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ABSTRACT 

The offshore environment poses a number of challenges to 

wind farm operators. Harsher climatic conditions typically 

result in lower reliability while challenges in accessibility 

make maintenance difficult. One of the ways to improve 

availability is to optimize the Operation and Maintenance 

(O&M) actions such as scheduled, corrective and proactive 

maintenance. Many authors have attempted to model or 

optimize O&M through the use of Markov models. Two 

examples of Markov models, Hidden Markov Models 

(HMMs) and Partially Observable Markov Decision 

Processes (POMDPs) are investigated in this paper. In 

general, Markov models are a powerful statistical tool, 

which has been successfully applied for component 

diagnostics, prognostics and maintenance optimization 

across a range of industries. This paper discusses the 

suitability of these models to the offshore wind industry.  

Existing models which have been created for the wind 

industry are critically reviewed and discussed. As there is 

little evidence of widespread application of these models, 

this paper aims to highlight the key factors required for 

successful application of Markov models to practical 

problems. From this, the paper identifies the necessary 

theoretical and practical gaps that must be resolved in order 

to gain broad acceptance of Markov models to support 

O&M decision making in the offshore wind industry. 

1. INTRODUCTION 

Offshore wind turbines will play a key part in meeting the 

UK’s renewable energy targets in the future. The US 

Department of Energy also anticipates a sharp increase in 

the number of offshore wind farms (US DoE, 2008). 

However, the offshore wind turbine energy yield in the UK 

is still badly affected by low availabilities, which have been 

shown to be around 80.2%, compared to 97% onshore 

(Feng, Tavner, & Long, 2004). Enabling operators to 

effectively plan for repairs and inspections would likely 

improve the availabilities. There has been research (Pahlke, 

2007) showing there is significant demand for decision 

support systems in the offshore wind industry. It was 

reported that 99% of mechanical failures are preceded by 

noticeable indicators (Lee, Ni, Sarangapani, Mathew, 2011). 

Fully utilizing Condition Monitoring (CM) data can lead to 

improved diagnosis and prognosis, yet some authors argue 

that the wind industry is not taking the full advantage of it 

(Cibulka, Ebbesen, Hovland, Robbersmyr, & Hansen, 

2012). Attempts have been made to quantify the benefits of 

monitoring systems for wind turbines (McMillan & Ault, 

2007), concluding that rewards of having a CM system 

outweigh the costs in most cases. 

Offshore wind farm operators’ actions are constrained by 

logistics and the weather, which makes optimizing O&M 

difficult (Van Horenbeek, Van Ostaeyen, Duflou, & 

Pintelon, 2013). High complexity of many wind turbine 

components and the environment they operate in often 

means that a number of failure modes exists, hindering 

effective failure prediction (Fischer, Besnard, & Bertling, 

2012). Although there has been a significant amount of 

work done on maintenance optimization models, both in the 

wind sector and other industries, there is little evidence of 

successful application of these models in the offshore wind 

sector. Markov models have been successfully applied to 

diagnosis, prognosis and maintenance optimization in other 

industries, with significant effort being invested to 

implement them in the wind sector. The purpose of this 

study is to provide an overview of the work done on O&M 

optimization, focusing specifically on the use of Markov 

models, in the context of the offshore wind industry.  
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2. RELATED REVIEWS 

2.1. Wind Industry 

There have been a number of review papers related to 

maintenance optimization models, but only a few of them 

are focused on the wind industry. Welte and Wang (2013) 

outlined different types of lifetime estimation models, while 

providing examples of their application to the wind 

industry. Hofmann (2011) identified 49 models on different 

aspects across the whole life-cycle of the wind farm, from 

planning and construction to O&M. However, little 

information is provided on the inner workings of those 

models. Moreover, a number of those models are shrouded 

by commercial interest of the companies who own them, 

making it difficult to investigate their effectiveness and the 

methods used.  

El-Thalji (2012) provided a comprehensive review of the 

O&M practices of wind power assets, highlighting that the 

main issues in offshore wind maintenance lie with site 

accessibility and environmental factors. Cibulka et al. 

(2012) provided an insight into the failure modes of 

different wind turbine components; methods of monitoring 

different electrical, mechanical and fluid parameters were 

also reviewed. The paper concluded that the wind turbine 

industry lacks pro-active use of CM data for estimating the 

remaining life of components. Finally, Hameed, Hong, Cho, 

Ahn and Song (2009) provided a comprehensive review of 

various CM approaches for wind turbine industry. 

The aforementioned review papers provide a solid 

background of the offshore wind maintenance practices and 

shed some light on the approaches used so far, but no 

detailed description of the models was provided. However, 

there is no lack of review papers on the use of Markov 

models for maintenance in other industries; these are 

described in the following section. 

2.2. Other Industries 

Optimizing maintenance using mathematical models is by 

no means a novel approach; a significant amount of work 

was done on maintenance optimization models from 1970’s 

until early the 90’s, yielding numerous review papers 

(Pierskalla & Voekler, 1976)(Sherif & Smith, 1981) 

(Monahan, 1982)(Valdez-Flores & Feldman, 1989)(Cho & 

Parlar, 1991)(Wijnmalen & Hontelez, 1992). Monahan’s 

review is particularly noteworthy as his POMDP framework 

and algorithms for computing optimum policies have been 

quoted and applied numerous times by many researchers in 

the field of maintenance optimization. 

A more recent study by Dekker (1996) reviewed 

maintenance optimization models, mostly concerning 

vehicle replacement, road maintenance and power stations. 

The paper identified 43 case studies, some utilizing Markov 

models, in which the models were based on real data and the 

outcome of the model advised decision making. Despite 

identifying a large number of related case studies, little 

attention was given to critical analysis of the different 

approaches used. A brief review of software used for 

maintenance optimization was also provided, but given that 

the paper was written almost 20 years ago, most of them are 

now obsolete. Amongst the 132 references in this paper, 

there was not a single one on the subject of wind energy. 

According to Frangopol, Kallen and Noortwijk (2004), 

Markov models are the most common method of modelling 

bridge maintenance. The authors also highlighted the need 

to incorporate the data from imperfect inspections in 

deterioration systems.  

Deterioration prognostic models are a large part of decision 

support tools. For a prognostic model to be effective, it 

needs to be able to predict the component’s condition 

sufficiently far into the future to facilitate preparation of 

spares and human resources (Heng, Zhang, Tan, & Mathew, 

2009). Heng et al. have also stressed that most studies on 

rotating machinery are done in labs, neglecting practical 

considerations such as interactions between components and 

the impact of weather. Tung and Yang (2009) provided 

another comprehensive review paper on rotating machinery 

prognostics, highlighting that physical model-based 

approaches are not suitable for complex systems. The 

authors also stated that the lack of industrial application of 

prognostic models is partly due to the complexity of a real-

life machine, hindering accurate modelling and hence 

reducing the accuracy of predictions. The use of Markov 

models for remaining useful life estimation was reviewed by 

Si, Wang, Hu and Zhou (2011). The authors highlighted the 

challenges of capturing the influence of external variables, 

as well as modelling multiple failure modes for the same 

component.  

Peng, Dong and Zuo (2010) argue that combining 2 or more 

different prognostic approaches may increase the precision, 

reduce the computational time and combine the benefits of 

the different approaches while nullifying their demerits. The 

authors highlighted the fact that HMMs are easily realizable 

in software. They also stated that most research in the area 

is still in the theoretical phase, few of the models have been 

applied in practice. Scarf (1997) stated that “too much 

attention is paid to the invention of new models, with little 

thought, it seems, as to their applicability”. The author also 

argues that many models are over-complicated, making 

them hard to follow by the practitioners. Zio (2009) and 

Kothamasu, Huang and Verduin (2009) also recommended 

that the implementation of reliability methods should be 

supported by reasonably user-friendly software. 

Dragomir, Gouriveau, Minca and Zerhouni (2009) provided 

a brief review gathering papers on various prognostic 

algorithms, stating that real prognostic models are scarce in 

the industry while Tung (Tung & Yang, 2009) pointed out 

that the amount of research done on prognosis is much less 
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compared to diagnosis. A large proportion of papers 

reviewed in (Wang, 2002) involve maintenance policies 

based on age or fixed time intervals. Such approaches lack 

depth and flexibility and hence are not suitable for the 

offshore wind industry. Vasili, Hong and Ismail (2011) 

rightly concluded that there is a need to develop approaches 

which will optimize maintenance, while also considering 

different aspects of the maintenance management. This is 

especially true for the wind industry, whereby the factors 

such as weather and logistics are paramount to successful 

planning of maintenance strategy.  

Nicolai and Dekker (2008) focused on multi-component 

approach to modelling, which has the potential to capture 

dependencies between components but potentially over-

complicates the model. Kothamasu et al. (2009) looked into 

different techniques of system health monitoring and their 

use for prognosis to improve reliability, including some 

Markov models. Reinertsen (1996) reviewed a number of 

models with practical applications but found no models that 

could be applied, generally, to a broader range of problems. 

The author called for more consistency in the industry when 

applying methods for assessment of deterioration and 

residual life of structures. 

The majority of the papers discussed in this section 

reviewed Markov models, but only a few were solely 

focused on them. The next section presents an overview of 

theoretical and practical Markov models for maintenance 

optimization. 

3. MARKOV MODELS 

Markov Models can be broadly split into Markov chains, 

Markov Decision Processes (MDPs), Hidden Markov 

Models (HMMs) and Partially Observable Markov Decision 

Processes (POMDPs), which are described in the following 

sections. Table 1 in the Appendix contains a summary of 

Markov models for maintenance optimization referenced in 

this paper, grouped by the method used and application. 

3.1. Markov Chains and Markov Decision Processes 

Markov chain is a random process, wherein a probability of 

transition between states only depends on the current state, 

not on the sequence of previous events. Markov chains have 

been used for modelling offshore wind O&M (Özdirik, 

Skiba, Würtz, Kaltschmitt, & Williams, 2013), in a paper 

which discusses a number of limitations associated with 

maintenance of offshore wind farms. Yang, Kwan and 

Chang (2008) used Markov chains to simulate deterioration 

of electrical substation components, while a multiobjective 

evolutionary algorithm was used to provide the user with a 

number of Pareto curves, facilitating visualization of the 

trade-offs between overall costs and expected unserved 

energy. Markov chains have been used to model wind 

turbine blade deterioration in a study by Besnard and 

Bertling (2010) which also compared the costs and benefits 

of using a condition monitoring techniques versus 

inspections, favoring the former approach. 

Wilson and McMillan (2014) used Markov chains and 

Monte Carlo method for assessing reliability of potential 

wind farm sites, providing a forecast of future O&M costs. 

Lee, Li and Ni (2013) argued that equipment operators can 

be quite conservative when setting the maintenance 

intervals. By applying Markov models to a semiconductor 

manufacturing process data it was shown that significant 

maintenance cost savings can be obtained by increasing the 

time between maintenance actions.  

Semi-Markov models relax the assumption of constant 

transition probabilities, which is more representative of 

most engineering systems. They have been used in 

modelling deterioration (Kleiner, 2001) (Black, Brint, & 

Brailsford, 2005); the latter research showing that 

maintenance cost savings can be obtained using this method, 

given sufficient amount of past deterioration data. Semi-

Markov approach was also applied to 2-unit standby 

systems by Maksoud and Moustafa (2009) and Zhong and 

Jin (2014), wherein the optimal policy for the former was 

obtained using an iterative process, while the latter utilized 

Laplace Transform to solve Markov renewal equations, 

yielding optimal maintenance policy. A different study 

(Kharoufeh, Solo, & Ulukus, 2010) used a semi-Markov 

model to assess the current and future states of a system, 

taking into account the environmental factors. A framework 

for asset management of power distribution networks based 

on Semi-Markov models was proposed by Johnson, 

Strachan and Ault (2012). The authors argue that the 

component’s future deterioration can be predicted without 

any historical data by using condition health indices.  

MDPs are an extension of a Markov chain, with the addition 

of the possibility of taking actions, each with associated cost 

or reward. The timing, order and choice of actions can then 

be optimized for a given parameter, usually to minimize the 

cost. Shafiee (2015) defined the 3 main echelons of decision 

making for offshore wind; namely strategic (long term), 

tactical (medium term) and operational (short term). 

Maintenance optimization models would aim to aid 

operational decisions through maintenance scheduling and 

planning of logistics; they could also have some impact on 

the tactical decisions – for example spare part management 

or maintenance support organization. 

Chan and Asgarpoor (2006) provided a simple example of 

how an MDP can be used to find the optimal mean time to 

preventative maintenance. Nielsen and Sørensen (2014) 

conducted a comparison of different approaches to decision 

support, concluding that MDP is the most accurate method 

of optimizing the decision policy, with great potential for 

application in offshore wind industry. The same authors 

(Nielsen & Sørensen, 2012) have also shown that an MDP 

can be easily adapted to take external factors such as 

weather and vessel rental costs into account. This opens up 
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possibilities of further O&M cost savings, for example by 

using clustering of repairs.  

Semi-Markov Decision Processes (SMDPs) have also been 

applied in optimizing the inspection and maintenance 

schedule (Chen & Trivedi, 2005) (Amari & McLaughlin, 

2006), with the latter model being very simple but effective, 

meaning it could be easily adapted to a given practical 

problem. Berenguer, Chu and Grall (1997) used an SMDP 

for optimization of inspection and maintenance; although 

their model may be more realistic for some systems 

compared to other MDP approaches, the authors admit it is 

difficult to exploit it analytically due to its complexity. 

Kahrobaee and Asgarpoor (2013) proposed an approach for 

maintenance optimization  based on SMDPs, which was  

applied to a case study of wind turbines. Once the optimal 

repair policy was found, a Monte Carlo simulation was used 

to investigate how the wind turbine availability varies with 

different factors such as the number of repair technicians 

employed.  

The majority of the papers referenced in this section provide 

numerical examples, which are useful in understanding and 

assessing the model’s capabilities, but are no match for 

validation through an application to an actual problem. 

Although computationally effective, simple Markov models 

assume that the exact state of the component is known, 

which is rarely the case with offshore wind turbines. This 

assumption is relaxed through the use of HMMs, as 

described in the following section. 

3.2. Hidden Markov Models 

Wind turbine CM data provides valuable information on the 

state of various components, however, the degree of 

system’s deterioration is usually difficult to predict with 

certainty. In HMMs, the current state of the component is 

represented by a probability distribution, making it a very 

functional tool for wind turbine deterioration modelling, 

diagnosis and prognosis.  

Detection of machine failure using HMMs was investigated 

by Tai, Ching and Chan (2009). Qian, Jiao, Hu and Yan 

(2007) trained HMMs using a Baum-Welch algorithm to 

diagnose the type of fault in large scale power transformers. 

A different approach to diagnosis was suggested by Kwan, 

Zhang, Xu and Haynes, (2003) and Zhang, Xu, Kwan, 

Liang, Xie, and Haynes (2005). In both papers, multiple 

HMMs were created for different failure modes. The HMM 

with the highest probability of being in a failed state was 

used to identify the failure mode. Such approach is 

particularly useful for systems which have more than one 

likely failure mode, as is often the case with wind turbine 

components. Both studies have been based on experimental 

data and the algorithms have also shown prognostic 

capabilities. Ghasemi, Yacout and Ouali (2007) have used 

HMMs to simulate deterioration in their model which 

calculates the long-run average operating costs for strategies 

with different observation intervals. 

HMM-based clustering was used by Chinnam and Baruah 

(2003) for diagnostics and prognostics. Numerous HMMs 

were constructed and tested with 3 best performers being 

selected to diagnose the condition of the asset. A 

multivariate distribution of the state transition points 

generated by HMMs was then used for prognosis. Zhou, Hu, 

Xu, Chen and Zhou (2010) proposed a HMM for real time 

failure prognosis. Expert knowledge was incorporated into 

the model through belief rules to capture the influence of 

environmental factors.  The model shows great potential for 

application in offshore wind, as it is capable of considering 

the environmental and logistical factors, however the 

authors did admit that further testing is required to validate 

the model. HMM approach has also been used in decision 

making support tool for offshore wind called ECUME 

(Douard, Domecq, & Lair, 2012).  

Research by Dong (2008) used an Auto-Regressive Hidden 

Semi-Markov Model, which has a few advantages over a 

standard HMM; namely it does not follow the standard 

Markov memory-less approach, it also relaxes the 

assumption of independent observations. The algorithm was 

tested on a case study of hydraulic pumps and shown good 

health state recognition rates, with the possibility of 

application for prognostics. The same author has also 

applied Hidden Semi-Markov Model (HSMM) 

methodology for diagnostics and prognostics in his earlier 

work on hydraulic pumps (Dong & He, 2007) and helicopter 

transmission system (Dong, He, Banerjee, & Keller, 2006), 

showing that HSMMs are more effective at current state 

recognition than HMMs. Recent work  by Cartella, Lemeire, 

Dimiccoli and Sahli (2015) used the HSMM methodology 

for remaining useful life estimation of bearings. The model 

was validated using real life vibration data and produced 

reasonably accurate results (although bearings under lab 

conditions do exhibit monotonically increasing degradation 

pattern making it easier to predict). One of the advantages of 

the approach presented in this paper is that it allows the use 

of both discrete and continuous observations. 

It is worth noting that a large proportion of models reviewed 

in this section were based on experimental data, which is an 

improvement over validation approaches through numerical 

examples and simulations. However, as stated by Heng et al. 

(2009), lab tests fail to capture many practical 

considerations.  The models described above are capable of 

deterioration modelling, diagnosis and often prognosis, 

however, they lack the decision making capability. 

POMDPs combine the hidden property of the Markov 

model with the ability to consider various maintenance 

actions and implications, resulting in a powerful 

maintenance optimization tool. 
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3.3. Partially Observable Markov Decision Processes  

Early theoretical research by White (1976), Rosenfield 

(1976) and Monahan (1982) have laid the groundwork for 

many more recent POMDP models. Since then, a number of 

other papers presenting theoretical frameworks for the 

application of POMDPs to the maintenance problem have 

been published (Madanat, 1993)(David, Friedman, & 

Sinuany-Stern, 1999)(Makis & Jiang, 2003)(Maillart, 2006). 

The contribution of these papers to the field of maintenance 

optimization is without a doubt substantial, however, many 

researchers are reluctant to apply those frameworks, instead 

opting to use their own approaches. 

Byon and Ding (2010) created a model for the offshore 

wind industry, which emphasizes the importance of the 

seasonal weather variation on wind turbine availability. A 

POMDP model was solved by backward dynamic 

programing method. It was shown that by using the 

proposed approach, the maintenance costs over the lifetime 

of a wind turbine can be reduced significantly compared to 

both periodic maintenance and condition-based maintenance 

strategy which does not take into account the seasonal 

variation. The model could be improved by considering the 

logistical issues specific to the offshore wind industry such 

as long lead times on parts and vessels. These factors were 

given more thought in Byon’s related article (Byon, Ntaimo, 

& Ding, 2010), which highlights the importance of 

condition-based monitoring, yet it fails to incorporate the 

CM data into the model. Dynamic programming method 

applied by Byon and Ding (2010) is computationally 

intensive for large problems. It was suggested that the 

application of a tractable approximation scheme can shorten 

the computational effort required, while still considering 

dynamic weather changes (Byon, 2012). 

Papakonstantinou and Shinozuka conducted a two part 

study focused on the use of POMPDs for planning structural 

inspection and maintenance. Part 1 (Papakonstantinou & 

Shinozuka, 2014a) highlights the difficulties of solving 

POMDPs for complex problems, while providing practical 

solutions. Part 2 (Papakonstantinou & Shinozuka, 2014b) 

applies the theory from part 1 to a case study on corroding 

reinforced concrete structure. The model yields a highly 

complex optimum policy, which, according to the authors, 

could not have been reached by any other method. The 

framework used in the two part study is very promising; 

however the complexity of the model may hinder its 

applicability. The authors argue that exact solution for a 

POMDP would be too computationally intensive to solve 

for large problems and propose an approximate value 

iteration method instead, which is much more effective 

dealing with large problems (Papakonstantinou & 

Shinozuka, 2014c). 

AlDurgam and Duffuaa  (2012) used a POMDP model to 

generate policy graphs, which allow the operator to choose 

the optimal maintenance action and speed setting given the 

current belief state of the component. Fan, Xu and Chen 

(2013) and Chen, Fan, Hu and Zhou (2014) investigated 

repair optimization for systems with imperfect maintenance; 

they also argue that limiting the number of times a 

component can be repaired and imposing quicker 

deterioration on components which have already been 

repaired multiple times is more representative of 

engineering systems. The authors have also stated that their 

work needs extending to include condition-based 

maintenance through the use of sensor data, which would be 

particularly applicable for the wind industry.  

Srinivasan and Parlikad (2014) combined the advantages of 

an SMDP and POMDP by creating a Partially Observable 

Semi-Markov Decision Process (POSMDP) for optimum 

maintenance decision making. Through the use of belief 

state, the POSMDP is converted into a SMDP. This 

approach allows the use of different failure rate 

distributions, facilitating the method’s potential application 

to various wind turbine components. A different approach to 

POSMDPs was used by Zhou, Ma, Matthew, Sun and Wolff 

(2010). In their research, degradation is modelled using a 

Gamma-based state-space approach. The model is based on 

continuous POSMDP, which is then converted to a fully 

observable SMDP through an application of Monte Carlo-

based density projection method to optimize maintenance 

decision making. 

Standard POMDPs require set values of transition and 

emission probabilities, but there is often an uncertainty 

associated with those. Memarzadeh, Pozzi and Kolter 

(2013) propose a Bayes-adaptive POMDP methodology, 

which treats conditional probabilities as random variables. 

This can result in the optimal policy being sub-optimal for 

any specific value of transition and emission probabilities, 

instead maximizing the value for the entire state. A wind 

farm case study based on synthetic data showed that this 

methodology can be more effective than a standard POMDP 

approach, especially for problems with high conditional 

probability uncertainty. 

POMDPs have also been used in the context of civil 

engineering. Jiang, Corotis and Ellis (2000) developed a 

model which considered fatigue and corrosion as main 

deterioration processes of a steel girder highway bridge. A 

detailed example of the model’s application is provided, 

which, despite considering 5 maintenance action types and 4 

inspection strategies, remains computationally effective. 

Later work by the same authors (Corotis, Ellis, & Jiang, 

2005) presented POMDP theory and an algorithm for the 

optimal management and design of structures. Ivy and 

Pollock (2005) attempted to optimize maintenance on a 

system with “silent failures”: i.e. a system in which the 

component can remain operational despite it being in a 

failed state, with an increased cost being incurred on its 

operation.  
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POMDPs and POSMDPs are modelling tools with a number 

of advantages: they are capable of dealing with imperfect 

observations, allow flexibility in terms of the choice of 

maintenance action and deterioration mechanism, are 

capable of modelling multiple failure modes and have been 

shown to be able to consider external factors such as 

weather and logistics in making the optimal decision, 

making them a suitable methodology choice for successful 

application to the maintenance problem in the wind 

industry. 

4. CONCLUSIONS 

This review paper focused on the use of Markov models for 

deterioration modelling and maintenance optimization in a 

wide range of industries. Given a projected threefold 

increase in UK offshore wind O&M spend in the next 10 

years (GL Garrad Hassan, 2013), the application of such 

models will play an important role in keeping the costs of 

energy low. The main conclusions of this paper are as 

follows: 

 The majority of the models reviewed in this paper have 

either been validated by lab tests or, in many cases, 

their capabilities were shown using simple numerical 

examples/simulations. Very few models have actually 

been applied in the industrial environment. Other 

researchers in the field have suggested more emphasis 

should be placed on application of the existing models 

rather than invention of new models. 

 A large number of the models discussed in this paper 

contain a sound framework which could be 

successfully applied to the wind industry, provided 

significant adaptation was carried out, which would 

involve ensuring that factors such as access restrictions 

due to weather and logistical issues are considered.  

 One of the constraints to widespread Markov models 

application in the offshore wind industry could be their 

complexity. Other researchers in the maintenance 

optimization field have stated that practitioners are 

unlikely to apply over-complicated models. 

 Some researchers have touched upon the 

computational constraints of Markov models (Tai et 

al., 2009) (Papakonstantinou & Shinozuka, 2014b). 

Although HMMs and POMDPs are effective for small 

state spaces, it was indicated that computational factors 

may become prohibitive for larger and more complex 

systems, especially when the methodologies are 

applied to wind farm-scale problems. In an attempt to 

address this issue, researchers started to explore more 

computationally effective ways of solving POMDPs 

(Byon, 2012) (Papakonstantinou & Shinozuka, 2014c).  

 Some of the interesting concepts which have not been 

researched in depth within the Markov model 

framework, but may be useful for offshore wind are: 

opportunistic maintenance, the silent failure approach 

and de-rating to potentially slow down the degradation 

process if the turbine cannot be accessed. 

The majority of the papers reviewed here focus on the 

maintenance of mechanical, electrical or structural systems, 

which all can be applied to offshore wind turbines. 

However, the offshore environment, where the majority of 

UK wind turbines will be built in near future, poses 

numerous challenges to wind farm operators. Research 

conducted for other industries often ignores issues such as 

access restrictions, offshore logistics and the high costs 

associated with it and the problem of effective utilization of 

large volumes of CM data for deterioration modelling and 

maintenance optimization. Although it has been shown by 

some authors that these challenges can be tackled through 

the use of Markov models, no comprehensive framework 

exists capable of considering all these factors. The focus of 

researchers working on O&M for offshore wind should be 

to attempt to create such framework. As shown in this, and 

other review papers, methodologies exist to fit most 

offshore maintenance problems; the biggest challenge now 

is to work with practitioners to apply those models to real 

engineering problems. 
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APPENDIX 

Table 1. Markov models by industry and method used1,2 

 Wind industry General 

applications 

Electrical systems Civil engineering Mechanical/ 

Manufacturing 

Markov 

Chain 

(Wilson, 2014) 

(Özdirik, 2013)MU 

(Besnard, 2010) 

(Lee, 2013)MU (Yang, 2008)MU   

Semi-Markov 

Chain 

(Kharoufeh, 2010) (Zhong, 2014)MU 

(Maksoud, 2009)MU 

(Johnson, 2012) (Black, 2005) 

(Kleiner, 2001)IO 

 

MDP (Nielsen, 2014)IO 

 

 (Chan, 2006)   

SMDP (Kahrobaee,  2013) (Amari, 2006) 

(Chen, 2005) 

(Berenguer, 1997) 

   

HMM (Douard, 2012) (Zhou, 2010a) 

(Ghasemi, 2007)IO 

 

(Qian, 2007)  (Tai, 2009)MU 

(Zhang et al., 2005) 

(Kwan, 2003) 

(Chinnam,  2003) 

HSMM     (Cartella, 2015) 

(Dong, 2008) 

(Dong, 2007) 

(Dong, 2006) 

POMDP (Memarzadeh, 

2013)IO 

(Byon, 2010)IO 

(Chen, 2014) IO 

(Fan, 2013) 

(AlDurgam, 2012) 

(Maillart, 2006)IO 

(Ivy, 2005)IO 

(David, 1999) 

 (Papakonstantino

u, 2014b)IO 

(Corotis, 2005)IO 

(Jiang, 2000)IO 

(Madanat, 1993) 

 

POSMDP  (Srinivasan, 2014)IO 

(Zhou, 2010b)IO 

   

IO – Imperfect Observations: uncertainty associated with the action of observation/inspection.  

MU – Multi-Unit: models formulated specifically for multi-unit systems (rather than models capable of considering multiple 

components). 

                                                           
1 For clarity, the references have been shortened to 1st author and year of publication only. 
2 This table contains a quick reference for the reader, consolidating the articles mentioned in the body of the paper. It is not a 

comprehensive list of all Markov models within these industries. 


