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ABSTRACT 

Synthetic aperture radars are radar platforms that generate 

detailed images through radio frequency transmission and 

receiving.  These systems can be high peak power, complex 

systems that can suffer from internal component or 

subsystem degradation.  In addition, the operational 

environment can also affect the final image of the radar due 

to scene-based radio frequency interference (RFI).  Because 

of these effects, it is ideal to be able to identify, classify, and 

quantify the degradation of these systems in order to optimize 

their performance and life.  The work presented in this paper 

is an extension of QorTek’s previous work using Symbolic 

Analysis to detect degradation using the radar’s phase history 

data.  In conjunction with the KEYW, Corp., QorTek has 

acquired field data to train and test its algorithm.  To test the 

trained algorithm, a prototype hardware/software system 

integrating the SA approach was designed, built and flown on 

a test flight piggybacking on a radar system provided by 

KEYW.  The initial results were very positive and also 

identified areas of improvement.  The training and test results 

as well as the flight-test plan and results are presented in this 

paper.  The paper concludes with specific improvements to 

be made to the algorithm for the next round of radar 

integration and flight-testing.   

1. INTRODUCTION 

Synthetic aperture radars are complex data-generating 

systems that can form intrinsically detailed images of the 

current environment in which the radar system operates.  The 

deployment and testing of these systems, specifically on an 

unmanned platform, can be costly and therefore it is 

imperative to determine if the system is operating as 

anticipated.  It would be a significant waste of resources if 

the radar system was found to be not operating as intended 

after the mission was complete, by inspecting the data 

downloaded and finding it to be flawed or completely 

missing.   

Based on this scenario, the Air Force was interested in 

developing approaches that could be used on Intelligence, 

Surveillance, and Reconnaissance systems providing 

operating conditions including the operating environment.  

QorTek has been involved in developing a data-driven 

approach that can detect the operating characteristics of the 

radar and to notify any potential issues to radar operators 

(Bower, 2014).  These conditions include those internal to the 

radar system, such as component failures and external, such 

as RFI.  The objective of the project is to detect and classify 

these types of degradation mechanisms and act as a means to 

notify personnel if issues are detected.  In particular, QorTek 

developed the algorithm around known hardware faults in a 

SAR payload and with external RFI effects. 

Data driven approaches are becoming more mainstream after 

a period of reduced research and application with numerous 

approaches that can be utilized (Kwok, 2014)(Schwabacher, 

2005).  Having access to large amounts of data and 

combining it with the capability to process these significant 

quantities of data has allowed for further interest in data-

driven approaches.  In essence, a data-driven approach 

attempts to model underlying system behaviors by utilizing 

data captures from the system of interest such as the 

application of statistics for dc-dc converter monitoring 

(Bower, 2011) and aircraft engines (Sarkar, 2011).  The 

resultant system model could be statistical in nature or some 

other model relevant for use.  The data-driven methodology 
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is to define the model such that the model reflects changes 

occurring in the system itself due to degradation and usage.   

In regards to the current application, the availability of vast 

amounts of radar phase history data is ideal training data for 

a data-driven approach.  This paper focuses on the further 

development and deployment of the algorithm and contains 

results from flight-testing the system in real-time with the 

radar in operation.  The objective was to demonstrate the 

system operating with the radar, obtaining measures of the 

quality of the radar data in near real time, and to not interfere 

with the radar’s primary function.   

The paper begins with an introduction into Symbolic 

Analysis.  This brief review can be augmented with our 

previous paper [Bower, 2014].  Section III describes how the 

SAR data is utilized in the algorithm described in Section II.   

Examples of training and test data are shown.  Section IV 

investigates the training and testing of the algorithm on the 

RFI datasets provided to QorTek.  Section V details the 

flight-testing including the hardware design and results 

obtained.  The paper is concluded with Section 5 discussing 

the results and future work to be accomplished.  

2. PROBLEM BACKGROUND 

Expanding upon the work presented in [Bower, 2014], the 

objective was to design a system that was capable of 

integrating the developed software into the radar system. The 

software, Symbolic Analysis (SA), is briefly reviewed here. 

2.1. Symbolic Analysis 

Symbolic Analysis is a statistical pattern recognition tool 

based upon symbolic theory.  Most work in the symbolic 

realm deals with the development of optimal models to 

determine the trajectory of modeled system states (Daw, 

Finney & Tracy, 2003).  These methods are used to model 

complex and chaotic systems.  The resultant optimal model, 

known as the ε machine, has a variable dimensional structure 

whose dimensions were constantly adjusted depending on the 

data collected over time.  This variation in dimensionality 

made it difficult to determine deviations between models 

developed through system usage.  In order to make 

meaningful comparisons between models, a machine was 

developed with a-priori fixed dimensional structure (Ray, 

2004).  This fixed dimensional machine allows for 

meaningful comparisons between statistical models defined 

at different temporal points in the system’s life at the cost of 

optimality.  The process of SA is shown in the block diagram 

of Figure 1.  Each process will be briefly described. 

 

 
Figure 1. Symbolic analysis of time series data block 

diagram. 

2.2. Data Capture 

The data capture is an important step as it identifies data 

sources that are related to underlying degradation signatures.  

In addition to identifying relevant observables, the SA 

approach requires two assumptions: 1) the system does not 

undergo ‘self-healing’, and 2) that the underlying degradation 

dynamics can be separated from the system dynamics.  

Assumption 1 forces the system to undergo a monotonically 

increasing degradation state, which assists in predicting 

future failure.  Assumption 2 is far more stringent in that the 

data captures must be sufficiently long enough to develop 

statistics but also not capture changes in the underlying 

dynamics of the system.  In other words, it is assumed that 

the degradation dynamics evolve at different rates then the 

system operates.  This simplifies into a separation of scales 

assumption of which the SAR indeed fulfills as data rates are 

significantly higher than degradation signatures.   

2.3. Symbolization 

The next step involves transforming the time series data into 

the symbolic domain.  This step can be thought of as a general 

re-quantization of the original data resulting in a coarser 

distribution.  Symbolization requires the determination of the 

number of partitions to be used as well as the type of 

partitioning.  The two most common types of partitioning 

include uniform partitioning (UP) and maximum entropy 

(ME) partitioning.  QorTek has devised a new partitioning 

approach which combines the advantages of both UP and ME 

which is called Mixed (MX) partitioning.   
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2.3.1. Partitioning 

That partitioning scheme of the algorithm allows for the 

collected data to be converted into the symbolic space.  As 

stated previously, there are three main approaches utilized for 

this work including UP, ME, and MX although the majority 

of this write-up will focus on MX partitioning. 

Uniform partitioning divides the range of the time series data 

into equal sized regions where the total number of determined 

partitions are defined as the set P.  Given the range of the time 

series data as U, the partition sizes are defined as 𝑈 𝑃⁄  and the 

boundaries developed from the range U.  Each partition 

region Pi was mutually exclusive and exhaustive over the 

range of the data. The probabilities of the partition occurrence 

in the uniform case are not necessarily equal; however, the 

partitioning structure was equal.   

The maximum entropy (ME) partitioning scheme was 

defined by the principle of entropy in determining the 

partition structures.  Recall entropy as shown in Eq. 1. 

 𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 (1) 

The entropy can be maximized by setting  𝑝(𝑥𝑖) =

𝑝(𝑥𝑗), ∀𝑖, 𝑗.  The logarithm to base 2 was used so that the unit 

of entropy is in bits.  In the time series data, accomplishing 

maximization of entropy in the baseline case was necessary 

to make sure all partitions (or symbols) have equal 

probability of occurrence.  The partition structure resulting 

from ME does not necessitate equal partitions as in the 

uniform case but does guarantee equal prior probabilities for 

the partitions in the baseline case.  A feature of the ME 

partitioning scheme is that the partitions boundaries are 

closer in regions of the data where there are a dense number 

of data points.  In regions where there are fewer date points, 

fewer partitions are generated in these areas. 

Mixed partitioning was developed at QorTek to combined the 

sensitivity of the ME approach with the equal area 

distribution of the UP approach.  In the work completed, the 

MX approach takes the desired number of partitions and 

divides them equally between those to be developed through 

ME and those to be developed under UP.  The resultant MX 

partitioning approach very finely models regions of dense 

data and uniformly divides other regions to allow for 

evolution of the system.  This became much more important 

when the partitioning was converted into two-dimensions.  

This also enables to algorithm to model slight changes in the 

data-dense regions while allowing for more significant 

system deviations through the UP partitions.   

Once the partitions are defined each partition was labeled 

with a symbol from the alphabet S.  Given a time series X of 

length M, if 𝑥𝑖 ∈ 𝑃𝑖 , 0 ≤ 𝑖 ≤ 𝑀, then assign 𝑠𝑖 → 𝑥𝑖 , ∀𝑖;  𝑠𝑖 ∈
𝑆.  By implementing the partition structure and assigning a 

unique symbol to each time series date point, the end result 

was called the symbol stream.  This is the re-quantized time 

series data that is now transformed into the symbolic domain. 

2.4. Statistical Analysis 

Once the partitions have been developed and symbols 

assigned to each partition, the next step is to construct the 

statistical model based on the resultant symbol stream.  This 

step is controlled by another parameter for the SA 

methodology, the depth parameter D.  The depth parameter 

controls the definition of model states from the symbol 

stream.  States in the model are formed from D-length subsets 

of symbols.  Therefore, the total number of states in the 

algorithm given the number of partitions P and the depth D 

is shown in Eq. (2). 

 𝑁𝑠 = 𝑃𝐷 (2) 

Equation (2) holds true independent of the partitioning 

scheme utilized.  As an example, assume a ternary partition 

scheme is implemented that results in three symbols; labeling 

them -1, 0, and 1.  The methodology’s resultant statistical 

states depend on the number of symbols in the algorithm as 

well as the chosen depth.  The parameter depth adjusts the 

memory of the resultant symbolic model, that is, the 

parameter controls the groupings of symbols into states.  For 

instance, if D was unity, the resultant states are 0, 1, and -1.  

If D was two, the resultant states would be 00, 01, 10, 11, 0-

1, (-1)0, (-1)(-1), 1(-1), and (-1)1 according to (2).  

Shown in Figure 2 is an example model formation with the 

three partition symbolic system and with D being equal to 

two applied to a recorded sine wave of arbitrary amplitude.  

These parameter choices result in a model with three states.  

The example sine wave in the figure is divided into zero (0), 

one (1) or minus one (-1) by a set threshold (partition 

boundary, uniform in this example).  The symbol sequence is 

the square wave in the figure.   

 
Figure 2.  Example symbolization using three symbols with 

d=2 resulting in nine possible states. 
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With the symbol sequence 𝑠𝑖 completed, the next step is to 

form states out of the symbols or groups of symbols.  The 

probabilities of the state occurrences can be calculated and 

tracked across each data capture.  Counting state occurrences 

can then be converted into probabilities to generate what is 

known as the State Probability Vector (SPV):  the 

probabilities are arranged in a 𝑁𝑠𝑥1 vector, where 𝑁𝑠 

represents the total number of states in the algorithm given 

by Eq. (2).  In the case where depth of the algorithm is equal 

to unity, as it is in most cases, the total number of states is 

equal to the number of symbols used.  Choosing D equal to 

unity results in the smallest possible model for a given 

number of symbols, thereby reducing computational 

complexity of the approach. 

Once the probabilities or counts are known, a distance type 

metric can be applied to the baseline case and future cases to 

develop an anomaly based on the current system operation.   

2.5. Anomaly Quantification 

Anomalies inherent to degradation in the system can be 

generated from the use of the SPV between the data captures.  

The metric quantifies the deviation between the known 

baseline, commonly known as the healthy state of the system, 

and a future system state.  A measure commonly used to 

quantify an anomaly between captures is based on the 

Euclidean distance given in Eq. (3) for pulse j. 

 

𝐴𝑗 = √∑(𝑧𝑖,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 𝑧𝑖,𝑗)
2

𝑁𝑆

𝑖=1

2

 (3) 

In Eq. (3), 𝑧𝑖,𝑛𝑜𝑚𝑖𝑛𝑎𝑙  is the nominal (baseline) SPV state 𝑧𝑖 

and 𝑧𝑖,𝑗  is the corresponding SPV state at iteration j.  The 

Euclidean distance measure is used as it provides a 

straightforward means to measure the change between SPVs 

in an analysis.  From this measure, it is possible to quantify 

anomalies present in the system and how they evolve over 

time and usage.   

From this evolution of the anomaly, it is then possible to 

define a threshold of failure for the system.  The threshold 

can then be implemented in a predictor to estimate remaining 

useful life of the system.   

The anomaly can be used as a diagnostic measure to 

determine the amount of degradation the system has incurred 

over its lifetime or to be used as a prognostic measure.  If 

training data exists for the system, the anomaly measure can 

then be used in a prognostic application to predict the 

remaining useful life of the system. 

3. PHASE II FOCUS AND DEVELOPMENT 

The Phase I program investigated applying the algorithm to 

previously recorded good SAR data and testing the response 

of the algorithm to artificially inducing degradation effects 

such as adding in RFI.  The results were promising which 

thus enable QorTek to further investigate the application of 

the algorithm. 

Based on the results of the Phase I program, the Phase II 

objective was to further refine the approach and apply it to 

‘real world’ radar data collections that could contain varying 

degrees of data degradation.  In order to accomplish this task, 

QorTek teamed up with KEYW Corp., manufacturer and 

supplier of SAR radar systems for imaging applications.  

Utilizing this data, the algorithm was then tested with typical 

situations that a SAR radar would be involved with, namely 

RFI, scene variations, and hardware faults.  These situations 

were used to train the algorithm and develop the necessary 

parameters that will be hardcoded into the algorithm for 

system implementation and operation. 

An interesting aspect of radar data is that it can be contained 

within the frequency domain thereby providing both 

frequency and phase information.  The original work solely 

focused on the frequency amplitude information ignoring the 

phase information.  For this work, the phase information was 

also utilized and integrated into a two-dimensional 

implementation of SA where the space the algorithm 

operated on was now frequency magnitude and phase.  This 

resulted in two-dimensional partitioning scheme as illustrated 

in Figure 3.  The figure shows an example data distribution 

with the MX partitioning employed.  Notice that there are ME 

partitions in the data dense regions of data with uniform 

partitions extending out from these ME partitions.  There are 

an equal number of ME and UP partitions.  The magnitude 

range of the ME partitions covers a single standard deviation 

of the phase history data.  The remaining range was divided 

with UP.  Note that the figure shows the I/Q representation of 

that data, that is: 

 𝑑𝑖 = 𝑎 + 𝑗𝑏 (4) 

 

In (4), 𝑑𝑖 is the data point defined by the complex number 

formed from a and b.  Therefore, recall that the magnitude 

and phase of the data is given as: 

 |𝑑𝑖| = √𝑎2 + 𝑏22
 (5) 

 
Φ𝑑𝑖

= tan−1 (
𝑏

𝑎
) (5) 

To obtain phase information, the regions were further divided 

either into two or four regions.  The approach was limited to 

four regions in order to minimize the complexity of the model 

and to implement it efficiently into a GPU device.   
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Figure 3.  Two dimensional partitioning example employing 

the Mixed (MX) partitioning approach. 

 

This two-dimensional approach to partitioning was also 

implemented completely with ME and UP approaches as 

well.  The UP case presents a unique situation.  The definition 

of ‘uniform’ in this case can be ambiguous.  For the present 

case, two approaches were developed.  These cases consisted 

of the uniform partitions being created either through uniform 

radius or by uniform area in which each partition has equal 

area.  Examples for the two types of UP are shown below.  

The first figure, Figure 4 shown below, demonstrates the UP 

approach involving uniform radius circles.  As can be 

observed, each concentric ring is equidistant from each other.   

 
Figure 4.  UP with equal radii partitions. 

 

The following figure, Figure 5, shows the results of UP when 

employing equal area circles.  This results is a markedly 

different partitioning structure.  This type of UP would group 

the majority of data within the first or second partition region.  

The remaining regions would be used to identify outlier data 

of which RFI is typically manifested.   

 
Figure 5.  UP with equal area partitions. 

3.1. Application to Radar 

The choice of underlying partitioning depends, in part, on the 

degradation signatures involved in the process.  In this work, 

the data processed by the algorithm is the phase history data 

of the radar.  The phase history data is the frequency 

transformed time series sampled data of the radar returns.  

The resultant phase history data is truncated in the frequency 

domain to contain data within the bandwidth of interest.   

Each pulse sent out by the radar results in a data stream 

related to the previously transmitted pulse.  This results in a 

single pass containing many thousands of pulses containing 

significant amounts of data which can be utilized by the SA 

algorithm.  An example distribution of the phase history data 

can be seen in Figure 3.  An example of the collected 

magnitude of data is shown in Figure 6.  The plot shows the 

magnitude of the received frequencies against each 

individual pulses.  There is interesting RFI that can be 

observed in the plot.   

 

Figure 6.  Example radar pass spectrum. 

 

The SA algorithm is implemented on a pulse-by-pulse basis 

with the first pulse acting as the baseline for the entire pass.  

Each processed pulse would result in an output from the SA 

algorithm producing a plot for the entire pass.  The output can 

then be used to diagnose the pass to determine if the system 

was operating as expected. 
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For diagnosis of the radar, two areas were of importance.  

First, the algorithm was to detect if any hardware faults had 

occurred within the radar and secondly, to detect pulses or 

passes that were significantly degraded by radio frequency 

interference (RFI).  RFI detection will be the focus of this 

paper as it was the most common issue involving the radar 

system.   

4. RADIO FREQUENCY INTERFERENCE DETECTION 

RFI is a problem with SAR systems in that the final images 

can be corrupted due to this additional energy in certain 

frequency bands (Meyer, 2013)(Lord, 2005).  Cell 

communications, TV broadcasts, and satellite transmission 

can all degrade the operation and final results of a SAR pass.  

The environment RFI can easily overwhelm the weaker SAR 

reflected signals.  Our goal is to detect RFI issues that are 

contained within the phase history data without the need for 

image generation which can be computationally intensive.  

The algorithm also must not affect the operation of the radar 

and must minimize false positives in its output. 

Detection of RFI is a challenge for numerous reasons.  A 

straightforward example would be attempting to detect RFI 

by return magnitude while attempting to reject scene 

reflectivity changes.  Datasets were given to QorTek by 

KEYW to explore and develop/train the algorithm on typical 

examples of RFI and scene reflectivity changes.  A pass was 

completed in which the radar was pointed away from sources 

of RFI and then pointed towards the sources.  This additional 

energy cause a degraded final processed image.  Note that the 

cleaner pass still contains traces of some amount of RFI.  This 

data was then utilized in the training of the algorithm with the 

results contained in the next section. 

4.1. Algorithm Application to RFI 

In the development of the algorithm, the data described 

previously was used to train the algorithm and determine the 

parameters (partitioning and depth) that would most 

efficiently be used to detect RFI.  This data allowed us to 

further develop the two-dimensional partitioning and 

evaluate its capabilities beyond magnitude partitioning alone 

which was accomplished in [Bower 2014].  In this paper, the 

following results are generated utilizing the SPV and two-

dimensional model formation. 

The set of results utilizing the RFI corrupted data is given in 

Figure 7.  The parameters used in the generation of the results 

utilized 32 magnitude partitions and four quadrant partitions.  

Implementing a depth of unity to minimize model complexity 

yields 128 model states.  The baseline was chosen in the 

upper plot of Figure 7 used the second pulse.  The partitioning 

approach taken was derived from the MX (Figure 3) 

partitioning approach.  The top figure (a) relates to the pass 

with minimal RFI and the lower figure (b) is the pass with 

substantially more RFI.   

Not the change in magnitude between the upper plot and the 

lower plot.  The upper plot shows an average value around 

0.04 whereas the lower plots average value is nearer to 0.01.  

There are some variations from pulse to pulse as would be 

expected and some variation from scene reflectivity although 

this is minimal.  The larger variations observed in the lower 

figure are most likely due to changes in received RFI power.   

 

Figure 7.  Algorithm output response using the MX 

partitioning methodology. 

 

Utilizing the exact same data, the results for UP and ME are 

shown in the following two figures.  The partitioning 

parameters were also kept constant for the UP and ME 

results.  Both instances utilized 32 partitions.  The UP was 

implemented with equal area regions.  Four quadrant 

partitioning was used and the depth parameter of the SA 

algorithm was set to unity. 

Figure 8 demonstrates the results when equal area UP was 

implemented.  Since UP results in a system that is not as 

sensitive to noise in the system, the output of the algorithm 

contains less variation then the output with MX partitioning.  

The lower figure’s trending also follows that obtained with 

MX partitioning although the spike around pulse 6,000 is 

absent.  This is due to the sensitivity of the MX partitioning 

as compared to UP. The underlying trend though similar to 

that obtained with MX partitioning as well. 
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Figure 8.  Algorithm output response using UP with equal 

area partitions. 

 

The results in Figure 9 were generated from ME partitioning 

again using the same parameters for comparisons between the 

other two partitioning methodologies with the same radar 

field data.  As was stated in the SA background, ME results 

in the most data sensitive partitioning approach and this can 

be observed in the results.  Note the significant increase in 

pulse-to-pulse variation as compared to UP and MX.  We 

originally believed this increase in sensitivity would assist in 

detecting degradation early, but the sensitivity to noise and 

data variations make it a challenge to use in typical situations.  

This is the primary reason for the development of the MX 

partitioning strategy.  Again, the spike observed in the lower 

figure around pulse 6,000 is visible as with the case of MX 

partitioning. 

 
Figure 9.  Algorithm output response using ME partitioning. 

 

The above results are examples of RFI and the effect on the 

phase history data and on the algorithm output.  Since the SA 

algorithm operates on the phase history data, the possibility 

of it being confused by normal operations can also occur. 

For example, changes in the scenery reflectivity can act as a 

false alarm of RFI as the algorithm begins to notice the 

change in input data.  KEYW was gracious enough to supply 

QorTek with an example of this event.  The dataset was 

obtained from a collected pass that transitioned into land.  An 

example of this is the Webster Field pass of which the 

developed SAR image is shown in Figure 10. 

 

 
Figure 10.  Webster Field SAR image.  Courtesy of The 

KEYW, Corp. 

 

The interesting scenery features that can cause the issue is 

with the radar transitioning from the bay/water onto land.  

Water and land have very different radar reflectivity, so the 

statistics of the collected radar data change significantly 

when the illuminated scene changes from mostly water to 

mostly land.  Changes in land use, for example from rural to 

urban, can also generate false alarms.  Figure 11 shows the 

results using the CBBT data and the ME partitioning 

approach.  The figure shows some variation in the algorithm 

output with the occasional pulse outlier.  An interesting 

strong signal is detected just before pulse 200,000.  This is 

due to a strong reflector in the scene which was identified as 

a ship. 

 

Figure 11.  Algorithm output using 32 ME regions with four 

quadrants on CBBT dataset. 
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Figure 12 follows the ME results with the MX partitioning 

methodology.  The results, as expected, are very similar to 

the ME results due to sensitivity of both approaches.  This 

indicates that the data is mostly focused within the ME 

partitions within the MX partitioning.  Again, the same strong 

reflector is observed in this figure as was observed in the 

previous figure.  The output magnitude is also different due 

to the change in generated statistics between ME and MX 

partitioning.  The final figure, Figure 13, shows the results 

utilizing the uniform partitioning approach with equal area 

regions. 

 

Figure 12.  Algorithm output using 32 MX regions with four 

quadrants on CBBT dataset. 

 

The results in the figure show some interesting features.  

First, the strong reflection received in the pulses before pulse 

200,000 is clearly visible within the figure.  In addition, the 

output increases towards the end of the pass.  This increase is 

due to the radar platform moving from sea to land with a 

general change in scenery reflectivity.  This is an interesting 

result as the two previous approaches did not clearly show 

the change in reflectivity.  The reduced sensitivity of the UP 

approached allows this detail to be more pronounced than in 

both the MX and ME partition implementations.   

 

Figure 13.  Algorithm output using 32 UP equal area 

regions with four quadrants on CBBT dataset. 

 

Observing the above three different results for each type of 

partitioning is the reason why the algorithm approach for the 

radar integration will utilize all three partitioning strategies.  

Each approach has its benefits and can detect different 

features as detected from the scene.  This information can 

then be used to further diagnose issues with the data and/or 

radar payload.  The question of whether it was scenery 

change or RFI can be determined by utilizing all three 

approaches.  A strong reflector/RFI is detected by all three 

approaches whereas scenery changes are more clearly 

indicated by UP.  To determine the difference between a 

strong reflector or RFI, the approach requires the use of the 

state transition matrix (Bower 2014) and frequency 

information (band) to determine if it is RFI or a strong 

reflector.  Indeed, a scenery change is very gradual as 

compared to a strong reflector/RFI. 

The above practical examples allowed us to refine the 

algorithm and prepare it for initial prototype testing on the 

radar system.   

5. PROTOTYPE FLIGHT TESTING 

A primary goal of the Phase II program was to develop the 

hardware and software systems needed to integrate the 

system onto a SAR platform.  Given that the system would 

be involved in significant data processing, the hardware 

platform chosen for the process was GPU based to allow for 

a highly-threaded implementation of the algorithm.   

A high-end gamer PC system was utilized for the work to 

achieve the necessary throughput needed to keep up the radar.  

The system consisted of a Core i7-4770k with 16GB system 

RAM and an NVidia GTX670 with 2GB of onboard GRAM.  

The entire system was inserted into a 2U-compatible 19ʺ 

rackmount system (Figure 14).  The SA algorithm was 

written in CUDA/C and the support routines written in C#. 
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Figure 14.  Rack mount computer prototype to integrate 

with radar system for testing. 

 

The system was designed to allow for expansion specifically 

in the area of storage in case it was needed.  The power 

required was also carefully designed to be within 

specification of the available power onboard the aircraft.  The 

most significant power draw was the GTX670 which at full 

power can consume 170W.  The CPU load was minimized in 

order to reduce the total power required by the added 

hardware.  To further reduce power and the chance of 

problems, a 256GB solid state drive was utilized as the main 

hard drive for the test setup. 

The hardware was then installed into the radar rack system 

(Figure 15) and connected into the system via 1000BASE-T 

network.  The gigabit connection was necessary in order to 

download and process the radar data as it was being recorded 

and to enable the system to keep up with the radar.   

The goal of this flight test was to demonstrate that the system 

can be integrated into the radar payload without affecting its 

operation or causing any other atypical operation, and to also 

demonstrate the capabilities of the SA algorithm in real time.  

It was discovered that the instantaneous output of the SA 

could be used for RFI detection during flight.   

 

 
Figure 15.  QorTek hardware payload installed in radar rack 

for flight testing. 

 

The flight path was through the Naval Air Station Patuxent 

River area.  The flight tests took place on July 1st – 2nd, 2014 

and consisted of a couple of passes.  The testing was carried 

out for a pre-mission systems check and verification by 

KEYW.  QorTek joined the KEYW team to test out the 

diagnostic hardware and software. 

The first day of flights went as expected with the diagnostic 

hardware without any major issues.  The results shown below 

implement 32 UP regions utilizing equal area.  This partition 

structure was chosen to be implemented in the first test run 

as it performed equally well in all situations during algorithm 

development.  The next revision of the SA algorithm code 

will include the other partition types.   

The first example of results is shown in Figure 16.  This data 

was taken from pass 212616 from the L-band with VH 

polarization.  The data connection that QorTek had access to 

was the horizontally-polarized receive portion of the data.  

All of the following results were thus taken from the *H 

available polarization channels.   

The results show minimal issues in the data with the 

exception of a single pass outlier around pulse number 6,000.  

A more interesting example is shown in Figure 17 and Figure 

18 taken from the second day of testing. 
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Figure 16.  Example result from the first flight test using 

pass 212616 and the L-band VH channel. 

 

The results shown in Figure 17 were taken from the second 

day of testing and from the PHH channel of data.  The 

majority of data is indicated as normal until around pulses 

7,500 – 8,500.  The algorithm output begins to increase and 

decrease back down to the expected value.  This is indicative 

of RFI or some other corrupting signal present in the data.  To 

determine if this RFI was limited to the P-band, the next 

figure contains the results for the L-band channel.  

 

 
Figure 17.  Example result from the first flight test using 

pass 215834 and the P-band HH channel. 

 

Figure 18’s results do not show the same behavior during 

those periods indicating a P-channel related RFI event that 

has occurred during the data collection during the pass.  In 

this case, the event was isolated mostly to the P-band radar.  

The source of the RFI was unknown in this case but occurred 

at a frequency of 425MHz and was periodic.  It was also 

confirmed to be absent from the L-band data.   

 
Figure 18.  Example result from the first flight test using 

pass 215834 and the L-band VH channel. 

 

The above two figures are an excellent example of RFI.  Note 

that nearly all passes are going to contain some amount of 

RFI which is what introduces some of the pulse-to-pulse 

variability in the output.   

The detection of RFI in one band and not in the other was an 

excellent indicator of algorithm performance for QorTek.  

Some issues that occurred during testing included long 

processing times needed to pull data from the data arrays on 

the radar.  This problem is being addressed for the next flight 

test.   

6. CONCLUSION 

The SA algorithm has been shown to indicate possible issues 

with the operation of a Synthetic Aperture Radar (SAR) 

payload through statistical observation of the phase history 

data.  Of importance to the program was to identify the type 

of degradation, whether it is internally based due to hardware 

degradation or externally, environmentally sourced.  The data 

shown contained RFI issues, the most common problem with 

these systems.  The algorithm was trained and tested on these 

example data sets as provided by KEYW and then 

implemented into a flight test. 

The flight testing of the prototype was a success in that it was 

able to obtain and process the radar phase history data from 

the radar while it was in operation.  The algorithm itself did 

not negatively impact the operation of the radar and the 

results produced interesting features. 

The next goal of the program is to identify the RFI to assist 

in radar operation.  In addition, the algorithm will continue to 

be used to also detect the possibility of hardware problems.  

KEYW has provided example data sets that contain hardware 

problems that were also trained and tested in the algorithm.  

Although much more uncommon, these degradation features 

will also be programmed into the final algorithm 
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implementation.  The final objective of the program is to 

complete a second flight test of the improved algorithm that 

decreases its execution time and reduces the size, weight, and 

power impact to the host payload. 
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NOMENCLATURE 

A = anomaly 

D = symbolic depth 

di = complex data point 

H(·) = entropy 

MX =  mixed partitioning 

ME = maximum entropy 

Ns = number of states 

p(·) = probability 

Pi = ith partition 

si = ith symbol 

RFI = radio frequency interference 

U = time series data amplitude range 

UP = uniform partitioning 

X = time series data 

z = state probability vector 

REFERENCES 

Bower, G., Mayer, J., & Reichard, K. (2011). "Symbolic 

Dynamics and Analysis of Time Series Data for 

Diagnostics of a dc-dc Forward Converter," in Annual 

Conference of the Prognostics and Health Management 

Society, Montreal, 2011. 

Bower, G., Zook, J., Bird, R.  (2014). “Health Management 

and Diagnostics for Synthetic Aperture Radar (SAR) 

Payloads” in Annual Conference of the Prognostics and 

Health Management Society, Fort Worth, 2014. 

Daw, C.S., C.E.A. Finney & E.R. Tracy (2003). "A review of 

symbolic analysis of experimental data." Review of 

Scientific Instruments 74.2 (2003): 915-930. 

Kwok L. Tsui, Nan Chen, Qiang Zhou, Yizhen Hai, and 

Wenbin Wang (2014), “Prognostics and Health 

Management: A Review on Data Driven Approaches,” 

Mathematical Problems in Engineering, Article ID 

793161, in press. 

Lord, R. T. (2005) “Radio Frequency Interference 

Suppression applied to Synthetic Aperture Radar Data”, 

XXVIIIth General Assembly of International Union of 

Radio Science, URSI 2005, New Delhi, India. 

Meyer, F.J.; Nicoll, J.B.; Doulgeris, A.P., (2013) "Correction 

and Characterization of Radio Frequency Interference 

Signatures in L-Band Synthetic Aperture Radar Data," 

IEEE Transactions on Geoscience and Remote Sensing, 

vol.51, no.10, pp.4961-4972. 

Ray, Asok (2004). "Symbolic dynamic analysis of complex 

systems for anomaly detection." Signal Processing 

(2004): 1115-1130. 

Schwabacher, M. 2005. “A Survey of Data-Driven 

Prognostics.” Proceedings of the AIAA 

Infotech@Aerospace Conference. Reston, VA: 

American Institute for Aeronautics and Astronautics, 

Inc. 

Sarkar S, Jin X, Ray A. (2011) “Data-Driven Fault Detection 

in Aircraft Engines with Noisy Sensor Measurements.” 

ASME. J. Eng. Gas Turbines Power. 

BIOGRAPHIES  

Gregory Bower is currently the CTO of QorTek Inc. in 

Williamsport, PA.  He received his B.S., M.S., and Ph.D. 

degrees in Electrical Engineering all from The Pennsylvania 

State University. Previously, he had worked as an assistant 

with the Applied Research Laboratory in State College, PA.  

His research interests include Prognostics and Health 

Management (PHM) of electronic systems, robust and 

optimal control theory, system identification, and power 

conversion.   

Curtis Wrable is currently an Integrated Systems Engineer 

at QorTek Inc. in Williamsport, PA. He received his B.S. in 

Electronics Engineering from Pennsylvania College of 

Technology in 2009. Over the past six years, Curtis has 

worked on a number of different research areas over the 

course of his career including: analog and digital design, 

piezoelectrics, power electronics, and automated testing 

systems. . His research interests include the areas of PCB 

layout and design, development of embedded systems, and 

generating software solutions to critical engineering 

problems. 

Ross Bird is currently the President of QorTek, Inc.  He 

received his B.S. in Electronics from Penn State in 2001, he 

then received his MSEE in 2003. Over the past decade Mr. 

Bird has worked extensively at the leading edge of power 

electronics design (holding several patents and additional 

pending in this technology); that incorporate advanced 

materials, design and digital control. He has extensive 

experience in the design and development of advanced power 

modules and has been lead developer of such power.  His 

research interests include the areas of digital design and 

microcontrollers, digital implementation of complex 

numerical algorithms and mixed A/D PCB layout and design. 

Paul Woodford is a Principal Research Engineer at KEYW 

Corporation in Severn, MD.  He received the B.S. degree in 

electrical engineering from Bucknell University in 1989 and 

the M.S. and Ph.D. degrees in electrical and computer 

engineering from Carnegie Mellon University in 1991 and 

1995, respectively.  He worked at Essex Corporation from 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

12 

1995 to 2007, and at Northrop Grumman Corporation from 

2007 to 2011.  His interests are in the areas of synthetic 

aperture and moving target imaging and exploitation.  He 

holds two U.S. patents for radar signal processing. 

 

 

 


