough, however, to know that a CMSC is driving a 

specific type of component. For redundancy and distributed 

system operation, multiple instances of many components 

exist on the aircraft. A complex logic dictates which of these 

components is active, and which motor controller is driving 

each component. A calendar rotation is applied to certain 

redundant components, thus distributing the wear among 

each. In a second common arrangement, redundant 

components share the load on a common task. When one 

fails in this arrangement, the healthy component is 

responsible for providing the power to compensate for the 

failed component, usually at a reduced level of performance. 

Another common practice is for components to operate in a 

master slave arrangement where one of the components is 

present simply to provide a backup should the primary 

system fail.  

The goal for these analytics is not only to identify issues in 

the motor, but issues in the intermediate components driven 

directly by the CMSC. The smart power distribution system 

is responsible for dynamically assigning tasks to each 

CMSC based on priority and system availability. This 

information can be useful in fault isolation. For example, if 

an issue is present with a starter generator, and that issue is 

prevalent when driven by multiple motor controllers, we 

now have evidence that the issue exists within the starter 

generator and not within the power generation system. An 

ACMF report is designed to capture data during a specific 

routine during a flight leg. Understanding which routine the 

ACMF report is designed to monitor provides important 

information regarding which CMSCs will be providing 

parametric data within that report. Combining this 

information with the CMSC operational mode flag will 

result in the isolation of data which was captured when a 

specific CMSC was driving a specific component. More 

importantly, this prevents the ASHM system from 

producing false alarms on irrelevant data. This method of 

data fusion was prevalent throughout the development of 

analytics for the CMSC subsystem on the Boeing 787. After 

filtering the data, simple statistical analyses were performed 

on the data to provide parametric data and binary flags. An 

example of these statistical analyses on a filtered data set, is 

shown in Figure 6. The parametric data derived from the 

ACMF reports resulted in the application of the following 

statistical features: 

 Statistical Electrical Power Calculations 

 Amount of time the CMSC powered a specific 

component 

 Amount of time required for a component to reach a 

speed increment 

 Oil Temperature Trending: Also useful for trending 

engine temperature 

 

 

Figure 6: Time Series Plots of Parametric Data from Target 

Components 

 

Enumerated flags were also generated from this filtered 

report content. The focus was on certain key operating 

routines/conditions which were highlighted for 

investigation. Utilizing the filtered data, enumerated flags 

were incorporated to track the frequency at which these key 

operating conditions were performed on the aircraft. The 

example shown in Figure 7: Sample Data Used for 

Development of    Enumerated FlagsFigure 7 highlights a 

flag which would identify when a specific component was 

operating at High, Limited, or Low power. The assumption 

was made that high power operation exposed the component 

to high load and thus more demanding operation.  
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Figure 7: Sample Data Used for Development of    

Enumerated Flags 

 

Other detection logic was put in place to recognize 

maintenance events and environmental conditions that result 

in accelerated system life usage. These flags appear as 

calculated parameters and can be plotted in ASHM.  This 

gives maintainers and engineers the ability to correlate 

observed usage patterns with field failures. 

7. CONCLUSION 

The ASHM software tool provides enhanced health 

monitoring capability for the commercial aircraft fleet. The 

development and implementation of custom analytic 

modules unlocks the full potential of the recorded ACMF 

data for diagnostics and prognostics. By employing a multi-

step analytic development and validation strategy, software 

development is accelerated while ensuring the quality and 

accuracy of the actionable condition information provided to 

the fleet stakeholders. Care must be taken to create robust 

algorithms that recognize irregularities in the report data, 

selectively filter applicable data, and ignore any potentially 

spurious or errant output. Effective validation requires 

communication between all interested parties to ensure that 

the high value system health ground truth information is 

documented and included in the technology assessment. 

A case study for the Boeing 787® Common Motor Start 

Controller subsystem illustrates how trending and alerting 

on raw data alone is not enough for effective aircraft system 

monitoring. A complete understanding of system 

connectivity and operation states is required. The analytics 

developed for the CMSC subsystem follow three basic 

steps. First, they filter and down select the data. Each 

analytic is designed to target a specific system component. 

This filtering is achieved through the use of the operational 

mode flags, system connectivity information, and ACMF 

report information. Second, statistical power features, oil 

monitoring, temperature monitoring, and speed monitoring 

parameters are calculated from the data. These calculated 

features provide a summary of the target component during 

the report time period. Third, enumerated flags are 

generated from reported parameters or calculated features. 

These flags act to communicate relevant events to the 

operator such as maintenance procedures, abnormal or 

damaging environmental conditions and differentiate these 

noteworthy events from standard operation. 

These calculated features can be observed and plotted over 

time in ASHM to provide insight into fleet trends or 

individual aircraft trends. Maintainers and engineers can 

then assess this data to indict specific LRUs and then 

proactively plan maintenance avoiding service interruptions. 

The ASHM software tool is a key enabling technology for 

condition based maintenance of commercial aircraft, and 

provides the capability needed to reduce the rate of service 

interruptions and improve field service logistics operations. 

NOMENCLATURE 

ACMF Aircraft Condition Monitoring Function 

API Application Program Interface 

APU Auxiliary Power Unit 

ASHM Aircraft System Health Management 

BIT 

CAC 

CMSC 

Built In Test 

Cabin Air Compressor 

Common Motor Start Controller 

FDE 

G 

Flight Deck Effect 

Generator 

LRU Line-replaceable Unit 

PHM Prognostics and Health Management 

SI Service Interruption 

SQL Structured Query Language 

UTC United Technologies Corporation 
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