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ABSTRACT

Security forces need to model risk patterns associated with
criminal activity to study cause-effect relationships and pre-
dict new crimes. In this regard, criminal risk models are im-
portant to obtain relevant information for better resource al-
location and prevention of future crime activity. This paper
proposes a method to model and predict future criminal ac-
tivity based on spatial probabilistic risk functions and a char-
acterization of their temporal evolution as new data become
available. This method uses geo-referenced information of
public services (e.g., shopping centers, banks) and criminal
incidents to approximate the prior risk function as a Gaussian
Mixture Model (GMM). Temporal evolution of crime activity
is characterized using an algorithm that is based on Sequential
Monte Carlo Methods and Importance Sampling. This algo-
rithm incorporates information from new measurements, in a
recursive manner, to approximate the posterior spatial proba-
bilistic risk function by updating particle positions in the map.
Finally, we propose a novel prediction scheme for criminal
activity that uses Gaussian fields centered on hypothetical fu-
ture criminal events, which are sampled from a GMM that
characterizes the spatial distribution associated with recent
crime activity. The optimum number of centroids for each
Gaussian kernel is evaluated using Silhouette algorithm. The
time index related to each hypothetical future crime event is
probabilistically characterized using an exponential distribu-
tion. Results using real data show that the majority of future
events occur within risk modeled zones, information which
can be used for resource allocation and improvement of inter-
vention plans.

Paulina Flores et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Around the world, order and security forces focus on moni-
toring criminal incidents that occur in a determined area and
time period. Location technologies and services have made it
possible to include geo-referenced information, used by ana-
lysts to find spatio-temporal patterns in reported events, so as
to predict when and where a new crime will occur.

Many techniques and models have been developed to achieve
this objective. Among the most used we can find Hot-Spots
theories (Eck, Chainey, Cameron, & Wilson, 2005); where
criminal incidents are located on a plane, forming clusters
that are assumed to be invariant for any prediction horizon.
Unfortunately, this technique fails to reflect changes in crime
patterns as the environment changes. So as to avoid this prob-
lem, more sophisticated statistical models have been devel-
oped. For instance, in Liu & Brown (2003) a point-pattern-
based transition density model is implemented, which de-
pends on geographic and demographic information. In Xue &
Brown (2006) and in Smith & Brown (2007), a model based
on spatial decisions has been developed: criminals are as-
sumed to choose places that can be modeled in terms of profit
maximization, which depends simultaneously on the gain in
committing the crime and the likelihood of being arrested.
Other model can be reviewed at Brown, Dalton, & Hoyle
(2004) and Rodrigues, Diggle, & Assuncao (2010). The dis-
advantage of such models is that they do not directly incor-
porate the temporal component, and when it is modeled us-
ing time series (for example), space-time interactions are not
considered (Ivaha, Al-Madfai, Higgs, & Ware, 2007). Recent
studies have developed some approaches that apply general-
ized additive models (Generalized Additive Models, GAM)
to combine spatial and temporal data, as well as diverse char-
acteristics, for prediction (Wang & Brown, 2012a).
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This paper proposes a mixed approach, which considers
Gaussian fields and spatial probabilistic risk models based on
information of public services associated with an area of in-
terest and criminal event data. The concept of posterior prob-
ability distribution is used to yield a spatial notion of crime
risk. The time component is incorporated via exponential
models and the sequential inclusion of information from new
crimes committed within the same area, updating the prior
risk distribution. This scheme provides an estimate for the
probability of occurrence for a crime in a certain area and
time, conditional to nearby public services and events that
have occurred in the past.

The article is structured as follows. Section 2 presents a
theoretical background focused on concepts such as Gauss-
ian Mixture Models, Important Sampling, Resampling, and
Model Evaluation Methods. Section 3 presents the proposed
methodology for modeling, temporal characterization, and
prediction of criminal events. Section 4 focuses on the analy-
sis of generated results. Finally, conclusions and future work
are presented in Section 5.

2. THEORETICAL BACKGROUND

This section presents an overview of the main concepts that
will help to understand our proposal for spatio-temporal mod-
els, and the associated solution for crime prediction. These
concepts include Gaussian Mixture Models, Bayesian Infer-
ence and Monte Carlo integration methods such as Particle
Filtering, Importance Sampling and Resampling algorithms.
Finally, a brief discussion on ad-hoc performance measures
is included.

2.1. Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMM) are parametric probability
density functions widely used in the literature due to their
capability for approximating multimodal probability density
distributions. They are defined as a weighted sum of single
Gaussian (Yu, Sapiro, & Mallat, 2011) distributions as stated
in Eq.(1):

G(x) =

M∑
i=1

αi · fi(x), (1)

where x is a D-dimensional random vector, αi are the mixture
weights satisfying

∑M
i=1 αi = 1, and fi(x) are multivariate

Gaussian distributions of dimension D, given by:

fi(x) = 1
(2π)D/2|Σi|1/2

exp
(
− 1

2 (x− µi)T Σ−1
i (x− µi)

)
(2)

where µi and Σi are the mean vector and the covariance ma-
trix of the i-th Gaussian of the mixture.

As mentioned before, GMMs are parameterized by their mix-
ture weights, mean vectors, and covariance matrices. The
usual calculation of these parameters, conditional to a data
set, is done by applying the Expectation Maximization (EM)
algorithm, which is an iterative method that provides maxi-
mum likelihood or Maximum a Posteriori (MAP) estimates
of these parameters.

There are three types of GMMs, depending on the choice of
covariance matrices. In the first case, there is one covariance
matrix per Gaussian component (nodal covariance). In the
second case, the covariance matrix is the same for all Gauss-
ian components (grand covariance). The third form is a sin-
gle covariance matrix shared by the overall Gaussian model
(global covariance) (Reynolds, 1995). In this paper we use
two of these forms, the nodal model covariance and global
covariance.

2.2. Bayesian Inference and Monte Carlo Integration

A common problem to be solved when dealing with uncertain
dynamical systems is the manner in which statistical infer-
ence can be performed. In this regard, Bayesian approaches
are well suited, as they provide a general framework for es-
timating hidden dynamical variables of a system through se-
quential update. These approaches involve two stages that
are executed sequentially after a new measurement is avail-
able. The first stage consist of computing a prior probability
density function (PDF); task that requires a stochastic rep-
resentation for state transitions in the dynamic system. The
second stage incorporates new measurements into the analy-
sis by correcting the prior PDF through their likelihood, thus
yielding a posterior PDF.

Mathematically, the evolution in time of the state sequence
is considered as the set of Nx-dimensional vectors x0:k =
{xi, i = 0, ..., k}, and the observable events (or measure-
ments) as the set of Ny-dimensional vectors y1:k = {yi, i =
1, ..., k}. In Bayesian theory, the posterior distribution de-
fined by p(x0:k|y1:k) is decomposed in terms of the prior dis-
tribution p(x0:k), its likelihood p(y1:k|x0:k), and the evidence
p(y1:k) as:

p(x0:k|y1:k) =
p(y1:k|x0:k) · p(x0:k)

p(y1:k)
. (3)

Under Markovian assumptions, the posterior distribution in
Eq. (3) can be expressed recursively (S. a. Doucet, 2001) as:

p(xk|y1:k) =
p(yk|xk) · p(xk|y1:k−1)

p(yk|y1:k−1)
. (4)

The prior distribution is then decomposed as stated in the
Chapman-Kolmogorov equation:
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p(xk|y1:k−1) =
∫
p(xk|xk−1) · p(xk−1|y1:k−1)dxk−1 (5)

The recurrence relation established by Eqs. (4)-(5) defines
the optimal Bayesian solution for the filtering problem. How-
ever, this relation cannot be determined analytically in gen-
eral, and a close-form solution can only be found in a restric-
tive set of cases (e.g., the well-known Kalman filter for linear,
and Gaussian systems). In these cases, assuming a Gauss-
ian distribution with unbiased, and consistent, estimates for
the mean and covariance matrix of the prior PDF, the filter
can then optimally derive the mean and covariance matrix of
the posterior PDF. In nonlinear systems, though, the poste-
rior PDF is not necessarily Gaussian (Arulampalam, Maskell,
Gordon, & Clapp, 2002). In this regard, we consider in this
article a class of sub-optimal nonlinear Bayesian algorithms
that allow better characterization of the posterior PDF in dy-
namic, non-Gaussian systems: Particle Filters (PF). In PF, the
key idea is to represent the posterior density function by a fi-
nite set of weighted random samples {xi, wi}Ns

i=1 in order to
perform statistical inference.

2.3. Importance Sampling

The estimation of the posterior distribution requires to deter-
mine the prior distribution, the evidence, and its likelihood.
As the likelihood is usually known, and the evidence corre-
sponds to a normalizing constant, the most difficult task cor-
respondsto the computation of the prior PDF p(xk|y1:k−1)
described in Eq. (5). However, that expression includes an
integral for probability densities that do not have a closed-
form in general.

As the Eq. (5) involves the computation of an intractable in-
tegral, the idea of a sample-based approximation seems to be
suitable. Nevertheless, it is usually hard to sample from the
distribution p(xk|y1:k) at any time k. Importance Sampling
(IS) (Bergman, 1999) solves this problem by sampling for an
alternative PDF, which is known in the literature as impor-
tance distribution and is denoted by q(x0:k|y1:k). The sup-
port of this distribution must, at least, include the support of
p(x0:k|y1:k). Moreover, as the samples are drawn from an al-
ternative distribution a weight is associated to them, and thus

p(x0:k|y1:k) ≈
Ns∑
i=1

wikδ(x0:k − xi0:k). (6)

The challenge is to compute weights adequately. It is as-
sumed that p(x0:k|y1:k) ∝ π(x0:k|y1:k) is difficult to sam-
ple, but π(x0:k|y1:k) can be evaluated. Let xi ∼ q(x0:k|y1:k),
i = 1, ..., Ns, be samples that are easily generated from the
importance density q(·) (Arulampalam et al., 2002), then:

wik =
p(xi0:k|y1:k)

q(xi0:k|y1:k)
∝ π(xi0:k|y1:k)

q(xi0:k|y1:k)
. (7)

The art of IS is about choosing the importance distribution
q(·) which approximates p(·) as closely as possible. This is
the principal factor that affects the performance of this ap-
proach (Candy, 2007). Furthermore, if this condition does
not hold, a degeneracy phenomenon appears yielding sam-
ple impoverishment and thus, undesirable inefficiencies in the
method.

2.4. Resampling

A common problem with IS is the degeneracy phenomenon,
where after a few iterations all but one particle have negligi-
ble weight. In (A. Doucet, Godsill, & Andrieu, 2000) it has
been shown that the degeneracy phenomenon is impossible to
avoid.

Resampling is a method for addressing the effects of the de-
generacy phenomenon in order to reduce them. The basic
idea is to eliminate particles with low weights and concentrate
on particles with higher weights. The algorithm (Arulampalam
et al., 2002) consists of drawing a new set of Ns particles
{xi∗k }

Ns
i=1 by resampling (with replacement) from:

p(xk|y1:k) =

Ns∑
i=1

ωikδ(xk − xik), (8)

so that Pr(xi∗k = xjk) = wjk. The new samples are i.i.d,
so they are equally weighted and ωi∗k = 1

Ns
. The method is

described in Algorithm (1).

2.5. Exponential distribution

Recently, an analysis over real-crime data has demonstrated
that the frequency of crime (robbery, thefts, or burglaries)
events over a geographic area, and considering a fixed time
interval, follows an exponential distribution (Furtado, Melo,
Coelho, Menezes, & Belchior, 2008).

Thus, assuming that a criminal event is equally likely to oc-
cur in a small time interval (no matter how far or near the last
criminal event occurred), then it is possible to model the crim-
inal events rate by an exponential distribution (Blumstein,
Cohen, Roth, & Visher, 1986), as it is the only continuous
distribution that possesses this memory-less property.

The exponential distribution can be parametrized by its rate
1/β and is given by:

hβ(x) =

{ 1
β · exp(− 1

βx) x ≥ 0

0 x < 0
(9)
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Algorithm 1: Resampling Algorithm
Input: A set of particles with degeneracy phenomenon[

(xj∗k , w
j
k, i

j)Ns
j=1

]
Output: A new set of particles with wk weight[

(xik, w
i
k)Ns
i=1

]
1 Initialize the CDF: c1 = 0;
2 for i=2:Ns do
3 Constructed CDF: ci = ci−1 + wik;
4 end
5 Start at the bottom of CDF: i = 1 ;
6 Draw a starting point: ui ∼ U[0, N−1

s ] ;
7 for j=1:Ns do
8 Move along the CDF: uj = u1 +N−1

s (j − 1);
9 while uj > ci do

10 j∗ = i+ 1;
11 end
12 Assign sample: xj∗k = xik;
13 Assign weight: wjk = N−1

s ;
14 Assign parent: ij = i;
15 end

where the maximum likelihood estimator of β is:

β̂ =
1

n

N∑
i=1

xi (10)

and xi are i.i.d. samples from hβ(x). In this paper, the prob-
abilistic characterization of criminal incidents rates related to
a determined area is used for prediction purposes.

2.6. Model evaluation

To evaluate the performance of the proposed risk model, this
research effort compares high-probability areas predicted by
the model with the number of crimes that actually occur in
those areas. A model is said to be good as long as the number
of incidents that occur within a fixed time period are propor-
tional to the predicted for that area. The characterization of
risk model performance at a time tj is given by the curve that
relates the High-Risk Percentage (HRPθ) vs. True Incident
Percentage (TIPθ), a method proposed by (Wang & Brown,
2012b) in which:

HRPθ =
||{ai|P(inciai,tj

=1)>θ}||
||{ai}|| (11)

TIPθ =
||{inciai,tj

=1|ai⊂{ai|P(inciai,tj
=1)>θ}}||

||{inciai,tj
=1}|| (12)

where || · || is the cardinality of a set, θ ∈ [0, 1] is a thresh-
old and P(inciai,tj = 1) is the probability that criminal in-
cidents happen in a area subdivision ai and a time window

tj . In this case, HRP represents the percentage of high-risk
areas predicted by the model, whereas TIP represents the in-
cidents from a test set that took place within the high-risk ar-
eas. Both measures are computed for different θ and plotted
against each other obtaining a graphic similar to the operating
characteristic curve (ROC) (Fawcett, 2006). If many crimes
incident take place in high-risk areas, a curve closer to the
upper left corner is expected. In the opposite case, a curve
similar to a linear relationship is expected.

To measure the model quality, we use the concept of Area
Under the Curve (AUC). This area takes values between 0.5
and 1, corresponding to the worst and the best possible cases,
respectively.

3. PROPOSED METHODOLOGY

The proposed methodology provides a probabilistic charac-
terization of criminal activity, using for this purpose a set of
samples that are distributed in the space (geographic area) ac-
cordingly to a risk function. Furthermore, it also includes a
mechanism to model the temporal evolution of the sample
spatial distribution, where samples are reallocated sequen-
tially as soon as the notification of new criminal incidents is
available. Also, a prediction strategy is presented to evaluate
the risk level within a specific area and future time period.

3.1. Required Information

For the generation of probabilistic risk models associated with
criminal incidents, it is necessary to analyze three types of in-
formation sources: (i) definition of a geographic area of inter-
est, (ii) geo-referenced data of public services (e.g., banks, su-
permarkets), and (iii) geo-referenced data of criminal events.
These items are described below.

3.1.1. Definition of Area of Interest (A)

The definition of the areaA ⊂ R2, for which the probabilistic
model is needed, depends on various factors such as: main
motivation of the study, processing capacity of the machine,
available information, among others.

3.1.2. Geo-referenced Data of services

Within A, it is possible find many services that define places
where people naturally gather (e.g., hospitals, schools, parks,
supermarkets, pharmacies, among others). As soon as the
area A is defined, it is necessary to note the amount of ser-
vices that are included on it. When the area under study is
large and it contains few services (located in a sparse man-
ner), then it would be more difficult to implement the concept
of Hot-Spot for criminal risk. However, if the area is very
small and it contains several services, then the risk function
could be characterized almost as a constant.
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3.1.3. Geo-referenced Data of Criminal Events (dj)

Criminal events are understood as any type of crime that oc-
curred within a time interval T ⊂ R+. A probabilistic model
requires a considerable amount of data to have statistical va-
lidity. For the case in which this paper is framed; this “con-
siderable amount” will depend on the area of interest. The
type of crimes for which the model will be generated may
vary: they can incorporate many types of crime events (when
requiring a general risk model for a particular area), or they
can be focused on a special set of crime events (high social
impact crimes, such as homicide, burglary, robbery, among
others).

3.2. Generation of Spatial Risk Models

For the generation of a probabilistic model that achieves the
characterization of the risk associated with criminal activity,
it is of paramount importance to relate the current services to
the occurrence of criminal events.

This part of the methodology is divided into a sequence of
steps, which are listed below and summarized as a flowchart
in Figure 1.

Figure 1. Detailed flowchart of methodology for the auto-
matic generation of risk models.

3.2.1. Definition of Area of Interest

Area A ⊂ R2 where services and criminal events that are
representative for the case study are defined (Figure 2.A).

3.2.2. Positioning of the Events and Services in the Area

The information of the set of criminal events denoted by
{dj}Dj=1, and the set of services {sj}Mi=1 that exist in A dur-
ing the time interval T (Figure 2.B), is provided in terms of
spatial positioning via Global Positioning System (GPS) co-
ordinates, preferably.

3.2.3. Definition of Service Risk Influence Range

Let ri ⊂ R+ be the risk influence range associated with a ser-
vice si such that ri defines the radius of a circle centered on
the corresponding service coordinates. They were considered
identical for all services (Figure 2.C) in this particular study.

3.2.4. Search for Events Associated with Each Service si

Let the location of a crime dj be given by the coordinates
~xd =

(
djx , djy

)
∈ R2, and let the location of a service si be

given by the coordinates ~xs =
(
sjx , sjy

)
∈ R2. The relation-

ship between dj and si will depend on

distij =

√
(djx − six)

2
+
(
djy − siy

)2
, (13)

where the crime dj is said to be “associated” with a service
si if it is fulfilled that distij ≤ ri. Repeating this procedure
for all crimes {dj}Dj=1, a new set of events that are associated
with a particular service will be obtained, defined as Di =
{~xd|distij ≤ ri}.

3.2.5. Calculation of the Associated Risk

Once the sets {Di}Mi=1 are defined, then the elements of Di

are used to adjust the parameters of the i-th component of a
GMM that is described in Eq. (2). In fact, if ||Di|| denotes
the number of elements in the set Di, then

µi = xsi , (14)

Σi =
1

||Di||

||Di||∑
j=1

(xj − µi)(xj − µi)T , (15)

where xj ∈ Di, j = 1, ..., ||Di||. Therefore, the risk asso-
ciated to the i-th service is assumed to distribute following
a Gaussian probability density determined by the aforemen-
tioned parameters.

3.2.6. GMM Model Generation

As each service has its own risk probability density, the risk
function that covers the whole area of services will be de-
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Figure 2. A) Event localization scheme within the area of in-
terest; B) Events and services; C) Events, services and ranges
defined for each service.

scribed by a GMM, as stated in Eq. (1). Hence,

PDFprior (~x) =

M∑
i=1

αi · fi (~x) , (16)

where

αi =
1

M
⇒

M∑
i=1

αi = 1. (17)

Finally, a GMM of equally weighted components is obtained
for describing a prior PDF of the criminal risk of a particular
area of interest.

Figure 3. Representation through level curves of a GMM that
characterizes the criminal risk.

3.3. Characterization of Temporal Evolution of Spatial
Risk Distribution

To allow adaptation (update) of the risk spatial distribution,
we propose to represent this distribution by a set of samples.
These samples can then be reallocated in space accordingly
to new notifications of criminal activity, procedure which can
be understood as the computation of a posterior distribution.

Additionally, in the absence of new events, the samples may
also change their position in order to incorporate underly-
ing uncertainty sources, property that requires a risk predic-
tion model capable of propagate uncertainty along a period of
time.

This part of the methodology is divided in two main stages:
off-line and on-line, as it is depicted in Figure 4.

During the off-line stage, a set of samples (particles) are arbi-
trarily located at certain positions and weighted, following the
Importance Sampling methodology. Then, a resampling pro-
cedure is carried out to obtain a new set of equally weighted
samples.

During the on-line stage, a temporary evolution strategy de-
fines a dynamic equation for the movement of the particles
according to the inclusion of new observations (sequential in-
corporation of new criminal events). Therefore, every time
that a new criminal notification arrives, some particles will
be attracted to the area where the event was reported. Once
the positions of the particles have been updated, a posterior
distribution is obtained by fitting a GMM (each particle is as-
sociated with a Gaussian bi-variate probability distribution).

Finally, a different strategy is required to generate predictions
for the evolution of the posterior distribution. A strategy for
prediction is presented here which employs the same method-
ology for reallocating particles used when criminal events
were registered. The additional feature of this strategy is that
it simulates future criminal activity via sampling procedures,
using a GMM denoted GMMpred. This GMM is fitted using
only recent criminal activity. The maximum number of step-
ahead predictions is defined equal to the number of registered
crimes events used for fitting GMMpred. Besides this, the
time step between two simulated crimes is obtained by sam-
pling from an exponential distribution, as described in Eq.
(9), whose parameter β is set to the average time of data reg-
istries that were used to fit GMMpred.

3.3.1. Spatial Risk Distribution

The spatial risk distribution (prior distribution) defined and
calculated in Section 3.2 is used (Figure 5.A).

3.3.2. Important Sampling

In order to have a better way to manipulate the spatial risk dis-
tribution with lesser computational cost, Important Sampling
is used. Then, the prior distribution is empirically approxi-
mated using a set of sample (particles).

3.3.3. Resampling

After applying important sampling, it is necessary to ensure
the existence of more particles in high risk probability ar-
eas, as well as less particles in low-risk probability areas,

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

Figure 4. Flowchart of methodology for calculating the pos-
terior PDF and predicted PDF.

Moreover, it is highly desired every particle to have the same
weight. Due to this, Resampling (Section 2.4) must be ap-
plied (Figure 5.B).

3.3.4. New Observation (Crime Event)

Geo-referenced data of new crime events is chronologically
stored and used by the Temporal Evolution module.

3.3.5. Temporal Evolution (Posterior PDF)

Temporal evolution of the posterior risk function is based on
the movement of the particles as new observations keep ar-
riving. Thus, it becomes necessary to define a time-varying
model to represent the manner in which the particles will
move.

The model must meet three requirements: i) Particles located
far away from the criminal event should not be significantly
affected, ii) Particles located nearby the criminal event should
maintain their proximity to it, iii) Particles located at reason-
able distance from the criminal event should move towards
the observation, since the number of particles located in a de-
termined area is an indicator of the associated risk (Figure
5.C). Following these guidelines, the transition model is de-
fined as:

x(k) = x(k − 1) + f(d) {y(k)− x(k − 1)}+ w(k), (18)

where:

• x(k) : Particle position at kth time instant.
• x(k − 1) : Particle position at the previous time instant.
• y(k) : Observation (crime event) at kth time instant.
• w(k) : Process noise.
• f(d) : Non-linear function which depends of the distance

d between the observation and the particle.

The function f(d) is defined as:

g (d) =
1

2π |Σ|1/2
exp

(
−1

2
(~x− ~y) Σ−1 (~x− ~y)

)
(19)

f (d) =
g (d)

max (g (d))
(20)

The covariance matrix Σ is a design parameter and depends
of the area of interest.

Figure 5. A) Prior distribution seen as level curves; B) Par-
ticles after Important Sampling and Resampling; C) Particles
move towards the new observations.

3.3.6. Posterior PDF

Once the temporary evolution is implemented using a set of
recent criminal activity records, a new GMM can be approxi-
mated to obtain a criminal risk spatial distribution. Therefore,
each particle becomes to the centroid of a Gaussian bi-variate
distribution, and the variance corresponds a design parameter.

3.3.7. Prediction Module

Th prediction strategy assumes that there should not be major
changes on the spatial position of the criminal activity in the
short term. This is, we consider that the crimes are distributed
according to a stationary probability density. Hence, the his-
torical data of recent criminal events is used to update the

7
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posterior risk PDF, as shown in Figure 6.A in color blue. The
procedure then uses these events to generate a GMM repre-
senting the risk PDF associated with recent criminal activity,
denoted by GMMpred, as shown in Figure 6.B.

Now, to propagate uncertainty throughout time, future crime
events are simulated by sequentially drawing samples from
GMMpred, which are coloured in black in Figure 6.C. Future
temporal evolution is then characterized by the movement of
particles when driven by these simulated events.

To consider the temporary component associated to the pre-
diction (prediction time step, prediction horizon) the time be-
tween observations is modeled as an exponential random vari-
able, whose rate estimated as the inverse of the average time
registered between criminal felonies observations that were
used to fit GMMpred.

Figure 6. A) Recent criminal activity; B) GMM using recent
criminal activity; C) Simulations for future criminal events.

3.3.8. Predicted Risk PDF

Once the prediction stage is finished, a Gaussian kernel is
centered at each particle, in the same manner as when charac-
terizing the posterior risk PDF, and a GMM is approximated
to obtain a criminal risk spatial distribution.

4. RESULTS

The proposed methodology is applied to an interesting case
of study, which considers actual records of criminal activity
over a populated urban area. The database includes:

• Geo-referenced information on 4262 public services. These
services mainly relate to: stores, banks, bars, fire sta-
tions, liquor stores, automatic teller machines (ATMs),
police stations, shopping centers, schools, parks, hospi-
tals, clinics, among others. Each record is labeled and

has its respective GPS coordinates (latitude and longi-
tude).

• Geo-referenced information of criminal incidents that oc-
curred within the area (23109 records).

For analysis purposes, only robbery offenses with force are
considered in this study (crimes that are classified as events
with ”high social impact”). Among those, 1870 of 2240 records
are considered part of the training set, and will be used to
characterize the prior risk distribution. From the remaining
events, 185 are used to test the filtering stage, and 185 are
used to validate the proposed risk prediction approach.

4.1. Prior Spatial Risk Probabilistic Function

Geo-referenced information on 4262 public services is used
to generate different prior distributions for the spatial risk
probabilistic function, considering for this purpose three val-
ues for the service influence range: three, five, and seven
blocks respectively; see Figure 7, Figure 8, and Figure 9. Us-
ing the AUC measure described in Section 2.6, results show
better risk characterization when the influence range is set to
three blocks.

Figure 7. Prior Spatial Risk Probabilistic Function consider-
ing service influence range of three blocks.

4.2. Posterior Spatial Risk Probability Function

Once the prior spatial risk distribution is determined, 185
crime events are sequentially used to compute the posterior
spatial risk probabilistic function. This procedure, described
in Section 3.3.5, requires first to obtain samples from the prior
distribution. Figure 10 shows the obtained results when ap-
plying an importance sampling and resampling to particles
that are first allocated using an arbitrary grid over the area of
interest.The grid is generated considering 23 and 16 subdivi-
sions for the horizontal and vertical dimensions, respectively.
As a result, after the resampling procedure, some coordinates
in the grid contain more than one particle.
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Figure 8. Prior Spatial Risk Probabilistic Function consider-
ing service influence range of five blocks.

Figure 9. Prior Spatial Risk Probabilistic Function consider-
ing service influence range of seven blocks.

Figure 10. Grid and location of 368 particles associated with
the prior spatial risk function. Blue dots indicate the location
of 185 criminal events that are used to compute the posterior
risk function.

The characterization of the posterior spatial risk probabilistic
function is based on the position of particles after incorporat-
ing the impact of crime events that are sequentially registered
during the filtering stage. The particle movement is governed
by the Gaussian attraction field described by Eq. (19) and Eq.
(20), where the covariance matrix is given by:

Σ =

[
1.5 · 10−5 0

0 1.5 · 10−5

]
(21)

During the update (or filtering stage), we identify those parti-
cles that are significantly affected by the appearance of crim-
inal events. This is done by setting a threshold for the attrac-
tion force f(d) equal to 0.6. In this case, 276 particles are
in the aforementioned condition. Those are the particles that
will modify their position during the prediction stage. This is
done to minimize the computation effort associated with the
prediction stage.

After sequentially incorporating 185 criminal events into the
analysis, the posterior distribution is built by using a GMM,
as explained in Section 3.3.6, every particle is used as the
centroid of a Gaussian kernel (Figure 11).

Figure 11. Posterior spatial risk function built from the 368
particles that are significantly affected by the appearance of
185 criminal events. Gaussian kernels used for this purpose
consider a diagonal covariance matrix that characterizes a
range of influence of three blocks.

The predictive capability of the posterior spatial risk distribu-
tion is evaluated using HRP and TIP measures accordingly to
Eq. (11) and Eq. (12), for different values of influence ranges
and grid sizes; see Table 1.

1 2 3 4 5 6 7 8 9 10
3 0.934 0.915 0.907 0.902 0.907 0.881 0.885 0.890 0.872 0.861
4 0.925 0.899 0.883 0.883 0.890 0.868 0.860 0.871 0.863 0.859
5 0.922 0.892 0.878 0.879 0.871 0.863 0.848 0.854 0.852 0.854
6 0.911 0.875 0.859 0.861 0.858 0.852 0.843 0.837 0.844 0.841
7 0.915 0.871 0.858 0.851 0.852 0.842 0.835 0.838 0.841 0.846

Table 1. AUC considering [3,7] for particle influence range
and [1,10] for grid resolution in the posterior spatial risk func-
tion (in blocks).
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4.3. Predicted Spatial Risk Probability Function

Once the posterior spatial risk distribution is obtained by us-
ing 185 criminal events to update the position of 368 particles
(Figure 11), we proceed to generate the GMM Hot-Spot dis-
tribution related to recent criminal activity. After applying
clustering analysis to recent criminal activity, and testing the
number of clusters using the Silhouette algorithm, three clus-
ters as found as the optimal choice for the centroids of the
Hot-Spot GMM (Figure 12). This Hot-Spot GMM, associ-
ated with recent criminal activity, is used to simulate future
criminal activity. This is done by sampling 185 events from
the GMM (using a combination of Importance Sampling and
Resampling algorithms); see Figure 12.

Figure 12. Hot-Spot GMM for recent criminal activity with 3
centroids, and 185 simulated events that are used for predic-
tion purposes.

The inclusion of temporal information related to each simu-
lated crime event is characterized by an exponential distribu-
tion with β = 113.09 [minutes] (Figure 13). This exponential
distribution is sampled 185 times to assign time intervals be-
tween each simulated crime event (Figure 15).

(a) Histogram for time between
recent criminal events

(b) Histogram for time between
simulated criminal events.

Figure 13. (a) Histogram is constructed considering recent
criminal activity (185 events). This information is used to
fit an exponential distribution. (b) 185 samples are obtained
from this exponential distribution to obtain time intervals re-
lated to simulated crime events.

As a result, the simulated 185 future crime events define a

prediction window of 2 weeks approximately. These events
are used to modify the position of particles, according to Gauss-
ian attraction fields (Eq. (19)). As a result, the predicted spa-
tial risk function is obtained (Figure 14).

Figure 14. Predicted Spatial Risk Function (GMM after 185
prediction steps).

To evaluate the performance of the predicted spatial risk func-
tion, HRP and TIP measures are calculated according to Eq.
(11) and (12). In this regard, the AUC is computed assum-
ing different influence ranges for particles (when building the
GMM), diagonal covariance matrices, and different grid sizes
(measured in blocks); see Table 2. Figure 15 shows the HRP
vs. TIP curve with the best AUC=0.93.

1 2 3 4 5 6 7 8 9 10
3 0.932 0.913 0.906 0.906 0.902 0.89 0.882 0.893 0.884 0.874
4 0.932 0.911 0.901 0.903 0.892 0.881 0.873 0.877 0.876 0.866
5 0.922 0.892 0.881 0.874 0.874 0.865 0.855 0.863 0.86 0.856
6 0.916 0.886 0.868 0.87 0.861 0.855 0.849 0.849 0.849 0.854
7 0.919 0.88 0.86 0.858 0.857 0.846 0.839 0.84 0.843 0.851

Table 2. AUC considering [3,7] for particle influence range
and [1,10] for grid resolution in the posterior spatial risk func-
tion (in blocks).

5. DISCUSSION

One of the main objectives behind the implementation of se-
quential approaches for the characterization of the posterior
risk distributions is to be able to understand changes in pat-
terns of criminal activity. In this regard, the performance of
the “filtering” stage strongly depends on two aspects: (i) sam-
pling strategies, and (ii) the definition of the attraction field
that will modify the position of particles as a function of the
appearance of new criminal events.

Regarding the former aspect, it is first necessary to determine
the impact of sampling strategies when trying to characterize
the prior spatial risk function. Although it is possible to use
importance sampling and define weights for particles whose
location is determined by samples from an uniform distribu-
tion (over the area of interest), we propose instead to assign
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Figure 15. HRP vs. TIP curve, using influence range of 4
blocks and grid resolution = 1 block (AUC=0.93).

weights proportional to the prior risk function to particles that
are allocated on an arbitrarily defined grid.

The first problem found when sampling from a bi-variate uni-
form distribution is to define the amount of particles. A small
number of particles results in a scarce representativeness of
criminal focuses related to the prior risk function. In our case
study, this strategy misses the greatest criminal focus, the one
located near the point [-33.52, -70.6] (see Figure 16). Oppo-
site case happens when considering a large number of parti-
cles: risk is overestimated because some particles are located
in areas where originally there is no criminal risk. Moreover,
the processing time for the prediction stage is proportional to
amount of sampled particles and thus, the algorithm losses
computational efficiency (Figure 17).

Figure 16. Using 100 particles for importance sampling with
a uniform distribution bi-variate and resampling. The prior
distribution is generated using particle location as centroids
in a GMM and diagonal covariance matrices with influence
range of three blocks.

The second problem is the confidence degree associated with
samples whose location is generated via uniform sampling.
Although the amount of particles may be high enough (avoid-
ing the lack of particles in specific areas, but ensuring reason-
able processing times), it is not guaranteed that particles will
satisfactorily approximate the original prior distribution. It

Figure 17. Using 500 particles for importance sampling with
a uniform distribution bi-variate and resampling. The prior
distribution is generated using particle location as centroids
in a GMM and diagonal covariance matrices with influence
range of three blocks.

is observed that the implementation of importance sampling
strategies (with 370 particles), where the position of particles
is obtained from a bi-variate uniform distribution, leads to
different prior risk functions performing particle resampling;
see Figure 18.

Figure 18. Difference between two estimates for the prior
spatial risk function generated using 370 particles and loca-
tions that are sampled from a bi-variate uniform distribution,
with resampling.

In this regard, the proposed method, where the position of
particles is defined by a arbitrary grid and where the weights
are assigned proportional to the prior risk function, avoids
the two problems described above if resampling is used as a
method for ensuring adequate risk characterization. The use
of a grid allows to explore the area in a more intuitive manner
and, furthermore, resampling allows to efficiently represent
criminal risk within the whole area of interest.

The second aspect to be considered in the analysis is related
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to the definition of the function f(d) given by Eq. (20), where
the covariance matrix of g(d), given by Eq. (19), is a design
parameter that defines the strength of the particle movement
as a function of the distance between the particle and the new
criminal event. Our proposal considers that the covariance
matrix is diagonal. If the value of diagonal elements is four
times greater than the magnitude of the process noise vari-
ance, then particles that are located far away from the obser-
vation approach abruptly. As a result, after just a few itera-
tions, all particles would converge to Hot-Spot centroids thus
losing the capability of uncertainty characterization and rep-
resentativeness.

On the other hand, if values of diagonal elements in the co-
variance matrix are equal to the process noise variance, then
particles tend stay unaffected by the appearance of new crime
events. This two situations provide boundaries that need to be
considered in the algorithm design. The matrix given by Eq.
(21) provided good results in our case study. This matrix ba-
sically represented an influence range of eight blocks around
the criminal event.

The implementation of these suggestions allowed to obtain a
posterior spatial risk distribution that significantly improves
the characterization of criminal activity over time. Using per-
formance measures such as HRP y TIP, Eq. (11) and Eq.
(12), it is possible to obtain AUC over 0.9 (Table 1) indicating
that the model provides consistent information on the recent
crimes that occurred within the area of interest.

In terms of the analysis of future criminal activity, the predic-
tion stage plays a fundamental role. The prediction window
(equivalent to the number of prediction steps) should be set
accordingly to the number of crimes used for estimating the
Hot-Spots distribution. In other words, if 185 crime events
are used to compute the posterior risk function, then it is only
safe to make predictions between 1 and 185 steps-ahead in
time. Although it is possible to make long-term predictions
using a risk function solely based on recent criminal activity
(in this case, 185 events), these predictions would be biased.
The latter, because information associated with Hot-Spot dis-
tributions would discard prior knowledge and would be (in
that case) based on a much reduced spatio-temporal window.

Regarding the inclusion of the temporal variable in the pre-
diction stage, it is difficult to establish regular time periods
between crimes, since criminal activity occur at irregular time
intervals. Thus, the temporal analysis shown in Figure 13 is
justified. Additionally, to calculate the prediction time, it is
only necessary to compute the sum of realizations from an
exponential distribution: a method that is simple and com-
putationally efficient. In this case considering 185 criminal
incidents, the time between events was satisfactorily charac-
terized using an exponential distribution with parameter β =
113.09[minutes], resulting in a prediction window of approx-
imately 2 weeks.

Analyzing the data provided in Table 2 it must be noted that,
independently of the influence range associated with each
particle, as the resolution becomes smaller the AUC of the
prediction model improves. This result is intuitive since it
implies that crime could be better predicted if every block is
monitored independently. However, police resources are lim-
ited, and there is an optimum AUC subject to that constraint.
However, there is an optimum influence range in terms of the
model performance.

6. CONCLUSION

This article provides a method to characterize the evolution
in time of criminal risk in a specific area. A case study with
real data that includes location of public services and criminal
incidents is also presented. The novel methodology for quan-
tifying risk of criminal events uses a particle-based empirical
representation. Two different stages are distinguished in this
method: off-line and on-line. The former considers the loca-
tion of services and 1870 crimes that occurred during a time
period of 6 months, yielding a probabilistic characterization
of the risk using prior knowledge of historical crimes in the
area. The on-line stage approximates the posterior spatial risk
distribution using a sequence of 185 new crimes. This task is
done by sequentially updating the location of samples (par-
ticles), using concepts of importance sampling and resam-
pling. In addition, a strategy for criminal risk prediction is
presented. For this prediction strategy, a GMM is fitted using
historical registers of recent criminal activity. This GMM is
used to simulate 185 future crime events that help to explore
the evolution in time of particle positions. Each of these sim-
ulations has an associated time of occurrence, modeled by an
exponential distribution.

The sequential estimation of a posterior distribution expressed
as the movement of samples in the space requires the adjust-
ment of some parameters. One of them is the noise vari-
ance (see Eq. (18)), which accounts for the uncertainty in
the movement of the samples (it determines how far can a
particle move from its initial position on each iteration). For
a more realistic reallocation, this hyperparameter should take
into account several factors like rate of samples per area and
time dependence, to name a few. In this study, each crimi-
nal event is considered equally important and thus, each one
is given the same importance in terms of the effect on parti-
cle movement. Future work will consider different types of
crimes in order to cover a wider and more realistic scenario.

For the implemented prediction stage, it is important to con-
sider the temporal analysis of processed criminal incidents,
because that allows to generate predictions at irregular time
periods; constituting a major advantage over methods where
prediction assumes equally spaced time intervals. It is im-
portant to note that in this case we were able to generate pre-
dictions for two weeks in advance, but it is also possible to

12



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

provide those results in terms of days, and even police shifts.
Also, the prediction can be improved even more considering
updates of the Hot-Spot distribution every fixed set of incom-
ing criminal incidents. Finally, we should emphasize the im-
portance of methodologies implemented since they become a
good complement to the police, helping in managing its re-
sources to cover the areas of high criminal risk.
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