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1,2,4 Brüel and Kjær Vibro, Nærum, 2850, Denmark
alexandros.skrimpas@bkvibro.com

kun.marhadi@bkvibro.com
christian.sweeney@bkvibro.com
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ABSTRACT

Modern wind turbines employ pitch regulated control strate-
gies in order to optimise the yielded power production. Pitch
systems can be subjected to various failure modes related
to cylinders, bearings and loose mounting, leading to poor
pitching and aerodynamic imbalance. Early stage pitch mal-
functions manifest as impacts in vibration signals recorded
by accelerometers mounted in the hub vicinity, as for exam-
ple on the main bearings or nacelle frame, depending on the
installed condition monitoring system and turbine topology.
Due to the location of the above mentioned vibration sen-
sors, impacts of various origin, such as from loose covers,
can be generated, complicating the assessment of the impact
nature. In this work, detection of pitch issues is performed by
analysing vibration impacts from main bearing accelerome-
ters and applying environmental noise and speech recognition
techniques. The proposed method is built upon the follow-
ing three processes. Firstly, the impacts are identified using
envelope analysis, followed by the extraction of 12 features,
such as energy, crest factor and peak to peak amplitude and
finally the classification of the events based on the above fea-
tures. Eighty nine impacts are analysed in total, where 60 im-
pacts are categorized as valid and 29 as in-valid. It is shown
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that the frequency band of maximum crest factor presents the
best classification performance employing K-means cluster-
ing, which is an unsupervised clustering technique. The high-
est correct classification rate reaches 90%, providing useful
information towards coherent and accurate fault detection.

1. INTRODUCTION

Wind industry has been continuously growing over the past
decades reaching new global total of 369.6GW at the end of
2014 (Global Wind Report Annual Market Update, 2014).
In order to ensure system safety, profitability and uninter-
rupted operation, condition based maintenance (CBM) has
been deployed by many owners and operators, especially in
offshore wind turbines (Yang, Tavner, Crabtree, Feng, & Qiu,
2012). Condition monitoring (CM) is integrated part of CBM
and specialized solutions are offered by condition monitoring
system (CMS) suppliers and wind turbine (WT) manufactur-
ers, mainly based on vibration analysis. Other non destruc-
tive techniques (NDT) which are applicable in monitoring
specific subcomponents are oil debris analysis, temperature
measurement, optical fiber monitoring and acoustic emission
(Tchakoua et al., 2014). Regardless the condition monitoring
technique, condition based maintenance is performed in the
following steps: 1) data acquisition, 2) feature extraction, 3)
diagnostics, 4) prognostics and 5) planning of maintenance
activities (Coble & Hines, 2011).
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CM systems target mainly drive train components, such as
main bearings, gearbox and generator bearings, where ac-
celerometers are mounted in strategic locations in order to
ensure optimum vibration path and thus enhance fault detec-
tion. Furthermore, accelerometers are usually installed on the
nacelle frame in order to record any excessive tower oscilla-
tion, due to blade, yaw and pitch related issues (Skrimpas et
al., 2015). Although the pitch system is frequently subjected
to a large number of failures resulting in increased downtime
(Bi, Qian, Hepburn, & Rong, 2014), there is not any CMS
solution able to detect these failures on time and prevent sec-
ondary damages. The latter could be possibly explained due
to location of the pitch system in the nacelle hub and the na-
ture of its function.

Modern wind turbines are equipped with pitch systems offer-
ing independent control of the three blades. A pitch cylinder
is connected to each blade on one side and to the hub on the
other side. The cylinder suspension system allows movement
in two axes using slide bearings. Due to heavy operation, the
suspension system can become loose, causing the pitch cylin-
der assembly to start moving irregularly leading to random
impacts in early stage and one or two impacts per rotor rev-
olution in late stage. The main issue of the above described
jarring movement is damage to cables and hydraulics, im-
proper pitching and poor power production. Furthermore, the
replacement of the pitch system may cause substantial down-
time especially in cases of extensive damage to the electric
cables and hydraulic system failures (Skrimpas et al., 2015).

Considering a typical wind turbine drive train, accelerome-
ters having adequate vibration path to the pitch system can
be utilized aiming on the detection of pitch failures. Bearing
in mind the sensor location described above, accelerometers
monitoring the main bearings and tower are the ones closest
to the pitch system. In this work, impacts captured by the
accelerometer installed on the rotor-end (front) main bearing
are analysed and correlated to pitch failures. The extracted
features are adopted by speech, audio and environmental
noise recognition methods, showing that techniques applied
in sound applications can be also employed on the analysis
of vibration signals. It has been observed that impacts gener-
ated by loose pitch suspension share common characteristics
with gun-shots and glass breaks, which do not have any ap-
parent substructures. Finally, the impacts are classified using
K-means clustering, which is an unsupervised technique.

The structure of the paper is as follows. Section 2 describes
the algorithm of impact identification which is divided into
three processes, namely the identification of impacts, feature
extraction and classification. Section 3 presents the results
from 89 impacts classified as valid or invalid based on the
feedback provided by the service crews. Finally, the discus-
sion and conclusions are presented in sections 4 and 5.

2. METHOD DESCRIPTION

Traditionally, vibration based CMS consists of two main
modules. The first step is the extraction of features from
vibration signals which describe the condition of the com-
ponent of interest and indicate a potential fault in case of
progression or high levels. Typical features are the ampli-
tude of spectral components associated to the operation of the
monitored equipment, such as tooth mesh frequencies in gear-
boxes, or frequency bands which usually describes its overall
status. The second block of a successful CMS is the capabil-
ity of consistent alarming based on the level or progression of
the related condition indicators. This stage can also provide
an automated preliminary diagnosis of the fault and estima-
tion of its severity.

Sound recognition systems are also composed of two stages,
namely the extraction of features and classification (Dufaux,
2001). In the framework of evaluating solely impacts, a sig-
nal pre-processing stage is required in order to identify these
events, shown in Figure 1 as impact detection. Although the
core of any recognition system is the feature extraction, the
effectiveness of the the impact detection is assessed to be crit-
ical on the performance of the proposed method.

A intermediate step not dispalyed in Figure 1 is the dimen-
sionality reduction or feature selection. It refers to the algo-
rithm that select the best subset of the input feature set in re-
gards to class discrimination capabilities (Jain, Duin, & Mao,
2000).

Figure 1. Method Description.

2.1. Impact Detection

The randomness, complexity and non-stationary nature of vi-
bration impacts generated by wind turbine pitch system fail-
ures highlights the necessity of signal pre-processing for ef-
ficient feature extraction. Signal segmentation is used exten-
sively as pre-processing stage in applications such as cardiac
sound recognition (Choi & Jiang, 2008). Algorithms, such as
normalized average Shannon energy and Hilbert transforma-
tion, are very effective techniques when detection of impacts
is the main objective. In this work, the envelope of the signal
high frequency bandwidth is utilized as signal segmentation
tool. The envelope calculation process is executed in three
discrete and simple steps illustrated in Figure 2. The signal
passes through a bandpass filter in order to remove any low
frequency noise and restrict the bandwidth to mitigate any
aliasing effects. Typically low frequency (below 1kHz) spec-
tral components in wind turbines are generated by multi-stage
gearboxes and high speed generators. The vibrations created
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by these components are commonly recorded by accelerom-
eters installed on the main bearings or nacelle frame due to
the presence of weak vibration paths to them. In addition,
vibrations from loose components of minor importance, such
as covers, or structural micromovement could also produce
noise and random impacts. The filtered signal is then rec-
tified, shown as a diode in Figure 2, and the outcome is an
unipolar signal. Finally, a low pass filter is applied in order
to compute the envelope signal. Both filters are Butterworth
and their settings are listed below. It is noted that the sam-
pling frequency Fs is 25.6kHz in all presented waveforms.

Figure 2. Calculation of envelope signal.

• Bandpass filter: 3rd order. Bandwidth: 1kHz–10kHz

• Lowpass filter: 3rd order. Cut–off frequency: 10Hz

Figure 3 shows the generated signals following the process
described above from a vibration signal recorded in a multi-
megawatt wind turbine.

Figure 3. Computation of envelope signal. The upper subplot
shows the outcome of the bandpass filter. The middle subplot
displays the rectified signal. The lower subplot presents the
envelope signal.

The envelope signal shows the presence of three large im-
pacts, one minor impact in the beginning of the signal and
a moderate modulation matching three times the main shaft
speed. In order to extract only the large impacts, a limit is
defined above which the signal is segmented and character-
ized as impactive. Following trial and error method, a global
satisfactory limit value was found to be 1.5 times the energy
of the envelope signal. Figure 4 shows the envelope signal
along with the limit for this case. Finally, Figure 5 shows
the extracted impacts and segments. It can be seen that the
event in the first segment does not have the required energy
to be identified as impactive compared to the rest of the signal
characteristics.

Figure 4. Envelope signal and limit.

2.2. Feature Extraction

The most critical part of any recognition system is the effec-
tiveness of the extracted features in discrimination between
different classes. One of the main objectives is to improve
the signal to noise ratio in order to maximize the information.
There is an arsenal of features which have been studied exten-
sively in audio, such as music and speech, and environmental
sound recognition applications. Time domain features, such
as zero crossing rate, spectral features, such as spectral cen-
troid and Mel-frequency cepstral coefficients (MFCCs), and
joint time-frequency characteristics have been traditionally
used as features (Ghoraani & Krishnan, 2011).

The basis of this work is to utilize the features applied to
sound signals in vibration time waveforms. The following
subsection present the features which are extracted from each
impactive segment, as the ones illustrated in Figure 5.

• Peak value of a signal S(n) defined as the maximum pos-
itive amplitude of a time waveform.

Apk = max(S(n)) (1)

• Peak to peak (P2P) is the difference between the maxi-
mum positive and the maximum negative amplitudes of a
signal S(n). In the current application, the main purpose
of evaluating both peak and peak-to-peak is the identi-
fication of malfunctioning sensors which often present
unipolar time waveforms

App = max(S(n))−min(S(n)) (2)
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Figure 5. Segments extracted from the initial signal using envelope analysis.

• Energy ES of a discrete signal S(n) is a measure of sig-
nal strength. It is defined as:

ES =
1

N
|S(m)w(n−m)|2 (3)

where w(m) is a window of size equal to the signal
length

• Impact duration T is the time duration of each extracted
impactive events using the process described in section
2.1

• Power of a signal is given by the following ratio:

PS =
Es

T
(4)

• Zero crossing rate (ZCR) occurs when successive sam-
pes have different signs (Chu, Narayanan, & Kuo, 2009).
It is given by:

Zn =
1

2

∑
m

|[sgn(S(m))− sgn(S(m− 1))]|w(n−m)

(5)
where

sgn|x(n)| =

{
1 x(n) ≥ 0

−1 x(n) < 0
(6)

• Standard deviation (Std) is a measure of how spread is a
distribution. It is equal to

σ =

√√√√ 1

N

N∑
n=1

(S(n)− µ)2 (7)

where the mean value µ is equal to 1/N
∑N

n=1 S(n)

• Kurtosis is a typical measure of signal peakdeness. It is

equal to:

K =
1/N

∑N
n=1(S(n)− µ)4

(1/N
∑N

n=1(S(n)− µ)2)2
(8)

• Spectral centroid (SC) measures the brightness of a
sound. The higher the centroid, the brighter the sound
(Chu et al., 2009). It is equal to

SC =

∑M
m=1m · F (m)∑M

m=1 F (m)
(9)

where F stands for the Fourier Transformation of signal
S.

• Spectral flatness (SF) quantifies the tonal quality, i.e.
how much tone-line the sound is as opposed to being a
noise (Chu et al., 2009). I is given by:

SF =
exp(

∑M
m=1 logF (m))

1/M
∑M

m=1 F (m)
(10)

• Crest factor (CF) is the ratio of peak value to the signal
RMS (root mean square) value. It is commonly used in
vibration analysis for bearing wear.

SF =
Spk

Srms
(11)

• Maximum crest factor frequency band. (Max CF band)
It is a joint time-frequency feature, which corresponds
to the frequency range of 500Hz bandwidth yielding the
maximum crest factor.

2.3. Dimensionality Reduction

Dimensionality reduction is defined as the selection of a fea-
ture subset of sizem, out of a set of d features, which leads to
the smallest classification error (Jain et al., 2000). The most
straightforward is to examine all (dm) combinations and se-
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lect the subset with the lowest classification error. Although
the risk of exhaustive search is apparent, the small number
of features permits this method to select the feature subset.
Reference (Jain et al., 2000) presents a complete list of di-
mensionality reduction methods, where the most popular and
commonly used are principal component analysis (PCA) and
Fisher’s Linear Discriminant. Bishop discusses the use of
these techniques showing that Linear Discriminant Analysis
shows usually better characteristics in classification problems
compared to PCA.

2.4. Classification

A simple unsupervised classification technique used in many
application is K-means clustering. K-means clustering
groups a data set consisting of N observations x1, ..., xN
of dimension D into K clusters, where the inter-point dis-
tances between them is minimized (Bishop, 2006). A binary
index rnk, where n = 1, ..., N and k = 1, ...,K is assigned
to each data point when the sum of the squares of the Eu-
clidean distances between the cluster centres and the data is
minimized, as shown in Eq. 12. Hence, each data point is
assigned to the closest cluster centre.

rnk =

{
1 if argmin

∑K
k=1

∑N
n=1 ||xn − µk||2

0 otherwise
(12)

K-means clustering is based on the Expectation-
Maximization (EM) algorithm, where the Expectation step
corresponds to clustering the data points based on equation
12 and the cluster centres µk are updated at the Maximiza-
tion step. The initial clustering and cluster centres can be
arbitrarily selected, given a known number of clusters K. The
process is terminated after a predefined number of iterations
or when a desired convergence is achieved.

3. DETECTION OF PITCH FAILURES

Detection of pitch failures is performed in multi megawatt
wind turbines, whose topology is depicted in Figure 6. In ad-
dition, the installed CMS sensors are represented by red rings,
where the blue ring shows the position of the speed sensor. It
is shown that the front and rear main bearing accelerometers
(Brüel and Kjær Vibro AS-70) are placed at the bottom and
top of the bearings respectively in order to take into account
the stress applied on the shaft due to the rotor weight. The
recorded vibration signals are processed by the Wind Tur-
bine Analysis System Type 3652 (WTAS Type 3652) which
calculates scalar values and streams them to central servers
every one hour for long time trending and alarming. Fur-
thermore, 10.24 second vibration signals recorded by the ac-
celerometers mounted on the generator bearings, gearbox and

main bearings sampled at 25.6kHz are delivered to the central
servers every one or two days for detailed spectral analysis.

It is assessed that the vibration path from the pitch cylinders
to the front main bearing accelerometer is the clearest, and
thus this sensor will be utilized as indicator for pitch related
issues.

The test set consists of 89 impacts from 35 wind turbines,
where 60 impacts from 20 turbines and 29 impacts from 15
turbines are marked as valid and invalid respectively regard-
ing the presence of a fault in the pitch cylinders or pitch sus-
pension. The verification of an actual fault depends highly
on the provided feedback from the service technicians trou-
bleshooting the corresponding alarms. Therefore, there is a
error margin on what is classified as loose suspension based
on the technicians’ assessment.

Normalization of the extracted features is essential in order to
obtain more consistent and effective classification. A random
feature f can normalized using the following equation:

fnorm =
f − µf

σf
(13)

where µf and σf are the mean and standard deviation of the
feature population respectively.

In many cases, it is useful to obtain two- or three- dimensional
projection of the features offering a visual examination of the
data. The features described in section 2.2 are clustered in
pairs as shown in Table 1. It is shown that the best classifica-
tion performance is seen when one of the utilized features is
the frequency band of maximum crest factor, reaching 90%
in almost all cases. It is also important to note that the afore-
mentioned feature provides the same results when it is the
only one used. Furthermore, moderate results in the vicin-
ity of 70% are recorded using other features, where spectral
flatness and spectral centroid are among them.

Figure 7 illustrates the initial classes using spectral flatness
and maximum crest factor band on the left, and the recalcu-
lated classes based on K-means clustering on the right. The
red squares represent the data corresponding to pitch failures
and the blue diamonds to negative feedback from the service
technicians. The black stars on the right figures represent the
new cluster centres. In this case, approximately 90% of the
data are assigned to their initial classes. The class separa-
tion is maximized in terms of distance between the cluster
centres as compared to Figure 8, where spectral flatness and
spectral centroid are used. At this point, it is important to
note that the misclassified points are mainly related to actual
faults which are assigned to the ”no-fault” cluster. However,
the above phenomenon could be linked to the the presence
of both valid and invalid impacts in the same analysed time
waveform. The effectiveness of maximum crest factor band
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Figure 6. Wind turbine topology and CMS sensor location.

Peak P2P Energy Duration Power ZCR SC Std Kurtosis SF CF Max CF band
Peak 40.67 40.67 35.28 72.26 35.28 40.67 53.95 40.67 41.84 70.22 62.04 90.32
P2P 40.67 40.67 35.28 72.26 37.97 40.76 53.95 40.67 41.84 70.22 62.04 90.32
Energy 35.28 35.28 35.28 63.00 35.28 57.25 63.20 37.97 38.63 70.22 62.70 90.32
Duration 72.26 72.26 63.00 35.28 57.25 59.79 54.25 48.25 68.54 71.09 61.92 90.32
Power 35.28 37.97 35.28 63.00 35.28 57.25 58.32 37.97 39.14 70.22 62.70 90.32
ZCR 40.67 40.67 57.25 59.79 57.25 59.28 54.25 48.25 67.52 68.39 62.70 90.32
SC 53.95 53.95 63.20 54.25 58.32 54.25 71.95 53.95 70.43 70.94 73.63 82.74
Std 40.67 46.06 37.97 48.25 37.97 48.25 53.95 48.25 41.84 70.22 59.85 90.32
Kurtosis 41.84 41.84 38.63 68.54 39.14 67.52 70.43 41.84 35.94 70.22 56.13 90.32
SF 70.22 70.22 70.22 71.09 70.22 68.39 70.94 70.22 70.22 70.22 66.71 90.32
CF 62.04 62.04 62.70 61.92 62.70 62.79 73.63 59.85 56.13 66.71 72.11 88.14
Max CF band 90.32 90.32 90.32 90.32 90.32 90.32 82.74 90.32 90.32 90.32 88.14 90.32

Table 1. Correct classification percentage when reclustering the extracted features in pairs.

as classifier is also displayed in Figure 9 where it is the only
used feature.

In order to investigate the optimum feature subset which
yields the lowest classification error, all combinations were
examined as discussed in section 2.3. No improvement has
been observed, whereas in many combinations moderate to
high increase of misclassified data was registered. As for ex-
ample, Figure 10 depicts the clusters when spectral flatness,
spectral centroid and maximum crest factor band are used.
The proper classification percentage in this case was approx-
imately 87%.

4. DISCUSSION

The method described in the previous sections is the first ap-
proach by the authors to correlate single or repetitive vibra-
tion impacts recorded from the front main bearing accelerom-
eter in wind turbines to failures related to the pitch assem-
bly. The validity of the technique and results depends highly
on two factors; the provided feedback from the field and the
extracted features. The human factor and thoroughness on
reporting the presence of a fault is a parameter which can-

Figure 7. Original and news clusters using spectral flatness
and maximum crest factor band. Correct classification is at
90.32%.

not be explicitly quantified and it will always add uncertainty
on the method. The feature extracted in the time-frequency
domain presented the best performance compared to conven-
tional spectral or temporal features, suggesting that the cor-
rect classification percentage can be further improved if more
features are tested. Furthermore, the impact population un-
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Figure 8. Original and news clusters using spectral flatness
and spectral centroid. Correct classification is at 70.94%.

Figure 9. Original and news clusters using only maximum
crest factor band feature. Correct classification is at 90.32%.

der investigation, i.e. 89 impacts, is considered relatively
limited so as to serve as a platform for establishing a data
base or training set. The limited number of confirmed im-
pacts has been the main motivation for using an unsupervised
clustering technique and not employing advanced classifica-
tion methods, such as space vector machine (SVM), Gaussian
mixture models (GMM) or neural networks (NN).

An important aspect of the impact classification method is the
lack of severity estimation. Although the evaluation of the
remaining useful lifetime of the pitch assembly is assessed to
be challenging, the proper identification of the issue could as-
sist the maintenance organization to plan its troubleshooting
more efficiently. Based on the nature of the described failure
mode, a single impact over 10.24s, i.e. approximately three
rotor revolutions, is usually an early failure indicator, whereas
the presence of repetitive impacts matching the rotor running
speed suggests severe looseness of the pitch suspension or
cylinders. It is the belief of the authors that a more complete
impact database could potentially offer the ground for holistic
condition monitoring of pitch systems in wind turbines.

5. CONCLUSIONS

The present work shows an effective technique to diagnos-
ticate pitch assembly malfunctions, an area which has re-

Figure 10. Original and news clusters employing three fea-
tures, namely spectral flatness, spectral centroid and maxi-
mum crest factor band.

ceived little attention, by analysing vibration signals recorded
in wind turbine main bearing accelerometers. The proposed
impact recognition scheme consists of three blocks, namely
impact detection, feature extraction and classification, in-
spired by research areas not related to machinery diagnostics,
such as in environmental noise and speech recognition sys-
tems. Consistent impact recognition is achieved using enve-
lope analysis, where the limit for assigning an event as impact
was found to be equal to 1.5 times the envelope signal energy.
The maximum correct classification percentage reaches 90%
in a test sample of 89 impacts. Out of the 12 extracted fea-
tures, the best classification characteristics are seen on a joint
time-frequency feature representing the spectral bandwidth of
maximum crest factor. Conventional spectral and temporal
features present poorer class discrimination tendency ranging
from 30% to 70%.
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