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ABSTRACT 

The study is motivated by NASA plans to develop 
technology for an autonomous cryogenic loading operation 
including online fault diagnostics as a part of Integrated 
Health Management system. For years, the diagnostic 
modeling effort is performed in many paradigms. None of 
these paradigms independently can provide a complete set 
of efficiency metrics: better diagnostics, lower run-time, etc. 
D-matrix, a causal 0-1 relationship between faults and tests, 
is proposed as a single representation between different 
model-based diagnostic methods for comparison and 
communication. This framework is suitable to create a 
common platform for communication via D-matrix for 
systems engineering process. The knowledge transfer 
between modeling techniques is done via D-matrix. In 
addition, D-matrix provides a common paradigm to 
compare the embedded knowledge and performance of 
heterogeneous diagnostic systems. D-matrix is generated 
from physics models to be used with faster run-time 
performance D-matrix based diagnostic algorithms. 
Additionally, we will also investigate if the derived D-
matrix and thereby the physics model is sufficient and 

accurate for efficient diagnostics via iDME tool.  

1. INTRODUCTION 

Systems engineering is an important field to design and 
manage complex engineering systems during their life 
cycle. According to the NASA Systems Engineering 
Handbook, System Engineering is a robust approach to the 
design, development, test, evaluation and operation 
(DDTEO) of cyber-physical systems. In simple terms, the 
approach consists of identification and quantification of 
system goals, creation of alternative system design concepts, 
performance of design trades, selection and implementation 
of the best design, verification that the design is properly 
built and integrated, and post-implementation assessment of 
how well the system meets (or met) the goals (NASA 
Systems Engineering Handbook, 2007). In this paper, we 
will present integrated system health management (ISHM) 
techniques as a systems engineering process via a D-matrix 
framework. This common model can be migrated 
throughout the DDTEO process; thus enabling cost-
effective system design to operations for NASA missions. 

For systems engineering process, system health 
management is very critical during design, development, 
operation, and life cycle management of system components 
(Johnson, Gormley, Kessler, Mott, Patterson-Hine, 
Reichard, Karl & Scandura, 2011). This process is designed 
to improve system dependability while in operation. ISHM 
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is a parallel capability across the entire system whose 
objective is to avoid failures where possible, but primarily 
reverts the system back to nominal functional behavior. 
Even though ISHM is very critical for system’s operation, it 
is not fully accepted as an integral part in systems 
engineering process. This is partly due to the lack of a 
comprehensive framework that can well-define the 
requirements and knowledge in a simplistic way and can be 
easily interpreted by system engineers and health 
management community. 

In ISHM process, system anomalous behavior is defined by 
low-level component failures. Fault diagnosis, specifically 
deals with detecting, isolating, and identifying the cause of 
failure. There are many fault diagnosis methods mainly 
categorized into model-based, data-driven, and knowledge-
based. In this paper, we are defining a common 
representation for model-based methods via diagnostic 
matrix (D-matrix) (Luo, Tu, Pattipati, Qiao, & Chigusa, 
2006). This is to give a global perspective for ISHM process 
in terms of the overall system. Traditional Hazard control 
lacks this global view to deal with cross-subsystem failure 
propagations. 

D-matrix is a causal representation between faults and tests 
with 1 representing the relationship that the test can detect 
corresponding failure in the component and 0, otherwise. 
Our idea is to present D-matrix suitable to systems 
engineering process. This is performed in 2 ways. Firstly, 
D-matrix is defined as a communication platform between 
diagnostic modelers and system engineers. It is an ideal 
representation that can be easily understood by system 
engineers to approve or make changes with its closer to 
human reasoning. Secondly, it acts as a common conceptual 
diagnostic framework for knowledge transfer and compare 
among different diagnostic models. Importantly, it will help 
to analyze for the best diagnostic model representation. 
Additionally, any diagnostic model can be analyzed for 
errors using a tool called iDME via its representation as D-
matrix. This is a simple effort compared to trying to analyze 
the original model itself for efficiency. 

Diverse modeling techniques have different ways to 
interpret diagnosis. For years, the diagnostic modeling effort 
is performed in many paradigms. Fault trees (Vesely, 2002), 
failure modes and effects analysis (FMECA), graph-based 
dependency models (Deb, Pattipati, Raghavan, Shakeri & 
Shrestha, 1995) are some examples. None of these 
paradigms independently can provide a complete set of 
efficiency metrics: better diagnostics, lower run-time, etc. 
But, one thing that is common among all these techniques is 
the implicit knowledge of D-matrix. Not all techniques 
generate D-matrix for their diagnosis purpose. But, the 
information about fault-test dependencies can be easily 
established for any model via simulations or reachability 
analysis (Skiena, 2011) or interpretation of the model by an 
expert. This is why, as discussed earlier, D-matrix can serve 

as the common representation across models. To support 
this idea, in this paper, we will present the preliminary study 
to build D-matrix from closer to real system physics models 
operating at different system modes. Additionally, we will 
analyze the generated D-matrix via iDME tool for sensor 
optimization and diagnostic performance (Kodali, Robinson, 
& Patterson-Hine, 2013). 

We will demonstrate deriving D-matrix for the cryogenic 
transmission line that includes pipes of different diameter, 
control and dump valves. The cryogenic transmission is a 
high-fidelity first-principles physics model. Thus, deriving 
D-matrix from this model would help to achieve run-time 
diagnostic performance and sensor optimization. The causal 
0-1 relations between faults and responses of pressure and 
temperature sensors will be obtained empirically by 
simulations of a moving front homogeneous two-phase 
physics model of cryogenic chill down in transmission lines. 
There will be associated test logic to determine if the sensor 
measurements represent nominal (0) or any faulty condition 
(1). Specifically, the generated D-matrix contains more than 
one system mode; thus, the modeled faults have different 
signatures in different system mode. D-matrix always 
represents the system in a single system mode. Thus, 
multiple D-matrices are required, one for each system mode. 
But, in this paper, we built one aggregated D-matrix with 
each row corresponding to a failure mode and system mode. 
We will also investigate if the derived D-matrix is sufficient 
to obtain efficient diagnostics performance with the existing 
sensors. In this paper, we used the same simulated data for 
building and then validating the D-matrix. By doing so, we 
are training the model to correct answer. But, in our case, as 
we are analyzing only for observability, using the same data 
should be fine. Generally, it is advisable to have different 
datasets for both. 

Thus, this paper presents the methodology to generate and 
analyze D-matrix from high-fidelity physics model of the 
cryogenic transmission line. This is our first step to define a 
unified systems engineering process across different 
modeling techniques. In Section 2, we will discuss D-matrix 
and iDME tool. In Section 3, we will describe the model for 
cryogenic transmission line. We will elaborate the 
contributions of this paper in Sections 4 and 5. The first 
contribution is to generate D-matrix from physics model of 
cryogenic system. This is done by simulating data from the 
physics model. Secondly, the generated D-matrix will be 
evaluated for diagnostic performance and sensitivity 
towards the defined test logic of each test. This is presented 
in Section 5. In this paper, we demonstrate that the current 
model is only partially observable and thus to improve 
efficiency, more tests need to be added. Tests need to be 
designed to disambiguate an ambiguous set of faults 
accordingly. This acts as guidance for the system designer. 
In Section 6, we will briefly discuss the innovation of this 
research. We will summarize the findings and present the 
future work in Section 7. 
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Figure 1. iDME architecture for physics model.

2. DIAGNOSTIC MATRIX (D-MATRIX) AND TESTABILITY 
ANALYSIS VIA IDME TOOL 

Most dependency modeling techniques represent the system 
in the failure space. It is sufficient to model only the fault 
propagation to various monitoring points (tests). Thus, this 
type of dependency modeling captures only the minimum 
necessary information. This is contrary to the regular 
qualitative and quantitative techniques (Kuipets, 1993). 
They require complete specification of system components, 
the state and observed variables associated with each 
component, and the functional relationships among the state 
variables. Acquiring this precise information is not always 
possible with increasing complexity in systems. Even after 
modeling, it will be difficult to analyze these models for 
testability and diagnostic performance. 

D-matrix provides the required simplistic view for our 
purpose that results in lesser footprint during real-time 
implementation and can be applied to large-scale systems 
with faster processing time. This matrix is also popularly 
known as dependency matrix, fault dictionary, or fault 
signature matrix. This matrix is obtained from directed 
graphs based on first principles via reachability analysis. 
Each test is analyzed to find the corresponding observed 
failure source (Deb, Pattipati, Raghavan, Shakeri & 
Shrestha, 1995). The dependency between a failure source 
and test is defined if the test can detect the fault when it 
occurs. This is identified as “1” in the D-matrix, otherwise it 
is “0”. These Boolean expressions can be conceived as test 
fail (1) or pass (0) in real sense. More than one test can 
detect a single failure source. Each test is identified by 
corresponding logic that determines if the test has failed or 
passed. The test logic can range from simple threshold 

checks to complicated signal processing techniques like 
Fourier transforms or statistical or trending tests. 
Dependency models include both D-matrix and test logic. 
The concept of D-matrix is popularized commercially by 
TEAMS software which employs multi signal modeling 
framework (Qualtech Systems Inc.). 

The concept of D-matrix is quite popular in aerospace 
diagnostic community. Due to its widespread usage, it is 
standardized as “diagnostic inference model” (IEEE Std 
1232-2002). Most diagnostic algorithms, for example 
Bayesian inference, case based reasoning, rule based 
inference, set partitioning can be applied easily for models 
based on D-matrix concept (Sheppard & Butcher, 2006). 

2.1 iDME Tool: Analyze D-Matrix 

The diagnostic information of the system is summarized by 
D-matrix. Hereafter, all diagnostic analysis is performed 
using this matrix. In other words, the original model is not 
required anymore unless the modeler wants to understand 
the trace back and modify the schematics. But in an another 
perspective, the major contribution of this paper is to utilize 
D-matrix to analyze efficacy of the corresponding physics 
model. In such case, the physics model is modified 
accordingly based on the findings from the D-matrix via 
iDME tool. 

iDME tool, with the aid of supervised data (data is labeled 
with corresponding nominal or faulty state), debugs and 
proposes repair strategies to D-matrix by coordinating with 
the decision maker (user) (Kodali, Robinson, & Patterson-
Hine, 2013). 

iDME is defined as a combined process of computer and 
user decisive mechanisms where computer provides  
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platform of the diagnostic analysis of the system model with 
the aid of supervised data and the decision maker performs 
the role of accepting/declining repair strategies based on the 
analysis of performance metrics and technical expertise (see 
Figure 1). Five D-matrix repair strategies are identified 
arranged in ascending order of cost effectiveness. These 
strategies range from addressing duplicity in faults and tests, 
repairing the fault universe to accommodate lower/higher 
level fault modeling (re-define the level of fault modeling 
by adding or removing rows), repairing/changing the 
wrapper/test logic, repairing 0’s and 1’s in the D-matrix 
entries, and adding/removing tests. They are included in an 
iterative loop to experiment for better performance along 
with the decision maker. The performance criteria are based 
on fault detection and isolation metrics derived from the 
mission objectives by the user. Then, the decision maker 
accepts/declines the repair strategies based on before and 
after performance. More details of this framework can be 
found in (Kodali, Robinson, & Patterson-Hine, 2013). 

The efficiency of the inference process is directly 
proportional to better coverage of the defined failures by 
tests and the separability between the rows of D-matrix 
(fault signatures) (Sheppard & Simpson, 1992). In this 
analysis, we will test for ambiguous, hidden, and masking 

faults (Kodali, Singh & Pattipati, 2013). Two failures are 
ambiguous if their fault signatures are similar i.e. the two 
corresponding rows are identical. The failures which are 
masked by a fault are its hidden failures, i.e., the fault 
signature of a hidden failure is the subset of the signature of 
the fault. A masking false failure occurs when the symptoms 
of two or more failures add up to mimic the failure of an 
unrelated element, i.e., the combination of their signatures 
produces the signature of another fault. The existence of 
these types of failures indicates partial coverage of the 
model. This reduced observability is due to increased failure 
definitions while the monitoring points are reduced. In such 
a case, the solution would be to add more tests to improve 
detectability of the failures. We will provide guidance about 
what tests need to be designed in terms of which fault they 
need to detect or isolate from other faults. 

For the framework proposed in this paper, data is collected 
from high fidelity physics model (cryogenic) which is closer 
to reality. This is done by injecting faults and then collecting 
corresponding sensor data from the computer-aided 
simulation model. The simulated model is very close to 
reality as will be discussed in the next section. The same 
data is also used to build D-matrix. 

3. DESCRIPTION OF CRYOGENIC SYSTEM 

The fault diagnostics was applied to the chill down stage of 
cryogenic loading operation in the experimental cryogenic 
loading system that has been developed at the Kennedy 
Space Center to test autonomous regimes of operation 
(Johnson, Notardonato, Currin, & Orozco-Smith, 2012). 
The KSC cryogenic testbed system consists of a 6,000 
gallon storage tank is connected to a 2,000-gallon vehicle 
tank with pipes of different diameters, control and dump 
valves, pump and sensors to measure pressure and 
temperature along the transfer line. The liquid motion 
through the transfer line is driven by an elevated pressure in 
the storage tank, which at working conditions is designed to 
suppress potential boiling of liquid cryogen at the operating 
temperature. During the initial stages of the loading 
operation, when the transfer line is still at high temperatures 
a substantial part of the incoming nitrogen boils increasing 
the pressure in the transfer line and slowing down the 
cryogen liquid motion. A set of control valves allows liquid 
flow in the corresponding segments of the pipe and 
dumping valves are to be opened sequentially to maintain 
the liquid flow and to allow for a gradual chill down of the 
system as the hot gas is substituted sequentially by the cold 
vapor, the two-phase mixture, and the cryogenic liquid.  

A set of the valve open/close positions together with the 
dynamics of the storage tank pressure constitutes the filling 
protocol, which depends on the design of the experiment. A 
set of the temperature (TT102, TT162, TT146, TT149, 
TT156, TT191) and pressure (PT104, PT161, PT145, 
PT148, PT152, PT158) sensors allows for control of the  

Table 1. Tests list. 
 

Test Name Sensor Test Name Sensor 

Tests 1&2 PT104 Tests 13&14 PT148 

Tests 3&4 TT102 Tests 15&16 TT149 

Tests 5&6 PT161 Tests 17&18 PT152 

Tests 7&8 TT162 Tests 19&20 TT156 

Tests 9&10 PT145 Tests 21&22 PT158 

Tests 11&12 TT146 Tests 23&24 TT191 

 

Table 2. Faults list. 
 

Fault Name Valve 

Fault 1 CV120 stuck closed 

Fault 2 CV117 stuck closed 

Fault 3 CV117 stuck opened 

Fault 4 CV112 stuck closed 

Fault 5 CV112 stuck opened 

Fault 6 Heat leak 

Fault 7 Mass leak 
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Figure 2. The predictions of the homogeneous model (red lines) are compared to the experimental data (black lines) for three 
pressure and three temperature sensors.

conditions of cryogen flow (Table 2). The faults in the 
valves, mass and heat leaks, clogging in the pipes could 
cause the pressure and temperature deviate from the 
nominal values (see Table 2). 

The total length of the transfer line is about 45 m. The 
diameter of the stainless steel pipe varies along the pipeline 
from 0.1524 m to 0.0254 m. The thickness of its walls is 
approximately 3 mm. Initially, the storage tank is full and 
the vehicle tank is empty with the flow path between the 
tanks blocked. An ullage pressure in both tanks equal to the 
atmospheric pressure. Then the storage tank is pressurized 
first, and the chilldown begins. The dump valves CV112, 
CV117 and CV120 regulates the cryogenic flow and their 
positions for nominal regime are shown at Fig.2. In this 
study we consider the list of faults presented in the Table 2. 
The deviation from the sensors data over the margin values 
was used as tests. For each sensor we had two tests that 
represented deviation above the nominal value and below 
the nominal value (Table 1).  

We use the homogeneous moving front model (Hafiychuk, 
Foygel, Ponizovskaya, Smelyanskiy, Watson, Brown, B & 
Goodrich, 2014) to simulate both the nominal and the fault 
regimes. The homogeneous model describes the properties 
of the two-phase flow in terms of the mixture density ( ρ ) 
and the mixture enthalpy (h) 

( )
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1 ;
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v l

v v l l
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h h h
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here α is a void fraction, ρv and ρl is the density of the 
saturated vapor and liquid, hv and hl is the enthalpy of the 
saturated vapor and liquid, x is mass quality.     

Assuming that phasic velocities for the gas and liquid are 
the same and equal to u, we can write the mass, momentum 
and energy conservation equation in the reduced form: 
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  (2) 

Here τw is the friction losses lw is the pipe length, g – 
gravity, θ is the angle if the pipe, qw is the heat transfer from 
the pipe walls to the mixture and A is the cross section area 
of the pipe. 

All the interphase heat and mass transfer terms and interface 
friction terms cancel each other due to so-called jump 
conditions. The wall temperature (Tw) is determined by the 
reduced energy conservation equation in the form

( ) ( )w
w w w fw w amb o amb w

T
c A H l T T H l T T

t
ρ ∂ = − + −

∂
  (3) 

Here cw is the specific heat for the pipe walls material, ρw is 
the density of the pipe walls material, Aw is the walls surface 
area, Hfw is the heat transfer coefficient from the walls to the 
mixture and Hamb is the heat transfer coefficient from the 
ambient to the walls.  

Additional important simplification to speed up the 
calculations is to neglect inertia in the momentum equation, 
which reduces this equation to the following form 
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           (4) 

where �  and �  are frictional losses and minor losses 
estimated at the center of the cell on the staggered grid. The 
solution of the equations (1)-(4) is achieved using a two step 
Adams-Moulton scheme (Hairer, Nørsett & Wanner, 1993), 
(Hafiychuk, Foygel, Ponizovskaya, Smelyanskiy, Watson, 
Brown, B & Goodrich, 2014). The set of equations for the 
mass and energy conservations (1st and 3rd equations in (2)) 
are solved to find new pressure and mass using of old 
velocities, then, new velocities are found by solving quasi-
steady momenta equation (4). 

The order of the steps may vary depending on the initial and 
boundary conditions. The solution of the energy 
conservation equation for the wall temperature is decoupled 
from the solution of the fluid equations and is performed in 
the end of each time step for both algorithms. 

In the context of the model based fault diagnostics, it is 
important to ensure that models produce time accurate 
predictions for the cryogenic loading dynamics. For this 
purpose the model was verified and validated. The versions 
of the code developed for the cryogenic health management 
applications were tested using multiple flow conditions and 
verified by comparison of the model performance with the 
predictions of the baseline model of the cryogenic chilldown 
developed in SINDA/FLUINT (Kashani, Ponizhovskaya, 
Luchinsky, Smelyanskiy, Sass, Brown, & Patterson-Hine, 
2014). 

The model was validated on the KSC cryogenic testbed 
experimental data. The Figure 2 shows the comparison 
between the simulated data (red line) and the data from the 
corresponding pressure and temperature sensors (black line). 
The model accurately capture the main pressure and 
temperature transients observed during chill down of the 
cryogen transfer line. 

 
Figure 3. Valve positions. 

4. GENERATE D-MATRIX FROM CRYOGENIC MODEL 

For the demonstration purpose, we considered 7 faults and 
24 tests (12 sensors) as shown in Tables 1&2. Failures 
correspond to valves. These valves can either stuck open or 
closed manifesting as failures in the system by affecting the 
liquid flow. Each sensor corresponds to two tests with 
maximum and minimum threshold limits, respectively.  

Each failure mode has one corresponding supervised data 
file. Each file is simulated over 1600s from the computer-
aided cryogenic simulation model. As the model is closer to 
real-time model, the simulations are as good as operational 
data (shown in Figure 2). The fault is injected at the start 
time of the file and is present throughout 1600s. Thus, there 
are 7 files in total. For this paper, we use these files to build 
D-matrix and then analyze for sensor optimization.  

The cryogenic model operates at different system modes 
depending on the valve positions. The opening position of 
valves is shown in Figure 3. We find that the time plot is 
divided into 5 sections at 500, 700, 1100, 1400, and 1600 
seconds. Each section determines a system mode. In D-
matrix context, each failure is defined by the corresponding 
fault signature in terms of 0’s and 1’s for each test. But 
these failures behave differently with respect to test 
detectability depending on the system mode. They can have 
different fault signatures. Traditionally, in such a case, there 
are multiple D-matrices for each system mode. In this paper, 
we will construct a single aggregated D-matrix with each 
row corresponding to failure mode and system mode. That 
means, each failure mode has multiple representations with 
each system mode. 

Another issue with the current model is that the sensor 
measurements are influenced by failures after a delay. This 
is the case with the temperature sensors because it takes 
some time for the temperatures to raise or drop due to 
failure. Generally, the knowledge about this delay is 
incorporated in the inference algorithm. But, as the current 
design analysis is off-line, we do not consider analyzing for 
these delays and use sampling for every 100s to offset the 
delay effect. We focus on the test design efficiency 
assuming that the delay is inevitable. 

Here, we will enumerate the steps to generate D-matrix 
using the data simulated from the physics model. 

1. Define the list of failure modes and tests. The 
failure modes are duplicated in each system mode. 

2. Simulate data corresponding to each failure mode. 
At least one file is required for each failure mode. 

3. Define test logic corresponding to each test. We 
employed simple threshold checks for each test. If 
the sensor measurement goes above or below 5% 
the simulated value, the corresponding test is 
failed. 
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4. Generate test outcomes (passed (0) or failed (1)) 
based on sensor measurements and test logic. This 
is done for all the supervised data files available. 

5. As the tests are associated with delays to detect 
failures, the data is sampled at the rate of 100s. 
This is done to offset the delay effect. Thus, we 
have 16 time points in each data file for the data 
collected over 1600s.  

6. Now, we start generating the fault-test relationship 
for each file sequentially. Ideally, after analyzing 
the data file for a fault, 5 fault signatures 
corresponding to each system mode are generated. 

7. The D-matrix entry is 1 if the test fails at least once 
during the selected data points. That means, during 
the system mode, the test should at least fail once 
to be included as 1 in the entry for the 
corresponding fault and system mode.  

8. The generated D-matrix for each failure mode in 
each system mode is listed in Appendix. Each 
failure mode is appended with underscore and the 
corresponding system mode number. But, for space 
convenience only the corresponding failure mode 
no. is appended with underscore and system mode 
no. The columns and rows with all zeros are 
removed. 

5. ANALYSIS OF D-MATRIX WITH IDME TOOL 

We started the analysis with the generated D-matrix via 
iDME Tool. In this paper, we aim at providing guidance to 
design extra tests to improve diagnosability. For this 
analysis, we did not consider to repair test logic. So, we 
analyze only D-matrix with the aid of simulated data. This 
analysis is very similar to the regular testability analysis, 
except for the fact that the data is used to validate the model. 
This will be helpful to assess the model’s ability to 
withstand noise in sensor measurements. Simulations can be 
done with various noise levels and the resulting D-matrix 
can be analyzed for efficiency. 

The generated D-matrix is partially observable; thus there 
are duplicate rows present. The duplicate failure modes are 
listed in Table 3. It is imperative that additional tests need to 
be developed to be able to isolate among duplicate faults 
(only when recovery action is different). There is no other 
way to differentiate among these faults. Similarly, there are 
duplicate (redundant) columns (see Table 4). They are left 
as they are because they can be useful for other set of 
failures not considered here. 

As we can see that the faults corresponding to open and 
close functions of a valve are not duplicate, but their faulty 
behavior is similar to the faults in the open and close 
positions of other valves, respectively. During system mode 
2, stuck close failures corresponding to cv112 and cv120 are  

 

duplicate. Similarly, during system modes 3, cv112, cv120, 
and cv117 stuck close have similar signatures. Faults 2, 4, 5, 
6, and 7 are duplicative during system modes 4 and 5. These 
faults are only detected by TT191 sensor. This indicates that 
there should be additional tests to isolate among these faults. 
The new test can analyze the existing sensor TT191with 
new test logic or can be a new sensor. In a similar way, we 
can analyze other duplicate faults to design appropriate 
tests. Generally, duplicate faults are grouped if the recovery 
action is similar. But, this is not the case here. 

Table 3. List of duplicate faults. 
 

Failure 
Mode 1 

Failure 
Mode 2 

Failure 
Mode 1 

Failure 
Mode 2 

Fault1_2 Fault4_2 Fault1_5 
 

Fault2_5 
 

Fault1_3 Fault2_3  Fault4_5 
 

 
Fault4_3  Fault6_5 

 

Fault1_4 Fault4_4  Fault7_4 

 
Fault6_4 Fault3_1 Fault5_1 

Fault2_1 Fault4_1  Fault5_2 

   Fault5_3 

Fault3_2 Fault3_3 Fault3_4 Fault5_4 

 

Table 4. List of duplicate tests. 
 

Test Name Test Name Test Name Test Name

PT104High 
PT161High, 
PT145High 

TT104Low TT146Low 

PT104Low PT161Low TT104Low TT149Low 

TT104Low TT162Low TT146High TT149High 

 
Table 5. List of hidden faults 

 

Fault  
Hidden 
faults 

Fault  
Hidden 
faults 

Fault1_3 Fault1_2 Fault2_2 Fault1_2 

 Fault1_4  Fault2_1 

 Fault1_5 Fault3_2 Fault3_4 

 Fault2_1   

 Fault2_4   

 Fault6_3   
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Another important problem with partial observability is the 
existence of hidden and masking faults. This results in 
ambiguous groups during diagnosis. These groups are 
always hard to isolate without proper system design. This 
can be avoided by adding more tests. The list of hidden 
faults after grouping duplicate faults is given in Table 5. In 
this case, if the hidden fault is of the same failure mode but 
a different system mode, then there is no need to design a 
new test because the recovery action is similar. But, 
remember that there are duplicate faults for the faults listed 
in Table 5. So, by analyzing Tables 3 and 5 together, it is 
understood that the system failures in cv117, cv120, and 
cv112 are either duplicative or hidden during stuck open or 
close. But, another consideration we ignored in this paper is 
the delay after which the test fails for the corresponding 
failure. This could probably alleviate the ambiguity in the 
current model. This will be pursued in future research. 

Thus, we need to carefully analyze the existing set of tests 
along with their logic and understand if it requires additional 
sensors or additional tests that analyze the existing sensors 
differently. In this paper, we will not include the follow-up 
strategy to find the placement for the additional required 
sensors.  

6. INNOVATION  

This research is en-route to establish a singular ISHM 
framework to communicate with systems engineering 
process. This research will result to provide a unified and 
simplistic view to ISHM process that can be easily 
interpreted by system engineers; thereby integrating it with 
systems engineering process. The proposed framework is 
neither a new method for better diagnostics nor a 
replacement to the existing model-based techniques, but is 
an integrated framework that works to better each of these 
models. This work can be viewed as a common platform 
that helps in evaluating design and reducing errors in each 
individual diagnostic model. This is done by providing a 
better correspondence and unified platform for different 
communities through a simplistic interpretable view via D-
matrix. This will advance the field of ISHM to be cost-
effective. 

7. CONCLUSIONS AND FUTURE RESEARCH 

The idea here is to promote D-matrix as the common 
framework to aid a simplified communication platform 
between system engineers and diagnostic modelers. 
Additionally, the knowledge transfer between different 
modeling techniques can be done via D-matrix. This will be 
instrumental to create a common model and also helps in 
improving each individual model. Also, this will help in 
achieving better diagnosis across all models by carefully 
choosing the best modeling technique, best representation of 
system design. 

This paper focuses on initial steps in this process. The 
framework is laid out at the lower level. For this, we 
generated D-matrix from high fidelity physics model of 
cryogenic system. Then, the model is validated via iDME 
tool for effective diagnosis by proposing additional tests to 
tackle duplicate and hidden faults. In our future work, we 
will further analyze this system with more number of faults 
and tests. Also, the design of the physics model will be 
accordingly altered, thereby producing high efficiency 
diagnostics. We will also compare computational 
performance of D-matrix based inference algorithms to full-
scale physics models. We will also consider propagation 
delays either as part of the model or inference algorithm. 

Another key aspect of future research is to provide more 
information on what type of test needs to be designed and 
corresponding placement. We did not explore this field yet, 
but will be a good addition in our iDME framework. We 
further focuses on translating the analysis on D-matrix to 
original models, thereby making each model effective.  

Single D-matrix may not be always sufficient to represent a 
system especially during transient state. Thus, it requires 
multiple D-matrices for system representation and inference. 
But, in this paper, we introduced to build a single D-matrix 
– aggregate of all multiple D-matrices corresponding to 
each system mode. Also, additional information may be 
required, for example couplings between faults. This extra 
information needs to be properly represented in addition to 
D-matrix for proper utilization across the board during 
inference. Our future research will focus on this aspect of 
how best to represent D-matrix and the additional 
information. We will also streamline this process for 
systems engineering. In summary, the goal of this proposed 
process is to make model-based diagnostic field cost-
effective and ready for verification and validation during 
systems engineering process. 
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