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ABSTRACT X = a%q + Wi )
Hydraulic systems are widely used as power soucce f Z =Xy Vv
several different applications. Servovalves areticadi
components and often subjected to failures. Estilgat Augmented system:
degradations from these components requires dynamic
analysis of their behavior and consequently adwéhnce X | | BcaXer + Wi
monitoring techniques. This article proposes an liop a, a_, 0
monitoring method to estimate a degradation paramaeit (2)

technique considering a bank of Extended Kalmatefsil
that models not only the valve itself but also degradation
trend. A single failure mode was considered relatethe ~ This augmented state-space model considers thenptea
nozzle line clogging. The degradation estimates #ml a constant and may not address properly its estmafi
likelihood of the correctness of each model werymed in  the system presents variations af specially when

the servovalve using an interactive multiple-model Zk=[1 q{:}_w

order to evaluate the proposed method. submitted to abrupt degradation variations and wipgiok
decisions are required such as applications in
1. INTRODUCTION reconfiguration systems. Alternatives include mouglthe

: o dynamic of the parameter being estimated and imofuid at
Hydraulic servovalve health monitoring have beenthe augmented state model. An example is giveKéo(g,

addresse_d in several works, including (Se}madami/uiMy Lim & Mbab, 2014) where a Helicopter tail gearbating
& Nataraj, 2014), (Borello, Vedova, Jacazio & SoP009), . : - , .
(Mussi & Gées 2009) and (Sepasi 2005). Most failureS monitored considering three possible degradation

modes from these components require dynamic alsad_ysi_ g)ér:,?jr.nggQrztitzﬁgsatré‘tgse?ﬁ e’s gndeyira:rr]ﬁ:n: and polyiao
its behavior and consequently advanced monitoring
technigues. One commonly used method is the Kalitian
applied as parameter identification and examples of
application include (Hajiyev & Caliskan, 2003) aftkepasi
2005). These applications consider an augmentet sta
model including the variable of the model assodiatéth

Good Condition Good to gradual wear

(Stationary trend) (stationary to linear trend)
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the degradation. Eq. (1) and Eqg. (2) give an exanfygim Time Time
(Hajiyev & Caliskan, 2003) where the parametgerof the ood to accelorated wear Good to gradual o
system is the desired value to be estimated. (stationary to polynormial accelerated wear

trend) (stationary to linear to ’.'

polynomial trend)

Linear system:
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Wilamir Vianna et al. This is an open-access artigdéributed under the

terms of the Creative Commons Attribution 3.0 Udittates License, Time Time
which permits unrestricted use, distribution, aegroduction in any . . .
medium, provided the original author and sourcecezdited. Figure 1: Degradation trends extracted from (Kedmg, &

Mbab, 2014)
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Estimation of parametea may be useful when it is related feedback spring and the spool. The equation rejatie

to a degradation, for example a friction or orifidemeter
in hydraulic line whose variation may indicategding of

the line.

Each possible degradation dynamic model includethet

augmented state model result in a different KalrRédter

current input and the spool and flapper positiogiven by
Eq. (3) (Merrit, 1976).

KtAi:Jasz):f+(r+b)Kf[(r+b)er+Xv} @)

(KF) and consequently an estimation of the degradat in which:

parameter as well as other state variables. Thenigee
that combines different models using KF are called

Switching Kalman Filter (SKF). The methods usedSKF

applications include Autonomous Multiple Model (ANM
(GPB1),X; is the flapper position;

Generalized Pseudo-Bayesian of first-order

K, is the torque constant of the torque motor;
Ai is the current input;
J, is the inertia of armature;

Generalized Pseudo-Bayesian of second-order (GPB2), i the distance between center of armature appéia

Interacting MM (IMM) among others. An implementatio

and comparison of several of these method is preddn
(Pitre, 2004) with application in Target Trackingrom

these examples, the most popular one is the IMNrgPiI
2004), whose main advantage is the lower compurtatist

(Chze & Inseok, 2008), but by using more complexxiny

techniques”, it is more difficult to analyze itssudts (Chze

& Inseok, 2008).

This paper proposes a method to monitor a hydraulic

servovalve using an IMM algorithm combined with ank

of Extended Kalman Filter containing some augmented

state-space models similar to Eq. (2), modelingamby the
dynamics of the valve itself but also the dynamatghe
degradation.

2. HYDRAULIC SERVOVALVE MODEL

This article considered a two stage servo valvdlesrated
in Figure 2.

() Permanent magnet

s 1- Pole piece
o E | |_Armature mounted on
a

i

f
Uy 1 -;-% i weak torsion spring
= Ty
I;D 1

I Flapper and nozzles

feedback
spring

e L'A—’_ﬂ Leaf tyoe

Fluid motor with
displacement Dy,

Figure 2. Schematic of a two stage electro hydcauli
servovalve with force feedback (Merrit, 1976).

The first stage of the servo valve comprises thenpaent
magnet, pole piece, armature, flapper, nozzle, tgpt

b is the distance between flapper and spool;
K; is the spring constant feedback at free end;

X, is the spool position.
The equation relating spool and flapper positiogii@n by

Eq. (4) (Merrit, 1976).
K
w

X 2 4)
f { Sz+25“"+lJ
In which:

Kgp is the flow gain of flapper valve;

A, is the area of spool;

&, is the hydraulic natural frequency of pilot stage.
Onp s the pilot stage damping ratio

The parameters values used in this work are:

K; = 0025inlbs/ ma;
r = 0015in;
b=0.0012in;

A, = 0026in?;

Kgp =39in In sec;
K; =93inlbs/in .

In order to simulate the time varying input curreht, a
sinusoidal wave form was adopted. The system resspfor
this input is given in Figure 3.
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Figure 3: Model response to a sinusoidal input
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3. BANK OF STATE-SPACE MODELS [ 0 T, O_
The first step to build the bank of filters is tbtain the state r+b
space model of the first stage servovalve equatioren in Kgpots 1 ts 0
last topic. To accomplish that, discrete time domai Ay, =| 2A, 2
equations based on Eq. (3) and Eq.(4) and simatifins Kgpo
described previously are built using the Euler iitzation A 0 00
method and then put in the state space model.Fxghpws
: 0 0 01
the resulting model. - -
X = A + BUH Wy B.. =" 900
{zk = Hx + Vi ®) T (r+p)?
, , 1 000
in which: Hoy =
_[ _ ] 0100
X =P X Rl the state vector;
u, = [Ai] is the input; 2) Linear degradationy, =K, ):
% :[Xf X,] is the output; Xink :[Xf XX K qu]
0 -r/(r+b) O Zink = %L
A= qutSIZA/ 1 ts/2 0 -r 0 0O
r+b
K/ A 0 0 ; Kopefs . s -
B =K, /(K,(r+b)>) 0 0. A 2A, 2
H {1 0 o} B
- A
_ 010 p 0 0 0 1 ts
ts is the sampling time; 0 0 00 1

and w,_, Vv, are the process and measurement noise. - -

In order to present the proposed method, the ptoesdare - Ky 0000
) . g : Biink = 2

illustrated using three augmented models similaghtse in K¢ (r +b)

(Chze & Inseok, 2014) associated to stationarydtréinear -

trend and second order polynomial trend of the aldaion 4 _ 10000
parameter. The degradation parameter chosen to be"* 01 000
evaluated is the flow gain of the flapper valv&f ) and

its decrease relates to clogging of the nozzle limerder to ~ 3) Polynomial degradationK(y, =Kg, )
estimate this parameter, some augmented state spsiesn . .

are considered. Notice that by putting the degiadat Xpoy = [Xf X X Kg K quI
parameter in the state vector, the model becomedimear, 5 L=z

since this parameter multiplies a state parameter) ( PR -

-r
requiring the implementation of a modified versiohthe 0 50 0 00O
Kalman Filter. To accomplish that a bank of Extehde K ts ts
Kalman Filter was implemented. The three augmented ap0 1 =00 0
models are given in what follows: 2A, 2
A =| Kapo
. . pol 0 0 00O
1) Stationary degradatlorK(qpk = quk_l): A,
. , 0 0 0 1t 0
Xstatk:[xf X X qu] 0 0 0 0 1 ts
Tstate = & |0 0O 000 1]
| rK
B = —1 00O
poly _Kf(r+b)2
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01 0000
The Jacobian matrices (required for the Extendebinia
Filter process) containing the partial derivativefs A are
given below.

1 00000
Hin =

LA 0
r+b
Kgpots L s X ofs
Ay =| 2A 2 2A |;
K X
ap0 o o ° Figure 4: IMM model switching process (Farmer, Ksu
A A Jain, 2002).
0 0 0 1 o o -
- L The estimation of each switching probability and delo
0 " o 0o o0 likelihood is described below where a single cyofethe
r+b IMM algorithm is given (Eq.(6) to Eq.(14)). It cdats of 4
K gpotS 1 s X ofS 0 steps: reinitialization where mixing estimates aadiances
2 2 2 are estimated for each model; the filtering proéessdf also
A A
dAyy = Kgpo Xt o ; for each model and considering the mixed estimates;
A 0 0 A 0 probabilities and likelihood updates and finallytimste
0 0 0 1 ts fusion resulting in a single state estimation.
0 0 0 0 1) 1) Model-conditioned reinitialization (for= 1,2...M ):
[ —r 1 la. Predicted mode probability:
0 — 0 0 00
r+b _ _
K gpotS 1 ts X olS 0 0 Higa = %\;”ji M (6)
2A, 2 2A !
- K X
Ao =| 20 g g 0 g o 1b. Mixing weight
%I 0 0 f 0
1 ts T 1)
i — 7M1
O 0 0 0 1ts Hea === 7)
klk-1
| 0 0 0 0 0 1]

1c. Mixing estimate:
4. INTERACTIVE MULTIPLE-M ODEL ALGORITHM

% = \gi il
The IMM algorithm (Blom & Bar-Shalom, 1988) Kete1 = %Xk‘”k‘lﬂk‘l (8)
reinitializes each model with a weighted sum of tpeated
estimates from every model based on probabilities
estimations of each model. This process is calledging
and it reduces its computational complexity to Menh M =} = pJ + (X! - %l
is the number of models used in the algorithm, Whicthis ke [jDZM s Kger ™) ©)
case is 3. An illustration of the IMM model switobi — 7L
process is described in Figure 4. The interactetwben the ket ST
models depends on the switching probabilities anel t 2)Mmodel-conditioned filtering (foii = 12.M ):
likelihood of each of the model. The IMM result &
combined state vector that is the sum of the statéors for _ o S
each of the modes weighted by their model prokisili (X1 Peap-1) = Kigir Par Z: S (10)

1d. Mixing covariance:

3)Mode probability update:
3a. Model likelihood:
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2) Measurement Update:

L = N(%:0,S) (11)
Saugk = Haugkp_aungaugkl+Rdugk (17)
3b. Model probability
e /-/:<|k—1|-ik _ . v
Hx z/’lli|k—1|‘lj( (12) Kaugk =P a”9|<Haugk (Saugk) (18)
oM
4)Estimate fusion: R . .
4a. Overall estimate: Xaugy, = X auai ¥ Koy, (Zauw ~ Hayg X a“gk) (19)
)A(k|k = Z)A(iklk'uli 13 — -
iom ( ) I:3:1ugk - (I - Kaungaugk)P augy (20)
4b. Overall covariance: in which:
Pa = ZIPki|k + (X = )A(ik|k)(§(k|k B >A(ik|k)'Jr”ik (14) Kaugi is the Kalman gain;

iCM
in which: Fauge is the covariance matrix of the state estimates.
n As an example, the estimations of the EKF stateth wi
I'is the model transition probability; stationary trend of the degradation parameter hadsame
sinusoidal input current in Figure 3 is given igiie 6.
Hc is the probability of each model;

L

_x 10-4 xf XV
5

kis the likelihood of each model;

o
M is the number of models, which in this case is 3. —Simulated —Simulated
5 -+ Estimated -0.04 -+ Estimated
A summary of the IMM algorithm is illustrated indfire 5. R 0 2o M0 e 0
current Kgp Estimation

Transition 2 )

Prabahilities
3 i —Simulated
i3 - Estimated

curr(A)
o
Kap

Models

Model 1
e
Probabiities Rceel Mode 2% 200 400 600 800 % 500 1000
Morkls - Wode! 2 Probaility Time(10ms) Time
e Conditioned Filtering Update
> Reinitialization Model 3 . i )
Wogers Likelioar, Figure 6: EKF estimations
Models Pruggb\\itwas
Predicted Probabilities,
mmﬂg \év?gmli Fused Estimates
Hing variances 5. RESULTS
Fused v ariances
&
» .
Wocels Estinales, In order to evaluate the IMM method, four degraatati

trends were evaluated, a stationary one, a lines, @
polynomial one and another containing a combinatibtine
Eq. (10) represents the Extended Kalman filter iketsby ~ three last ones. Figure 7 shows these input trends.

the following process:

1) Time Update:

Figure 5: IMM process

)A(_augk = Aaugk )A(augk_l + Baugkuk (15)

P_ang = dAaugk Paugk_ldAaugk I"'Qaugk (16)
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Trending Simulations
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Figure 7: Degradation trends

All these trends were combined with the same siidaso
current input from Figure 3 and submitted to atethfilters
(stationary, linear and polynomial) described poesly
using the conventional EKF as well as the IMM diosd in

last topic. For all simulations the IMM transitipnobability
matrix used is:

0998 0001 0001
0001 0998 0001
0001 0001 0998

JT=

The degradation parameter estimations are givefigare
8, Figure 9 and Figure 10.

Kgp Estimation linear degradation

° Simulated
--Kgpdot =0
Kgpdot2 =0
- Kgpdot3 =0
IMM

| |
300 400
Time (10ms)

E0 160 260
Figure 8: Estimations for linear degradation

Kgp Estimation 2nd order degradation

ul

¢ Simulated
--Kgpdot =0
Kgpdot2 =0
- Kgpdot3 =0
IMM

| . . . |
0 100 300 400 500 600
Time(10ms)

Figure 9: Estimations for polynomial degradation

I
200 700

Kgp Estimation combined degradation trend

° Simulated
--Kqgpdot =0
Kgpdot2 = 0
- Kgpdot3 = 0
{ "y IMM
: S ™.
g [ N -
N \\
2F \ B
4 .,\ |
G0 100 200 300 400 500 600 700
Time (10ms)

Figure 10: Estimations for combined degradatiendis

It is possible to see from these results how lowater

models could not estimate properly degradationsngitdsd
to higher order variations (i.e. red dashed line).

The probability of each trend estimated in the INMMthod
are given in Figure 11, Figure 12, Figure 13 arguFé 14.
As mentioned before these probabilities are usedhén
IMM fusion step in Eq. (13) and Eq. (14) as weighti
factors to estimate the resulting states fromtakteé models
estimations.

Probabilities for IMM algorithm with stationary degradation
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Figurell: Probabilities for stationary degradasanulation

Probabilities for IMM algorithm with 1st order Degradation
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Figure 12: Probabilities for linear degradation @liation
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Probabilities for IMM algorithm with 2nd order Degradation
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Figure 13: Probabilities for polynomial degradatio
simulation
Probabilities for IMM algorithm with combined degradation trends
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Figure 11 (stationary simulation) shows as expeciéed
predominance of the stationary model probability fo
stationary simulation. Figure 12 (linear degradatio

Table 1. MSE summary.

Simulation
Stationary| Linear| Polynomial Combined
Stationary 0.0568 0.386% 0.4674 0.4498
% Linear 0.1011 0.0895 0.1014 0.1426
= Polynomial 0.1816 0.1602 0.0806 0.1837
IMM 0.0643 0.0939 0.0929 0.0835

As expected, the MSE corresponding to the statiotrend
was lower for the stationary model, the MSE of linear
trend for the linear model and the MSE of the polyial
trend for the polynomial model. For the combinezhtt, the
IMM had the lowest MSE proving its effectivenessdeal
with multiple evolutionary degradation trends. Alsb
performed well for the other non-combined trends.

6. CONCLUSIONS

The present work showed an application of an lctera
Multiple Model for on-line degradation estimatiorf a
single failure (nozzle clogging) of the first stagka two
stage flapper nozzle hydraulic servovalve. To aquisn
that, three augmented states models were built fiioen
valve model considering stationary, linear and potyial
trend of the degradation parameter. After buildihgse
models the IMM could be implemented.

The evaluation of the IMM was done considering four
different degradation trends: stationary, lineaslypomial
and combination of all previous ones. Together wiih

simulation) shows a predominance of the linear modeIMM, conventional EKF was applied to all simulatfon

although during some small intervals the stationagdel
had higher probability. Figure 13 "f2order degradation
simulation) could predict correctly the increasedbability
in only some intervals at the"2half of the simulation.
Figure 14 (combined trend) could predict corredihe
stationary trend (higher probability for the initiaterval)
but could not distinguish properly between lineard a
polynomial trend for the™ half of the simulation. From all
these results it is possible to observe that higfeorder of
the degradation trend, more difficult is to distigh
between them.

In order to compare the precision of all filterorfr all
degradation trends, the mean square error (MSEydaet
the simulated degradation parameter and its estimé&om
all simulation frame were estimated. Table 1 shdies
results, where each
(stationary, linear, polynomial and the IMM respeely)

and each column the simulation performed (statignar

linear, polynomial and the combination trend as~igure
6).

row contain the filtering modeld

considering all three models. Results showed thatiMM
had a better estimation for the combination trerdevthe
stationary model for the stationary trend, lineavded for
the linear trend and the polynomial model for polyrial
trend.

It is possible to conclude from this work that thdM
algorithm successfully estimated degradations frim
servovalve model relating correctly the probalafitof each

model, specially when dealing to a combination iffecent
degradation trends.

The main benefit of using the method proposedimphper

is the possibility to have an on line health moriitg of the
component with fast response to degradation variati
Applications may include systems that requires kjuic
ecisions for fast degradation evolutions such as
reconfiguration systems for transmission lines pogrds,
flight controls reconfiguration systems and launathicle
abort trigger.

Improvements in this work includes investigatingisth
method with different components (i.e. actuatossyvell as

other failure modes, also evaluating other multipledels
algorithms such as the Generalized Pseudo-Bayesian
second-order (GPB2) and applications using fiekd.da
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