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ABSTRACT 

Feature evaluation is crucial to identify the best features and 

to achieve high accuracy in diagnostics and prognostics. 

Feature evaluation for prognostics is a developing research 

area with several publications in recent years. Most, if not all, 

of existing methods to evaluate features for prognostics base 

on the feature changes in the whole life of the system under 

observation. In other words, feature values collected 

throughout the failure degradation are analyzed to create a 

goodness value for the feature. In reality, the goodness of the 

features may change during the failure progression.  A feature 

may be good representative of failure progression in the 

initial phase but not in the final phases, or vice versa. This 

paper presents dynamic nature of representation capabilities 

of features throughout the failure degradation and proposes a 

novel approach to evaluate the features considering their 

dynamic nature. Proposed approach involves feature 

segmentation based on their representation capabilities and 

feature fusion utilizing the segmented evaluations. The 

presented approach has been applied in simulated and real 

degradation datasets. Real degradation dataset were obtained 

from accelerated aging tests of Li-ion batteries in the lab 

environment. The results from both datasets show that 

dynamic feature evaluation improves SoH estimation 

accuracy. 

1. INTRODUCTION 

Diagnostics and Prognostics are the major steps in 

Prognostics and Health Management (PHM) (Zhang & Lee 

2011)(Camci & Chinnam 2005). Diagnostics is the process 

of identification of existing failures with its severity and/or 

location. Diagnostics is a classification or clustering problem 

in nature depending on the availability of labeled data. On the 

other hand, Prognostics is the process of identification of 

Remaining Useful Life (RUL) of the system or component 

under observation given its current health status. Prognostics 

is a forecasting problem that makes it more challenging due 

to many uncertainties involved in failure progression. 

The sensory data and features extracted from them play 

crucial role in the accuracy of prognostics. None of the 

computational tools may extract the failure progression if it 

is not hidden in the features. The number of potential features 

that can be extracted from sensory data is huge with different 

effectiveness levels. Evaluation and fusion of the features that 

represent the failure progression well is the focus of this 

paper for the purpose of estimating RUL.  

Feature evaluation and selection in diagnostics have been 

studied in the literature extensively. Researchers have started 

publishing articles about evaluation of features for 

prognostics in recent years. However, none of these work 

addresses the features’ dynamic representation capability of 

failure progression. Features may represent the failure 

progression with different effectiveness throughout the 

failure progression or life of the component/system. A feature 

that does not represent the failure progression in the initial 

phase of the failure may represent the progression fully in the 

final phases. In contrary a feature that represents the failure 

progression perfectly in the initial phase may not represent 

the progression in the final phases. Thus, evaluation of 

feature effectiveness based on the full life of the component 

or system may be misleading. It is possible to use different 

features to measure the failure progression in different phases 

of the component or system life. This paper aims to fill this 

gap in the literature by presenting a dynamic feature 

evaluation algorithm and dynamic sensor fusion for 

prognostics. 

The organization of the paper is as follows: Section II gives 

the literature review, Section III discusses the presented 

method for dynamic feature evaluation and fusion. Section 

IV presents the results obtained by the presented method on 

simulated and real data obtained from Li-ion batteries. The 

paper is concluded with Section V. 
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2. LITERATURE REVIEW 

Measuring the effectiveness of features for diagnostics has 

been studied extensively (Hannah Inbarani et al. 2015), 

(Cecille et al. 2015), (Lamraoui et al. 2015), (Guana et al. 

2014; Mwangi et al. 214AD). These studies can be 

categorized in two groups: non-transformed and transformed 

analysis  (Mwangi et al. 214AD). In the former one, the 

features are evaluated as they are without converting them 

into another form. Evaluation can be performed by individual 

or combined analysis of features. The major disadvantage of 

this approach is the requirement of ignoring unselected 

features and not benefiting from the features that received 

low grade in the evaluation.  

In the latter group, the features are converted into a different 

form in such a way that all features contribute to the new 

formatted features. The selection is performed based on the 

transformed features. In such a transformation, low graded 

features may also be contributed partially in the selected 

transformed features (Tianzhen et al. 2015). Principal 

component analysis (PCA) and independent component 

analysis (ICA) are two examples of this approach (Tianzhen 

et al. 2015; Z et al. 2011). PCA transforms n features into n 

new features, each of which is obtained with the contribution 

of old features based on their variance. The new features are 

ranked from the ones that hold most information to least 

information. Thus, the features with least information can be 

dropped from the analysis leading to reduced number of 

features. ICA on the other hand performs the transformation 

based on the independence of features.  

Dynamic nature of the features’ effectiveness has been 

studied for diagnostics in the literature. A feature may not be 

effective in the beginning for diagnostics, but become 

effective after the failure degradation reaches to a point. 

Online PCA has been developed to be able to handle the 

dynamic nature of the problem into account for classification 

(Honeine 2012).  

Even though there has been extensive work on feature 

evaluation for diagnostics, this is not true for Prognostics  

(Camci et al. 2013).. The nature of the problem in Prognostics 

is totally different from diagnostics. Thus the methods used 

in diagnostics for feature evaluation cannot be used for 

Prognostics. 

First study performed in feature evaluation for Prognostics 

has been published in 2013. This paper presents a method that 

quantifies the monotonicity of the trend in the features by 

dividing them into windows  (Camci et al. 2013).. The data 

in consecutive windows have been analyzed to understand 

the existence of a change between data in windows. The 

change in all windows are quantified to measure overall 

monotonicity of the feature.  

Genetic algorithm has been used to generate a formula to 

calculate a new feature that represents the failure progression 

using existing features (Linxia 2014). GA selects features 

among a feature pool and operators from math operations 

pool. The resultant formula has been evaluated using its 

effectiveness in representing the failure progression.  

Entropy based sensor selection method is proposed in (Liu et 

al. 2015) for prognostics. This method quantifies the trend 

representing the degradation for given sensory dataset and 

entropy is used to represent the uncertainty within the data. 

Trigonometric functions and their cumulative transformation 

have been used to extract monotonic features. The goodness 

of the features for prognostics has been quantified by analysis 

of monotonicity and trendability (Javed et al. 2015). 

Monotonicity is the continuous increasing or decreasing 

nature of the feature and quantified as the sum of positive and 

negative derivatives. Trendability is basically defined as the 

correlation of a feature with time.  

The structure of the data may change as a result of the feature 

selection due removed features. This change has been 

controlled through preserving the local and global structure 

of the data in order to achieve effective feature selection 

(Wang et al. 2014)(Peng et al. 2015). Feature selection 

Figure 1. Features with different failure progression 
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method that aims to preserve the local and global structure 

has been presented in (Wang et al. 2014), and its application 

in prognostics has been discussed in (Peng et al. 2015).  

Even though these feature evaluation studies on Prognostics 

has led to some level of success, they still miss an important 

aspect of the features and sensory data. The effectiveness of 

a feature or sensory data is not static throughout the life of 

the component or system under observation. A feature may 

be a good representative of the failure progression in the 

initial failure phase but not in the later part of the failure. In 

contrary a feature may be effective close to final phase of the 

failure but not in the initial phase. Thus, the single static 

evaluation of a feature for the full life of the system may not 

be effective. The bad failure progression representation in 

one part may negate the good failure progression 

representation in another part. This dynamic nature of the 

sensory information is handled with online PCA approaches 

for diagnostics and other classification problems as discussed 

above. This paper aims to fill this gap in prognostics by 

presenting a dynamic feature evaluation algorithm through 

identification of the good representative parts of features and 

using them in a dynamic equation throughout the life of the 

system.  

3. METHODOLOGY 

3.1. Problem Definition 

Features react differently to the failure progression.  

Monotonically decreasing or increasing features with failure 

progression have been accepted as good representatives. 

However, the good representation may be partial in the life of 

the component or system. For example, three feature 

examples are given in Figure 1. The failure progression 

representation capability of feature 1 is very high in the first 

phase of the life as shown as continues increase. However, 

the feature stays constant with some noise towards the end of 

the component life (Figure 1.a). In contrary, the second 

feature does not represent the failure progression in the initial 

phase. It then becomes a good representative in the second 

part with increasing value (Fig 1.b). The third feature is a well 

representative of the failure progression in most of the 

component life (Figure 1.c).  

Static analysis of these features may mislead the feature 

evaluation. It is important to take the most value from good 

representative phases of the features and avoid the effects of 

bad representative phases. A dynamic evaluation is expected 

to lead giving high importance in the first phase of the first 

feature and the second phase of the second feature and 

ignoring the remaining phases for both features.  To the best 

of our knowledge, this problem has not been discussed in the 

literature yet. This paper aims to propose a feature evaluation 

and fusion algorithm for prognostics that can handle these 

types of features.  

The problem defined above has two major steps:  

segmentation and fusion. Segmentation identifies the phases 

of the features that correlate with the failure progression 

differently. Fusion focuses on the integration process of the 

segmented features for effective prognostics. The process has 

been illustrated in Figure 2. 

 

 

Figure 2. Steps of proposed approach 

 

1. Feature Segmentation: Time series segmentation is a 

mature area and has been applied in many engineering 

fields. There are various approaches in time series 

segmentation such as Wavelets, Symbolic 

representations, Fourier transforms and Piecewise Linear 

Representation (Chan & Fu, 1999). Time series 

segmentation process can be defined as decomposition of 

time series data into homogenous segments or groups 

based on similar structure. In general time series analysis, 

segmentation is used for data reduction, trend analysis, 

pattern detection with similar behavior and for 

discretization. Time series segmentation algorithms can 

be categorized into three groups: 

A. Top-down: The segmentation starts from the whole 

time series data and continues recursively until 

predefined criteria is met. This is an offline method. 

B. Bottom-up: The segments in the time series are 

obtained by analysis of data points one by one. This 

is an offline method. 

C. Sliding Window: Data points within a window are 

analyzed to identify the segments and the window 

moves from beginning to the end of the time series 

data. This is an online method.  

Readers are referred to (Koegh et al 2004) for more 

information about time series segmentation. 

 

2. Feature Fusion: Feature fusion is the process of 

combining different features to enhance the SoH 

estimation of the electro-mechanical system. It is very 

difficult, if not impossible, to extract a single feature that 

perfectly represent the failure progression.  Thus, it is 

important to extract value from different features for 

better SoH estimation. In this step, segmented features are 

fused via data fusion algorithm. 
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There are different methods used in the literature for 

fusion. Weighted average is one of the most widely used 

approach in fusion.  Fusion is commonly used in 

diagnostics and prognostics. A novel fusion approach in 

RUL prediction based on superstatistic and information 

fusion has been presented in (Lui et al, 2014). Composite 

health index is obtained through fusion in (Lui et al, 2013) 

[26]. Neural network has been used in (Nui and Yang, 

2010) for data fusion to achieve intelligent prognostics 

system. 

 

3.2. Proposed Approach 

 The proposed approach has been discussed based on the 

steps discussed above.  

Table 1. Sliding window pseudo code 
sliding_window(Tdata,max_error): 

anchor=1; 

while not segmented Tdata 

%w:window size 

w=2; 

iferr_calc(Tdata(anchor:anchor+w))<max_error 

w=w+1;  

else 

%convert into segment 

Tdata_segments<-Tdata(anchor:anchor+(w-1)); 

%update anchor with new point 

   anchor=anchor+w; 

end 

end 

 
Figure 3. Segmented noisy time series 

1. Sliding Window Segmentation: 

Sliding window approach has been selected in this paper 

for segmentation of features for prognostics purposes due to 

its online property and good performance with noise. In 

sliding window segmentation algorithm the initial window 

includes the data points from the first to the nth data points, 

where n is the length of the initial window (T {ti: i=1…n}). 

A linear model has been fitted to the data points within the 

window. If the curve fitting error does not exceed a 

predefined threshold, the size of the window is increased to 

include the next data point outside of the window. This 

process continues until a point where the curve fitting error 

exceeds the threshold or end of the time series has been 

reached. When the curve fitting error exceeds the threshold, 

the last data point added to the window is defined as the start 

of the second segment. Table 1 gives the pseudo code of the 

segmentation algorithm and Figure 3 displays the output of 

the segmentation algorithm. Each line between dots represent 

a segment obtained by the model.  

1. Feature Fusion: 

Features may be in different scales. In order to use these 

features within the feature fusion process, they should be 

normalized. In order to achieve normalization, all features are 

converted in SoH values. The features are converted into SoH 

values based on the ratio of feature value at time t(𝐹𝑡) to the 

initial feature value. Equation (2) is the SoH calculation for 

the decreasing features with the failure progression, whereas 

equation (3) gives the SoH calculation for increasing features 

with the failure progression. Please note that maximum 

(𝐹𝑚𝑎𝑥(1:𝑇)) and minimum (𝐹𝑚𝑖𝑛(1:𝑇)) of first T values of the 

features are selected in order to handle potential noise within 

the features.  

 

𝑆𝑜𝐻𝑖,𝑡 =
𝐹𝑖,𝑡

max(𝐹𝑖,1:𝑇)
,∀𝐹𝑖that decreases with failure progress  (2) 

 

𝑆𝑜𝐻𝑖,𝑡 =
min(𝐹𝑖,1:𝑇)

𝐹𝑖,𝑡
, ∀𝐹𝑖that increases with failure progress (3) 

 

The fusion process bases on weighted average calculation as 

shown in equation (4): 

 

𝑆𝑜𝐻𝑓,𝑡 =
∑ 𝑤𝑖𝑆𝑜𝐻𝑖
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

  (4) 

The weight of each SoH estimation value obtained from a 

feature plays the crucial role in the fusion process. Initially, 

the feature weight values are set equal as shown in equation 

(5). In [24], the weight values are updated using the 

estimation error of features as shown in equation (6). This 

formula has been revised as in equation (7) to incorporate the 

representation capability of the failure progression. In other 

words, as the failure progresses, the weight values are 

updated based on the representation capability of the feature 

to the failure progression as well as the SoH estimation error 

for each feature. 

𝑤𝑖 =
1
𝑛⁄ ∀𝑖 = 1,… 𝑛  (5) 

 

𝑤𝑖,𝑡+1 = (𝑤𝑖,𝑡 + (1 − |𝑆𝑜𝐻𝑓,𝑡 − 𝑆𝑜𝐻𝑖,𝑡|)) (6) 

 

𝑤𝑖,𝑡+1 = (𝑤𝑖,𝑡 + (1 − |𝑆𝑜𝐻𝑓,𝑡 − 𝑆𝑜𝐻𝑖,𝑡|)) × 𝑀𝑖 (7) 

 

A feature’s representation capability of failure progression 

has been quantified using monotonicity parameter (𝑀𝑖) . 

Monotonicity is calculated using continuously increasing or 

decreasing property of the feature as shown in equation (8). 

An ideal feature is expected to be either continuously 

increasing or decreasing. Increase in a feature is identified as 

the derivative being positive (#
𝑑

𝑑𝐹
> 0), whereas negative 
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derivative ( #
𝑑

𝑑𝐹
< 0 ) indicates decrease in consecutive 

feature values. The difference between number of positive 

and negative derivatives gives the monotonicity value. High 

value of the absolute value of this difference indicates high 

monotonicity. Highest possible monotonicity is one with 

having all derivatives (total on n-1 derivatives) being positive 

or negative. The lowest possible monotonicity is zero with 

having equal number of positive and negative derivatives.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Estimation process of SoH through segment based 

fusion 

 

 

 

 

𝑀𝑖 = |
#

𝑑

𝑑𝑆𝑜𝐻𝑖
>0

𝑛−1
−

#
𝑑

𝑑𝑆𝑜𝐻𝑖
<0

𝑛−1
|  (8) 

 

The presented approach has been summarized in Figure 4. 

The next section presents the results of applying this 

methodology on simulated and real data.  

4. RESULTS AND DISCUSSION 

The presented approach has been implemented in two types 

of datasets: simulated data and Li-ion battery degradation 

data. 

4.1 Simulation Results: 

The simulation dataset has been obtained in two steps. A 

ground truth SoH value has been simulated first. Figure 5 

displays the simulated SoH values. Then, six features have 

been simulated based on the SoH value. Each feature is 

created based on a function of SoH with some noise added. 

Two of the features (Feature 4 and 5) use a single function 

from beginning to the end of the failure progression. The 

other four features (Feature 1, 2, 3, and 6) have been divided 

into two segments. A distinct function has been used for each 

segment. In other words, more than one function have been 

used to obtain three features, each of which corresponds to a 

different phase of the failure progression. Figure 6 displays 

the selected simulated features. 

 

Figure 5. Ground truth SoH feature 

In order to evaluate the value of the presented approach, SoH 

estimation has been performed under three scenarios. 

Scenario 1 involves utilizing all the features without 

segmenting them. Scenario 2 also involves unsegmented 

fusion, but using only selected features. Scenario 2 assures 

negative effect of any features in the SoH estimation, if any, 

by selecting the good features only. Scenario 3 involves the 

usage of the presented approach. All features have been 

segmented first and segmented features are utilized for fusion 

as discussed in the previous chapter. 

 

The segmentation process has divided feature 1, 2, 3, and 6 

into two parts. Feature 4 and 5 has not been divided since they 

Raw features 𝐹𝑖, i=1…N 

Segmentation process of 𝐹𝑖  with 

S𝑙𝑖𝑑𝑖𝑛𝑔_𝑊𝑖𝑛𝑑𝑜𝑤(𝐹𝑖,𝑚𝑎𝑥𝑒𝑟𝑟) [Table1]. 

 

 

For features with decreasing trend: 

𝑆𝑜𝐻𝑖,𝑡 =
𝐹𝑖,𝑡

max(𝐹𝑖,1:𝑇)
 (2) 

 
For features with increasing trend: 

𝑆𝑜𝐻𝑖,𝑡 =
min(𝐹𝑖,1:𝑇)

𝐹𝑖,𝑡
 (3) 

 

 

Weighted average fusion: 

𝑆𝑜𝐻𝑓,𝑡 =
∑ 𝑤𝑖𝑆𝑜𝐻𝑖
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 (4) 

 

Initialize weights: 

𝑤𝑖 =
1
𝑛⁄ ∀𝑖 = 1,… 𝑛 (5)  

 

Weight update (7): 

𝑤𝑖,𝑡+1 = (𝑤𝑖,𝑡 + (1 − |𝑆𝑜𝐻𝑓,𝑡 − 𝑆𝑜𝐻𝑖,𝑡|)) × 𝑀𝑖 

 

Calculate the Monotonicity matrix: 

𝑀𝑖 = |
#

𝑑

𝑑𝑆𝑜𝐻𝑖
>0

𝑛−1
−

#
𝑑

𝑑𝑆𝑜𝐻𝑖
<0

𝑛−1
| (8) 

Estimated 𝑆𝑜𝐻𝑓,𝑡 
by segment-based feature fusion 
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have not exceeded the threshold. The segments obtained from 

these features have been displayed in Table 2. 

 

 

Figure 6. Simulated features 

 

 

Table 2. Segmentation points for feature 𝑭𝒊 
İ 1 2 3 4 5 6 

Fi(1: S
1) 103 99 110 x x 98 

𝑭𝒊(𝑺
𝟏 + 𝟏: 𝑺𝟐) 200 200 200 x x 200 

S1 stands for first segment point 
x - features that segmentation led to one segment 

 

The effect of the segmentation can be observed with the 

change of weight values used in the fusion. The change of 

weight values in the fusion process for all three scenarios for 

feature 1, feature 2 and feature 5 has been given in Figure 7. 

Feature 1, feature 2 represent segmented features, whereas 

feature 5 represent unsegmented features. As seen from the 

Figure 7.a, if features are not segmented, the weights of 

feature 1 and 2 are low due to the phase without a trend. 

Feature 5 has higher weight values since it has continues 

trend in the whole life.  

 

As seen from the Figure 7.b, if the features are segmented, 

then first phase of the feature two has high weights due to the 

trend in the first phase. However, the weight values drop 

dramatically in the second phase. In contrary, the weight 

values of feature 1in the initial phase is low due to the lack of 

trend. They increase in the second phase with the trend. As a 

result, one can observe the value of segmentation through 

better evaluation of features in different phases of life with 

the changing weight values that are used in fusion process. 

Different phases contribute differently in the fusion process 

avoiding negative effect of a phase to the evaluation of a 

feature.  

 

 
Figure 7. Weight changes in a) without segmentation, b) 

with segmentation 
 

The change of weight values depends on the monotonicity of 

the features. High monotonicity leads to high weight values. 

Table 3 displays the monotonicity values for features in three 

scenarios. Monotonicity of all features without segmentation 

is given in the first column. If a feature is segmented, 

monotonicity values for each segment are given in last two 

columns. As seen from the table, segmentation process leads 

to two monotonicity values; one is lower, the other is higher 

than the monotonicity value of the same feature without 

segmentation. This shows that the negative effect of 

unsegmented approach when the same monotonicity is used 

for all phases of the feature. It is important to identify the 

phase that is highly correlated with the failure progression 

and give high importance to this feature in this phase as well 

as ignoring the uncorrelated phase.  
 

Table 3. Feature monotonicity coefficients 
  Unsegment Segmented 

 i 𝑭𝒊 𝑭𝒊(𝟏: 𝑺
𝟏) 𝑭𝒊(𝑺

𝟏 + 𝟏:𝑺𝟐) 

M
o
n
o

to
n

ic
it

y
 c

o
ef

fi
ci

en
t 1 0.23 0,04 0,42 

2 0.16 0,39 0,07 

3 0.27 0,16 0,38 

4 0.43 x x 

5 0.47 x x 

6 0.41 0,35 0,47 

 

Figure 8 displays the SoH estimation results for all three 

scenarios. As seen from the figure, the segmented fusion 

results give better SoH estimation. Especially improvement 

in SoH estimation in the first phase is better observed.  SoH 

estimation errors for each feature individually and fused 

features are given in Table 4 as Root Mean Square Error 

(RMSE).As seen from the table, segmented fusion reduces 

the error more than half (from 0.032 or 0.025 to 0.012). 

Results show that segmentation based feature fusion 

improves SoH estimation. 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

7 

 
Figure 8. SoH estimation by fusion for a) Scenario 1, b) 

Scenario 2, c)Scenario 3 

 

 

Table 4. SoH estimation errors 
 F1 F2 F3 F4 F5 F6 Fused 

Individual 0.059 0.060 0.054 0.039 0.015 0.036  

Unsegmented       0.032 

Selected       0.025 

Segmented    * *  0.012 

* - features that segmentation led to one segment,  - features used,  - features not used 

4.2. Li-ion Degradation: 

Li-ion batteries have been used in many areas in today’s 

world. SoH estimation and prognostics play crucial role in 

reliability, safety, and cost of lithium-ion batteries [28]. This 

section discusses application of the presented methodology 

on the degradation data obtained from li-ion batteries in the 

lab environment.  

LiFePO4 14505 with 0.6Ah capacity and nominal voltage 

of 3.2V is used for tests. Figure 9 shows the experimental 

setup used for the accelerated degradation tests. An 

accelerated test consists of three main phases: cycling, test 

measurement, and characterization. Prior to cycling process, 

cell is kept under 45 °C for two hours to stabilize cell 

temperature. Cycling process for Li-ion cell is carried out by 

charging cell up to 3.6V with constant current of 0.6Ah which 

is known as galvonastatic mode and discharging cell up to 

cut-off voltage 2V, which is known as potentiostatic mode, 

with the same amount of current. After completing each 20 

cycles, SoH and internal resistance features were tested to 

make sure whether aging threshold is met or not. A final 

characterization test takes place right after if the cell has met 

its predefined SoH threshold, where EIS and other 

characterization   tests were applied to extract SoH indicatory 

features of cell. Figure 10 displays the procedure applied for 

the accelerated tests.  

 

 
Figure 9. Experimental rig 

 

Several measurements have been collected during the 

accelerated tests such as charge time, constant charge/voltage 

time, peak to peak values from charge/discharge rest time 

OCV curves (Figure 11), and internal resistances through 

Electrochemical Impedance Spectroscopy (EIS). These 

measurements have been further processed to obtain different 

features such as different types of resistances within the 

battery. Figure 12 displays the examples of the features 

through the life time of batteries.y-axis displays values of the 

features, whereas the x-axis gives the time within a cycle. The 

progression of the features as the battery degrades is shown 

as different lines in the figure. The change in the shape of the 

line in the figure indicates the failure progression. 

Capacity shown as first graph in the figure above is discharge 

capacity obtained through integration of discharge current 

using Coulomb Counting. Capacity is used as the ground 

truth SoH value to be used for comparison of SoH 

estimations. Following features for Li-ion battery 

degradation have been used for SoH estimations: Feature 1 

charge time (Chg) time spent in both galvonastatic and 

potentiostatic modes of charging process. Feature 2 is 

constant current charge time (CC) spent for battery to reach 

voltage level of 3.6V. Feature 3 is the time spent for charging 

with reducing current up to 60 mAh after voltage reaches to 

3.6V. Feature 4 is calculated from individual charge OCV 

curves as the distance between peak values. Similarly feature 

5 is obtained from individual discharge OCV curves. Features 

6, 7, 8, and 9 are internal resistances at 100 and 0% SoC levels 
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measured through electrochemical impedance spectroscopy 

(EIS). 

Figure 10. Diagram of aging cycle and characterization 

steps 

 

 
Figure 11. Charge/Discharge OCV curves at resting time. 

 
 

The features have been converted into SoH values using the 

formulas in equation (2) and (3).The SoH obtained from the 

individual features are depicted in Figure 13. 

 

 
Figure 12. Features obtained with degradation of Li-ion 

battery 

 

 
Figure 13. SoH change based on individual features. 

 

 

Since Li-ion batteries are electro-chemical substances, 

degradation of batteries are highly dependent onto the 

environmental changes such as; temperature and aging cycle 

profiles. Thus, accurate SoH estimation of Li-ion batteries 

should involve analysis of multiple features. The fusion 

process has been performed using two scenarios to evaluate 
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the value of the presented approach. Scenario 1 involves 

fusion of all features without segmentation process, whereas 

Scenario 2 involves fusion of all features with segmentation.  

 

The weight values of three features (i.e., charge time, 

resistance R1 and R2) used in the fusion process for both 

scenarios are displayed in Figure 14. As seen in Figure 14.a, 

weight values are stable since no segmentation is involved. 

When segmentation is applied, the weight values of features 

‘R1 and R2’ decreases in the second phase (after 107th cycle 

for R1, 105th for R2). This can easily be understood by 

observing the change in the trend in the initial and latter 

phases of the features. The drop in weight values of R1 is 

higher since the trend difference between the phases is 

higher.  

 

 
Figure 14. Weight change a) without segmentation, b) with 

segmentation only for R1 and R2. 

Table 5 displays the monotonicity values used to obtain the 

weight for the features in two scenarios. Monotonicity values 

of unsegmented features as well as phases of features for 

segmented features are given in the table. As seen from the 

table, the monotonicity values are increased when the 

features are segmented compared to the monotonicity values 

without segmentation. 

 

Table 5. Feature monotonicity coefficients 
  Unsegment Segmented 

 i 𝑭𝒊 𝑭𝒊(𝟏: 𝑺
𝟏) 𝑭𝒊(𝑺

𝟏 + 𝟏:𝑺𝟐) 

M
o
n
o

to
n

ic
it

y
 c

o
ef

fi
ci

en
t 

1 0.86 x x 

2 0.73 x x 

3 0.22 0.50 0.07 

4 0.28 0.45 0.08 

5 0.38 0.56 0.16 

6 0.44 0.68 0.16 

7 0.34 0.57 0.02 

8 0.17 0.29 0.01 

9 0.16 0.14 0.18 

 

Figure 15 displays the SoH estimation results for both 

scenarios. As seen from the figure, the segmented fusion 

results give better SoH estimation. The SoH estimation errors 

based on individual features and fused features with and 

without segmentation are given in Table 6 as Root Mean 

Square Error (RMSE). As seen from the table, the estimation 

error has been reduced more than half in the segmented 

analysis compared to the unsegmented analysis.  

 

 
Figure 15. SoH estimation by fusion for a) Scenario 1, b) 

Scenario 2. 

Table 6. SoH estimation errors 
 F1 F2 F3 F4 F5 F6 Fused 

Individual 0.059 0.060 0.054 0.039 0.015 0.036  

Unsegmented       0.032 

Selected       0.025 

Segmented    * *  0.012 

* - features that segmentation led to one segment,  - features used,  - features not used 

 

As depicted in Figure 16 above, integrating all features 

without segmentation does not make fusion to converge to 

the SoH efficiently. Feature fusion with dynamic feature 

evaluation through segmentation gives pretty good results in 

SoH estimation. 

5. CONCLUSION 

Static analysis of features based on the whole life cycle may 

mislead the feature evaluation. Features may reflect the SoH 

differently in different phases of the life of the electro-

mechanical system. It is important to take the most value 

from good representative phases of the features and avoid the 

negative effects of bad representative phases. A methodology 

for dynamic evaluation of features has been presented. A 

fusion process has been developed that use the dynamic 

evaluation of features that involves segmentation of features 

based on monotonicity. The presented approach has been 

demonstrated in simulated and Li-ion battery degradation 

data. The results show that segmentation of features prior to 

fusion improves SoH estimation results. Optimization of 
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number of segments and handling variance in segmentation 

points from different samples are the future research topics. 
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