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ABSTRACT 

This paper addresses the problem of building trust in online 

predictions of a battery powered aircraft’s remaining 

available flying time. A set of ground tests is described that 

make use of a small unmanned aerial vehicle to verify the 

performance of remaining flying time predictions. The 

algorithm verification procedure described here uses a fully 

functional vehicle that is restrained to a platform for repeated 

run-to-functional-failure experiments. The vehicle under test 

is commanded to follow a predefined propeller RPM profile 

in order to create battery demand profiles similar to those 

expected in flight. The fully integrated aircraft is repeatedly 

operated until the charge stored in powertrain batteries falls 

below a specified lower-limit. The time at which the lower-

limit on battery charge is crossed is then used to measure the 

accuracy of remaining flying time predictions. Accuracy 

requirements are considered in this paper for an alarm that 

warns operators when remaining flying time is estimated to 

fall below a specified threshold. 

1. INTRODUCTION 

Improvements in battery storage capacity have made it 

possible for general aviation vehicle manufacturers to 

consider electrically-powered solutions. The development of 

trust in battery remaining operating time estimates, however, 

is currently a significant obstacle to be overcome when 

considering adoption of electrical propulsion systems in 

aircraft (Patterson, German & Moore, 2012). There are 

several ways in which predicting remaining operating time is 

more complicated for battery-powered vehicles than it is for 

vehicles with a conventionally-powered liquid-fueled 

combustion system. Unlike a liquid-fueled system, where the 

fuel tank’s volume remains unchanged over successive 

refueling procedures, a battery’s charge storage capacity will 

diminish over time. Another complicating feature of a battery 

system is the time-varying relationship between battery 

output power and battery current draw. Whereas a 

conventional liquid combustion system uses an 

approximately constant amount of liquid fuel to produce a 

given motive power, the power from a battery system is equal 

to the product of battery voltage and current. Thus, as 

batteries are discharged, their voltages drop lower, and they 

will lose charge at a faster rate. 

Our previous papers introduced several new tools for battery 

discharge prediction onboard a small electric aircraft. One 

paper described a battery equivalent circuit model to simulate 

battery state (Bole, Teubert, Quach, Hogge, Vazquez & 

Goebel, 2013). The model’s battery capacity, internal 

resistance and other parameters were identified through two 

laboratory experiments that used a programmed load. The 

batteries were slowly discharged in one experiment. In the 

other experiment a repeated pulsed loading was done. Current 

Edward Hogge et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

mailto:edward.f.hogge@nasa.gov
mailto:thomas.h.strom@nasa.gov
mailto:brian.m.bole@nasa.com
mailto:sixto.l.vazquez@nasa.gov
mailto:cuong.c.quach@nasa.gov
mailto:boyd.l.hill@nasa.gov


ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

2 

and voltage profiles logged during flights of a small electric 

airplane further tuned the battery model (Quach, Bole, 

Hogge, Vazquez, Daigle, Celaya, Weber & Goebel, 2013). 

The use of a flight plan with upper and lower uncertainty 

bounds on the required energy to complete the mission 

successfully was presented along with an approach to identify 

additional parasitic battery loads (Bole, Daigle & Gorospe, 

2014). This paper introduces a verification testing procedure 

that is intended to build trust in predictions of remaining 

flying time prior to actual flight testing. The philosophy 

behind the testing procedure described here is to translate 

system performance and safety goals into requirements for an 

alarm that warns system operators when the estimated 

remaining flying time falls below a certain threshold. Ground 

testing of the actual vehicle provides the closest possible 

testing conditions short of actual flight and captures some of 

the variation that the powertrain hardware and that the pilot 

may introduce while avoiding the risks inherent in flight. For 

instance, the batteries may be drained to a lower capacity 

during testing of the remaining flying time prediction without 

danger of vehicle loss. 

A small electric unmanned aerial vehicle (e-UAV) was used 

in this study. The e-UAV is a 33% sub-scale version of the 

Zivko Aeronautics Inc. Edge 540 T tandem seat aerobatic 

aircraft. This vehicle has been actively used by researchers at 

NASA LaRC to facilitate the rapid deployment and 

evaluation of remaining flying time prediction algorithms for 

electric aircraft since 2010. Examples of prior works using 

this platform are found in the following papers: (Saha, 

Koshimoto, Quach, Hogge, Strom, Hill, Vazquez & Goebel, 

2011), (Hogge, Quach, Vazquez & Hill, 2011), (Daigle, 

Saxena & Goebel, 2012), and (Bole et al., 2013).  

Remaining flying time prediction algorithms focus on the 

prediction of battery charge depletion over an e-UAV flight. 

A lower-bound on the battery state of charge (SOC) that is 

considered safe for flight is set at 30% in this work. Flying 

the vehicle with batteries below 30% SOC is considered to be 

a high-risk mode of operation that violates the vehicle’s safe 

operating guidelines. Such violations of operating guidelines 

are referred to here as a functional failure of the vehicle’s 

mission.   

The accuracy of onboard remaining flying time estimation 

algorithms is tested in this work, by conducting a series of 

controlled run-to-functional-failure experiments on the 

ground. The vehicle under test was strapped down to a 

platform and commanded to follow an RPM profile that 

creates battery demand profiles similar to those expected for 

flight. A picture of the e-UAV strapped down for ground-

based testing is shown in Fig. 1.  

The time it takes for powertrain batteries to reach 30% SOC 

establishes a truth value for the functional failure time. 

Unlike actual flight tests, powertrain batteries can be 

repeatedly run down to their lower-limits in the ground-based 

testing described here to verify the accuracy of remaining 

flying time predictions. 

The primary use-case for remaining flying time predictions is 

to warn system operators when landing procedures must be 

initiated to avoid aircraft batteries falling below 30% SOC. 

After consulting with system operators, it was determined 

that initiating landing procedures at least two minutes before 

e-UAV batteries would reach 30% SOC under normal 

operations provided a sufficient energy buffer for landing 

maneuvers. The predictive element to be tested in this work 

is an alarm that warns system operators when the powertrain 

batteries are two minutes from reaching 30% SOC under 

normal operations.  

System operators were also consulted to identify 

performance requirements on the prognostic alarm. The 

defined performance requirements were then verified by 

repeating ground-based run-to-functional-failure tests a 

specified number of times. The performance requirement 

testing procedure explained here was originally introduced in 

(Saxena, Roychoudhury, Lin & Goebel, 2013).   

Section 2 of this paper provides an overview of the Edge 

540T powertrain. Algorithms used for onboard battery state 

estimation and remaining flying time predictions are 

summarized in Section 3. The process used to verify onboard 

remaining flying time predictions through ground testing and 

experimental results are described in Section 4. Finally, 

concluding remarks are given in Section 5. 

2. OVERVIEW OF EDGE 540T POWERTRAIN 

A wiring diagram for the vehicle powertrain is shown in Fig. 

2. The aircraft has two 3-phase tandem motors that are 

mechanically coupled to the aircraft propeller. Powertrain 

batteries are arranged in two pairs of series connected battery 

packs. A switchable parasitic load Rp is present to test the 

robustness of remaining flying time estimation algorithms to 

changes in battery loading demands. The other symbols in the 

figure identify the location of current and voltage sensors. 

Remaining flying time predictions are generated by 

propagating present battery charge estimates forward. 

Forward propagation of present battery state estimates is 

 
Figure 1. The Edge 540 T Rapid Evaluation e-UAV 
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performed using estimates of future powertrain demands that 

will occur over a known flight plan. These future loads 

include propeller loads and parasitic loads. The prognostic 

tools used in this work make use of a known flight plan to 

inform future load predictions, but no prior information is 

assumed to be available regarding when a parasitic load may 

be injected.  

3. REMAINING FLYING TIME PREDICTION 

Battery discharge prediction is described here in terms of the 

following components; (i) online battery state estimation; (ii) 

prediction of future battery power demand as a function of an 

aircraft flight plan; (iii) online estimation of additional 

parasitic battery loads; and (iv) prediction of battery 

discharge over the future flight plan. The assumptions and 

algorithms used for each of these steps are summarized in this 

section. 

3.1. Online Battery State Estimation 

Our previous papers (Quach et al., 2013) and (Bole et al., 

2014), described the use of an equivalent circuit model and 

unscented Kalman filtering (UKF) to update battery state 

estimates based on observations of current and voltage at the 

battery output terminals. This approach is also summarized 

here for convenience. Figure 3 shows an equivalent circuit 

battery model that is used to represent battery output voltage 

dynamics as a function of battery current. This battery model 

contains six electrical components that are tuned to recreate 

the observed current-voltage dynamics of the Edge-540T 

battery packs.  The bulk of battery charge is assumed to be 

stored in the capacitor, Cb. The (Rs, Cs) and (Rcp, Ccp) circuit 

element pairs are used to simulate standard battery 

phenomenon, such as internal resistance drops and hysteresis 

effects. Additionally, because battery input-output dynamics 

will change as a function of internal battery charge, it is 

necessary to parameterize some of the circuit components in 

terms of the bulk charge stored in Cb
, as described in (Zhang 

and Chow, 2010). 

The UKF takes in the measured battery current and voltage, 

and gives probability distributions for the charge states of 

each of the three capacitors in the equivalent circuit model as 

output. Implementation details for the equivalent circuit 

model and UKF state estimation are omitted here. Readers 

interested in the application of UKF to the estimation of 

battery SOC are referred to our previous paper, (Bole et al., 

2014). It is sufficient to state here that the equivalent circuit 

battery model and the UKF state estimation routine are 

assumed to do an adequate job of tracking the total charge 

within the battery over an arbitrary usage profile. 

The ratio of a battery’s current charge to its maximum charge 

storage capacity is typically referred to as the state of charge 

(SOC). Battery SOC is defined here as: 

max

max1
C

qq
SOC b

   (1) 

where qb represents the charge stored in capacitor Cb, qmax is 

the maximum charge that the battery can hold, and Cmax is the 

maximum charge that can be drawn from the battery in 

practice. Here, Cmax will always be less than qmax, due to 

electrochemical side-reactions that make some portion of a 

battery’s charge carriers unavailable. As the battery ages 

more of its internal charge will become unavailable because 

of these side reactions. The Cmax parameter must be refitted 

periodically to capture this effect. 

3.2. Prediction of Motor Power Demand as a Function of 

Aircraft Flight Plan 

After estimating battery state, the next step towards 

predicting remaining flying time is the estimation of motor 

power demand over the remainder of a given flight plan. The 

aircraft’s flight plan is assumed here to be specified in 

advance in terms of a fixed set of segments. Each segment 

includes a desired vehicle airspeed along with an expected 

duration or other ending condition. An example flight plan is 

defined here as: 

 
Figure 3. Lithium-Ion battery equivalent circuit model 

 

 
Figure 2. Schematic of electric Powertrain. 
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1. Takeoff and climb to 200 m: desired airspeed = 20 

m/s, duration = 1.0 min 

2. Maintain altitude, airspeed set point: desired 

airspeed = 23 m/s, duration = 3.0 min 

3. Maintain altitude, increase airspeed set point: 
desired airspeed = 25 m/s, duration = 2.0 min 

4. Maintain altitude, decrease airspeed set point: 
desired airspeed = 18 m/s, duration = 2.0 min 

5. Maintain altitude, increase airspeed set point: 
desired airspeed = 23 m/s, duration = fly until landing 

is called by monitors on the ground. 

6. Remote control landing: airspeed and duration may 

vary widely depending on pilot and environmental 

conditions. 

It is important to understand the granularity at which the 

flight plan is specified. Note that this flight plan specifies 

desired speed set points, but does not specify a rate at which 

the vehicle must switch from one speed to another. Also note 

that while the flight plan specifies a desired speed, it does not 

specify exactly how close the aircraft must be to the desired 

speed. These details are left open to the interpretation of the 

pilot or autopilot.  

The energy needed for an aircraft to fly the remainder of a 

given flight plan will necessarily be uncertain due to random 

variation in pilot behavior and environmental conditions. A 

minimum, maximum, and median motor power demand for 

each remaining segment of the flight plan is used in this work 

to represent prediction uncertainty. These three power 

estimates can then be integrated to form predictions of the 

minimum, maximum, and median motor energy consumption 

over the remaining flight plan.  

Figure 4 shows sample predictions of future motor power and 

energy demand over segments 1-5 of the given flight plan. 

Here, segment 5 of the flight plan is shown to extend out 

indefinitely, representing the intent to continue flying until 

the ground team calls for a landing. The median motor power 

demands are estimated for each flight plan segment using a 

previously developed model, discussed in Bole et al. (2013) 

and Bole et al. (2014). A plus or minus 30% error margin 

around the median motor power demand estimate was used 

to generate the minimum and maximum predictions shown in 

Figure 4. 

A constraint on the minimum battery SOC required for safely 

landing the aircraft is considered to limit the aircraft’s 

maximum safe flying time. This minimum SOC threshold is 

considered here to be 30%. Prediction of available flying time 

remaining can thus be considered in this example as the time 

until the battery SOC reaches 30%, assuming that a landing 

will not be called until the last possible moment. A triplet of 

minimum, maximum, and median remaining flying time 

estimates will ultimately be produced by estimating when the 

battery SOC threshold would be reached for each of the 

minimum, maximum, and median motor power profiles. 

3.3. Online Estimation of Additional Parasitic Battery 

Loads 

Parasitic demands on the battery system that cannot be known 

in advance are simulated with a resistive load that may be 

injected in parallel with the aircraft batteries at any time 

during flight. This parasitic load is denoted as Rp in Fig. 2. 

The magnitude of the parasitic load is assumed to be 

unknown. An online filtering routine, described in Bole et al. 

(2014), was shown to rapidly converge on estimates of 

parasitic load using data from the current and voltage sensors 

shown in Fig. 2. A battery current profile and parasitic load 

estimates from a sample aircraft data set is shown in Fig. 5. 

Here, a 5.5 Ω parasitic load is injected in parallel with the 

aircraft batteries at 5 minutes into the run. The time at which 

the parasitic load is injected is shown with a dashed line on 

the third column of plots in Fig. 6. At the time the load is 

injected the battery current is seen to become notably higher 

 
Figure 4. Uncertain predictions of motor power and energy draw over the sample flight plan 
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than the motor current. The estimated parasitic load is then 

seen to rapidly converge to approximately 5.5 Ω. 

Online parasitic load estimates are directly incorporated into 

battery discharge predictions. This results in an immediate 

shift in battery discharge predictions each time the parasitic 

load estimate is updated. This immediate shift in discharge 

predictions is demonstrated in the following subsection. 

3.4. Predicting of Battery Discharge Over a Flight Plan 

Figure 6 shows plots of measured and predicted battery 

current, voltage, and SOC at three sample times over the 

battery discharge run. The minimum, median, and maximum 

predictions are plotted from each sample time until the 

predicted SOC reaches 30%. 

The predictions made at the first two sample times occur prior 

to parasitic load injection. These predictions are seen to 

under-estimate the future battery current loads, resulting in 

over-estimates of future battery voltage and SOC. The 

parasitic load has been detected by the third sample time, and 

the predictions at that time are seen to be much more closely 

centered on the measured evolutions of battery current, 

voltage, and SOC. 

Figure 7 shows predictions of remaining flying time for the 

example run shown in Fig. 6. The dashed line in Fig. 7 

indicates the true flying time remaining. The solid line in Fig. 

7 represents the median remaining time prediction. The bars 

in Fig. 7 represent the interval between the minimum and 

maximum remaining time prediction. Here, the true flying 

time remaining is found by subtracting the current time from 

 
Figure 5. Sample motor and battery current profiles (top), 

along with parasitic load estimates (bottom) 

 
Figure 6. Example plot of measured and predicted battery current (top) and voltage (bottom) shown at three sample times over 

a trial battery discharge run  
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the time at which the lowest battery SOC crossed 30%. The 

predictions are seen to overestimate remaining flying time 

until the parasitic load is detected at about 5 minutes into the 

run. After the parasitic load is detected the remaining flying 

time predictions are immediately shifted down. 

4. GROUND TEST VERIFICATION OF REMAINING FLYING 

TIME PREDICTION 

The ground-based verification testing of Edge 540 T 

hardware and software was performed by strapping the 

vehicle down in the LaRC Electromagnetics and Sensors 

Branch High Intensity Radiated Fields (HIRF) test chamber. 

More information about the HIRF Chamber can be found in 

a report of an earlier UAS radio frequency emissions test in 

(Ely, Koppen, Nguyen, Dudley, Szatkowski, Quach, 

Vazquez, Mielnik, Hogge, Hill & Strom, 2011). The airplane 

was placed upon expanded-polystyrene blocks centered 

within the chamber, as seen in Fig. 8. The aircraft powertrain 

with propeller was operated with the vehicle anchored using 

a steel cable to the chamber wall. Its motor and actuators 

were operated from another room using the same remote 

control radio that will be used in flight tests.  

Measured aircraft states, battery SOC estimates, and 

remaining flying time estimates were broadcast to a ground 

station over a wireless downlink. The ground station also had 

an uplink interface that enables the aircraft’s autopilot to 

autonomously follow a given flight plan in chamber testing. 

This autopilot hardware-in-the-loop interfacing capability is 

discussed in (Bole et. al., 2013). 

Only manual control was used for the test results described 

in this paper, although the autopilot interface is expected to 

be used in future work. Aircraft propeller RPM, estimated 

battery SOC, and predicted flying time remaining were 

displayed to system operators by the ground station in near 

real-time. The motor throttle was commanded using the 

control radio by a manual operator, who read the RPM 

display from the ground station. The operator adjusted the 

remote control throttle to maintain the target values for the 

time duration as determined by the flight plan described in 

Section 3.2.  The test proceeded until a 28% SOC condition 

was indicated on the ground station display for the lowest 

 
Figure 8. Ground test chamber setup for active motor simulated flight 

Ground Station

Downlink:

• Aircraft position, speed & 
acceleration 

• Throttle and control surface 
positions

• Propeller RPM

• Battery currents, voltages & 
temperatures

• Motor current, voltages & 
temperatures

• Battery SOC estimates

• Remaining flying time estimates

Uplink:

• Autopilot hardware-In-the-loop 
interface

Edge 540 T Rapid Evaluation e-UAV

 
Figure 7. Predicted remaining flying time 
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battery. Battery current draw was then stopped and 

powertrain batteries were allowed to rest for approximately 

one hour. The battery terminal voltages at rest were used 

compute an empirical approximation of ending battery SOC. 

Onboard data logging during the experiment runs was 

performed by the data system described in (Hogge, 2011).  

4.1. Performance Requirements 

The specification of performance requirements for ground 

verification of remaining flying time predictions is described 

next. The predictive element to be tested in this work is an 

alarm that warns system operators when the powertrain 

batteries are two minutes from reaching 30% SOC under 

normal operations.  

Accuracy requirements for the two minute warning were 

specified as: 

 The prognostic algorithm shall raise an alarm no later 

than two minutes before the lowest battery SOC 

estimate falls below 30% for at least 90% of 

verification trial runs. 

 The prognostic algorithm shall raise an alarm no 

earlier than three minutes before the lowest battery 

SOC estimate falls below 30% for at least 90% of 

verification trial runs. 

 Verification trial statistics must be computed using at 

least 20 experimental runs  

Here, the two minute alarm is biased to occur early rather 

than late since the landing becomes unsafe if not enough fuel 

reserve is present. The early alarm prediction bound limits the 

“opportunity cost” of unnecessarily denied flying time. 

The requirement definitions above use the term “SOC 

estimate”, because the UKF state estimation algorithm, 

described earlier, is relied upon to provide online estimates 

of battery SOC from measured battery current and voltages. 

A more direct measurement of battery SOC can be obtained 

after the experimental run is complete by allowing batteries 

to rest until the terminal voltage settles to a constant value. 

There is a known relationship between resting battery voltage 

and SOC that can then be used to compute the ending SOC 

of all powertrain batteries. The difference between the 

estimated battery SOCs at the end of each experimental run 

and the measurement of SOC that is computed from the 

resting battery voltage is referred to here as the ending SOC 

estimation error.  

An additional requirement for remaining flying time 

verification testing specifies maximum bounds on the ending 

SOC estimation error: 

The ending SOC estimation error as identified from the 

resting battery voltage must be less than 5% for at least 

90% of verification trail runs. 

4.2. Experimental Results 

Figure 9 shows the difference between the time at which the 

two minutes remaining alarm was raised and the time at 

which the lowest battery SOC estimate crosses 30% for 26 

verification runs. Runs that were performed with and without 

parasitic load injection are identified in the figure. The 

vertical lines in the figure indicate the bounds on acceptable 

alarm accuracy. Only one verification run out of the 26 

performed is seen to violate the desired accuracy bounds. The 

requirement that 90% of trials pass this benchmark is thus 

seen to be satisfied. 

Figure 10 shows box plots of the SOC estimation error 

measured over the 26 verification runs performed. Because 

each verification run requires 4 powertrain batteries, 104 

measurements of SOC estimation error are produced. Only 

one of these measurements falls outside of the 5% error 

tolerance allowed. The requirement that 90% of trials pass 

this benchmark is thus seen to be satisfied. 

5. CONCLUSION 

A procedure for verifying the performance of remaining 

flying time predictions for a small electric aircraft was 

demonstrated. Aircraft battery packs reaching 30% SOC in 

flight was defined as high risk operation for our experimental 

flying vehicle, to be avoided if possible. Ground-based 

simulated flight testing was shown to enable a safe means of 

running the aircraft power train to 30% SOC in order to 

obtain an empirical measurement of the aircraft’s available 

safe operating time. 

Ground-based testing enables repeatable run-to-functional-

failure testing of remaining flying time predictions using the 

integrated flight vehicle. Repeatable testing such as that 

 

Figure 9. Two-minute alarms for 26 runs 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

8 

described in this paper is necessary to effectively debug, tune, 

and build trust in prognostic algorithms prior to deployment 

in mission critical applications. 
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