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ABSTRACT

This paper evaluates data-driven asset prognostic models
from a modelling ecosystem perspective, which includes data
description, uncertainty quantification, model selection justi-
fication and validation, and application limitations. An eas-
ily accessible and comprehensive ecosystem enables efficient
reproducibility of previous work to facilitate both the adop-
tion of the models by industry and the development of future
scientific methods. The results of this study enable the de-
velopment of a list of ecosystem elements to accompany the
publication of new models. By describing the ecosystem in
the communication of new models, researchers can ensure the
reproducibility of their models in the wider prognostic com-
munity.

1. INTRODUCTION

Prognostics and health management (PHM) is a process that
enables the assessment of an asset’s reliability under its ac-
tual application conditions (Pecht, 2008). An integral ele-
ment of PHM is the ability to predict the remaining useful
life (RUL) of an asset through the use of prognostic models.
The ability to develop and use prognostic models is a nec-
essary competency for manufacturers, service providers and
asset operators as a means to ensuring assets are reliable, safe,
and cost-effective.

Prognostic methods can be broadly classified into two ap-
proaches: physics of failure and data-driven. The primary fo-
cus of this paper is on data-driven prognostics in which data is
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collected from laboratory-scale or in-service industrial, com-
mercial, or infrastructure assets. The data required for these
data-driven models can include internal covariates (e.g., tem-
perature, vibration) measured by sensors on the asset and only
present when the asset is operating and external covariates
(e.g., weather data, location), which are present whether or
not the asset is operating. This data and an appropriate mod-
elling method(s) generate the RUL estimation. Considerable
work has been done since the 1980s by academics and the
PHM community to develop prognostic models. However,
although asset data is widely used by industry for diagnosis
and fault detection, the use of data-driven prognostic mod-
els to predict RUL of commercial and infrastructure assets is
not part of business-as-usual (Sikorska, Hodkiewicz, & Ma,
2011).

In many sectors, PHM model implementation by industry is
in its infancy, in part due to practical difficulties of real-world
implementation. There is often a lack of available data to
validate techniques, since industry seldom allows their as-
sets to run to failure (Kan, Tan, & Mathew, 2015; Saxena,
Goebel, Simon, & Eklund, 2008). Other issues affecting
the uptake of PHM by industry include how to assess model
performance and uncertainty quantification (Sankararaman,
Saxena, & Goebel, 2014). This paper considers these issues
alongside a broader movement in the science community to-
wards greater reproducibility.

Reproducibility of scientific findings is currently a topic of
interest in many differing fields, including psychology (Open
Science Collaboration, 2012), biostatistics (Peng, 2009), epi-
demiology (Peng, Dominici, & Zeger, 2006), and land ecol-
ogy (Gutzwiller & Riffell, 2014). These studies have shown
concerns for the reproducibility of previous findings, which
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has brought the validity of some past results into question.
The journals Nature and Science have published editorials on
the matter stating that “Reproducibility, rigour, transparency
and independent verifications are cornerstones of the sci-
entific method” (McNutt, 2014). Some journals have set
submission requirements, such as full data and code trans-
parency, to ensure the reproducibility of future findings. En-
forcing data and code transparency enables 1) verification of
past findings, 2) alternative analysis to address model suit-
ability, 3) raising of concerns with initial findings that may be
detrimental to further research, and 4) speeding up the devel-
opment of ideas among researchers.

Improvements in the ability to reproduce PHM models may
be helpful in improving the uptake and use of these models
in industry. To standardise PHM reproducibility, the “mod-
elling ecosystem” has been defined as a group of elements
prevalent in all prognostic models. This definition is similar
to other reproducibility recommendations shown to be com-
mon in other sciences. Suggested communication recommen-
dations are given for each of these elements to ensure repro-
ducible and transparent research.

The remainder of this paper is organised as follows: Section 2
presents the background of reproducibility research in other
scientific disciplines. Section 3 suggests some standards of
reproducible research for PHM. Section 4 states the results
and findings of a review of the reproducibility of current PHM
research. Section 5 presents discussion on both the repro-
ducibility recommendations of PHM and on the modelling
ecosystem. Finally, Section 6 states the conclusions of the
research with recommendations for future work.

2. BACKGROUND

Replicability and reproducibility vary in definition across dis-
ciplines and authors. This paper uses definitions as given in
(Leek & Peng, 2015). The replicability of a study is defined
as the confirmation of previous findings by using independent
data, research techniques, laboratories, equipment, and inves-
tigators. Reproducibility is defined as the ability to recompute
results given the data set and knowledge of the data analysis
pipeline. The replication of scientific findings is the ultimate
standard by which scientific findings are judged, as it acts
to address spurious claims and to enforce a disciplined ap-
proach to scientific findings (Peng, 2011). However, as stud-
ies have increased in complexity they have become harder
to independently replicate, which has led to the reproducibil-
ity of studies becoming the satisfactory standard for scientific
validation. Reports from numerous fields of widespread irre-
producible findings have brought reproducibility concerns to
the forefront of many high-ranking journals (McNutt, 2014;
Nature Editorial, 2014; Casadevall & Fang, 2010; Steckler,
2015).

Attempts to reproduce the findings or assess the reproducibil-

ity of studies in many scientific disciplines have produced less
than favourable results. In 2015, the Centre for Open Sci-
ence released findings from a project to reproduce the work
of 98 studies from three psychology journals. The project
found that only 39 out of 100 cases (two studies were repro-
duced twice each by independent groups) were able to be re-
produced (Open Science Collaboration, 2015). Furthermore,
the research found that whilst 97% of the original studies re-
ported significant results (p-value <0.05), whilst only 36%
of the reproduced studies found significant results. Preclin-
ical research has shown repeated failings of reproducibility
studies. The biotechnology firm Amgen was only able to
confirm the scientific findings of 6 out of 53 papers (Begley
& Ellis, 2012), and pharmaceutical company Bayer Health-
Care reported that only 20%-25% of 67 studies aligned with
their in-house findings (Prinz, Schlange, & Asadullah, 2011).
Lastly, Kilkenny et al. (2009) found in a survey of 271 stud-
ies relating to animal research, that many studies are not seen
to be reproducible based upon the amount of information in-
cluded.

As well as integrity issues, irreproducible research is an eco-
nomic detriment in many fields. Freedman, Cockburn, and
Simcoe (2015) showed that approximately US$28B/year is
spent on irreproducible preclinical research, an estimated
50% of research in the field. Furthermore, a series of five
articles and an editorial published in The Lancet concluded
that 85% of biomedical research funding is being wasted on
research that is inappropriately analysed and inadequately re-
ported (Chalmers et al., 2014; Ioannidis et al., 2014; Salman
et al., 2014; Chan et al., 2014; Glasziou et al., 2014; Macleod
et al., 2014).

In response to these findings and others, organisations such as
journals, academia, and government bodies have taken mea-
sures towards ensuring the reproducibility of future published
studies (McNutt, 2014; Nature Editorial, 2014; Nosek et al.,
2015; US National Institutes of Health, 2014). For example,
Nature now mandates that materials, data, code, and associ-
ated protocols are to made promptly available to readers with-
out undue qualifications (Nature, 2016). Bissel (2013) has
warned that the increase in reproducibility exposure should
not encourage scepticism towards other scientists in the field,
but encourage that research is conducted in a scientific and
ethical manner.

3. DEFINING REPRODUCIBLE RESEARCH FOR PHM

Table 1 defines the reproducibility criteria of a prognos-
tic model, adapted from US National Institutes of Health
(2014); Peng et al. (2006); Schwab, Karrenbach, and Claer-
bout (2000). The reproducibility recommendations can be
separated into the three following components: data and code
transparency, documentation, and distribution. These criteria
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Table 1. Developed criteria for PHM reproducibility: data
and code transparency, documentation, and distribution.

Research
Component

Reproducibility Requirement

Data and Code
Transparency

Cleaned data set made available, with possibil-
ity of including preprocessing data set from ac-
quisition stage. Computer code underlying all
predictive modelling elements, figure genera-
tion, and other principal results is made avail-
able with the environment necessary for execu-
tion

Documentation Documentation of the data set, data processing,
and computer code made available to enable
repeat analysis and to conduct similar analy-
ses. Limitations of model inputs, uncertainties,
model selection justification, performance ver-
ification, and application limitations all made
clear

Distribution Software, data, and documentation distributed
in an appropriate manner with appropriate pri-
vacy regulations

are seen to be the minimum standard of reproducibility across
all scientific disciplines that were examined.

At a minimum, the processed data that feeds into the model,
defined as the prognostic data, should be made available. Due
to the nature of PHM, this data is rarely the same as the raw
data set from data acquisition and has likely undergone data
cleaning, data transformation, and feature vector selection.
Whilst not compulsory for reproducibility, it is recommended
that the raw data set is included alongside the processed data.
Further, given that the simplest way to reproduce a reported
outcome is to execute the model, computer code should be
made available for independent verification and validation.

Documentation of analyses and findings is recommended
across all disciplines, however, the suggested contents of the
documentation may differ between disciplines. For PHM re-
search, the suggested documentation should include the fol-
lowing elements: model inputs, uncertainties, model selec-
tion justification, performance verification, and application
limitations. These elements are herein referred to as the
“modelling ecosystem”.

Finally, all of the mentioned elements should be distributed in
an appropriate manner. Whilst journals are the current stan-
dard for research dissemination, they may only accept respon-
sibility for publishing scientific findings. Distribution of data,
code, and attached documentation then becomes the respon-
sibility of the author.

4. STUDY OF CURRENT PHM RESEARCH

To evaluate the adherence of prognostic model papers to the
reproducibility recommendations stated in Table 1, 50 papers
from the journals Mechanical Systems and Signals Process-
ing, Reliability Engineering and System Safety, IEEE Trans-

actions on Reliability, and The International Journal of Prog-
nostics and Health Management were surveyed between the
years 2000 to 2014. Table 2 shows the results of the survey.
Papers were reviewed against a set of pre-chosen criteria se-
lected to reflect both the reproducibility of the models and
attention given to the components of the modelling ecosys-
tem.

To focus results, this survey only considered data-driven
prognostic models. This review will be extended to physics
of failure and hybrid models, however, the inclusion of such
is outside the scope of this study.

Whilst most papers discuss data acquisition, few provide suf-
ficient descriptors of data cleaning or feature selection pro-
cesses. Data acquisition, cleaning, and feature selection are
all widely accepted as being necessary to prognostics.

Model selection justification, in the context of the input data
and the required outputs, occurred in 26% papers. Many pa-
pers, whilst providing descriptions of the existing, adapted, or
newly developed models, did not include reasoning on why
the model type was appropriate for the data.

Sankararaman and Goebel (2015) stated that uncertainty
should be included from system-level conception through to
operations, and not solely in the later stages of development.
Few papers discussed uncertainty and the effects that it may
have on model performance. Whilst many models yielded
stochastic outputs, uncertainty was rarely discussed previous
to the analysis stage. Furthermore, sources of uncertainty and
their effects on the model were seldom discussed. Recent re-
search shows a rise in the inclusion of uncertainty discussion.
34% of the papers surveyed across all years address uncer-
tainty, conversely 52% of papers published in years 2013 and
2014 consider prediction and model uncertainty. A good dis-
cussion and incorporation of uncertainty was found in Sun,
Zuo, Wang, and Pecht (2012), whose results were presented
alongside an initial discussion of uncertainties inherent in the
model and graphically depicted the prediction uncertainty by
use of confidence bounds.

Performance evaluation of models using either basic metrics
or prognostic metrics, developed by Saxena, Celaya, Saha,
Saha, and Goebel (2010), occurred in 50% papers. Due to the
recent development of prognostics metrics with respect to the
age of papers in the review, any performance evaluation was
accepted by the survey as having included performance eval-
uation. However, it should be noted that performance eval-
uation using tailored prognostic metrics should be the future
standard for developments.

Eight papers list the availability and location of the data used,
whilst only one paper mentions code availability. Six out of
the eight datasets available originate from public data stored
in the NASA Ames data repository. Authors have not been
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Table 2. Results from the examination of PHM data-
driven model development papers from: Mechanical Systems
and Signals Processing, Reliability Engineering and System
Safety, IEEE Transactions on Reliability, and The Interna-
tional Journal of Prognostics and Health Management

Criteria No. of papers
Total papers 50

Industrial data used 8
Experimental data used 34
Simulated data used 21

Modelling ecosystem
Data description 33
Model selection justification 13
Performance validation 25
Uncertainty discussion 17
Application limitations 9

Data reported to be available 8
Prognostic model reported to be available 1

contacted regarding private sharing of their data or code and it
is not apparent how many authors would be willing to oblige.

5. DISCUSSION

Reproducible research has been defined by three stages,
across all scientific fields, as outlined in Table 1. Discussion
on the findings of the review, with reference to each stage, is
provided below.

5.1. Data and Code Transparency

Sonnenburg et al. (2007) outlined seven reasons supporting
open source software in the machine learning community, the
first of which being the reproducibility of scientific results
and fair comparison of algorithms. Authors are naturally con-
cerned about dissemination of their data and code, if only due
to potential usage and privacy issues. To combat this, a sys-
tem that allows the partial rights to a data set or computer
code may be implemented to restrict public usage but still
enable transparency. Peng et al. (2006) defined the follow-
ing four possible classes of data licences developed out of the
Creative Commons project, in order of restrictiveness:

1. Full access - Data or code may be used for any purpose.

2. Attribution - Data or code may be used for any purpose
so long as the authors are cited.

3. Share alike - Data or code may be used to produce new
findings or results. Any modifications that are used to
produce new findings must be made available under the
same terms.

4. Reproduction - Data or code may be used for the pur-
pose of reproducing results in the associated published
article or for commenting on those results via a letter to
the editor. No original findings based on the data may be

published without explicit permission from the original
investigators in a separate agreement.

A common concern is that by making data and code open
source researchers may subsequently be limited in their abil-
ity to patent the technology or to create closed-source prod-
ucts for industry. Sonnenburg et al. (2007) argues that careful
selection of a suitable open source license would satisfy the
requirements of most researchers and their employer. Further,
the development of closed-sourced products for industry may
be aided by the use of external open-source contributions. For
further conversation on the economic motivations for open
source software the reader is referred to Riehle (2007).

5.2. Documentation of the Modelling Ecosystem

The elements of the modelling ecosystem, as seen in Figure
1, are widely acknowledged as being important factors in any
prognostic system. One or two of these elements were often
discussed in the 50 publications reviewed. However, docu-
mentation of all elements was seldom seen. It is assumed
likely that many, if not all, of these criteria were addressed
during model development and analysis with only the infor-
mation deemed important by authors included alongside the
findings. Whilst word limitations and avoidance of extrane-
ous information may inhibit inclusions of all of these ele-
ments in publication, it is recommended that this information
be listed elsewhere. At best, the absence of information sur-
rounding model development represents a lack of clarity. At
worst, it may indicate that important assumptions or stages
are not addressed.

Reproducibility is directly influenced by transparency. To aid
model reproduction to assist in wider industry uptake, it is
suggested that the modelling ecosystem should be effectively
documented. It is expected that all models should be designed
to yield repeatable findings for the data that they were de-
signed and tested for, as well as produce similar findings for
data sets within their application limitations.

A summary of the authors’ modelling ecosystem inclusion
recommendations is presented below. It should be noted that
these recommendations have been written as to open up a
conversation about requisite descriptors for prognostic mod-
els, and not as a critique of any prior work. To promote re-
producibility in the prognostics community, documentation
of these recommendations should become standardised and
publication requirements for future prognostic models agreed
upon.

5.2.1. Data Description

In any prognostics model, incoming data is acquired and
cleaned, and then features are selected for analysis. Data ac-
quisition, such as asset classifications (e.g., rpm, power, volt-
age, etc.), sensor placement, and sampling frequency, is of-
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Figure 1. Elements of the prognostic modelling ecosys-
tem: data description, model selection justification, perfor-
mance evaluation, uncertainty quantification, and the appli-
cation limitations.

ten described. However, rarely is the data cleaning or feature
selection mentioned. It is understandable that much of this
work can be highly detailed, and not suitable for publication,
should the focus be on prognostic modelling. In this case sep-
arate publication or documentation of the data cleaning and
feature selection processed are encouraged to be referenced
in the modelling work.

A further challenge is measuring and communicating the
quality of the data for prognostic modelling, as a standard-
ised method for doing so has not as of yet been developed.
Coble (2010) does present an automated method for identify-
ing suitable prognostic parameters based on features such as
trendability, monotonicity, and prognosability. Whilst aiding
in parameter and feature selection, it does still not provide
a metric for evaluating the data as a whole. Evaluating the
suitability of a dataset for prognosis ensures that a clear rela-
tionship with failure behaviour or a reasonable trend is seen,
and that data acquisition is performed correctly.

Appropriate data description should include data acquisi-
tion and should mention the requirements for data inclusion,
as presented in Hodkiewicz and Montgomery (2014), data
cleaning methods, and feature extraction methods. Data ac-
quisition and processing is essential for model reproducibil-
ity, so discussion should be comprehensive enough so that a
skilled researcher can extract the same features from the same
raw data set.

5.2.2. Model Selection Justification

To aid transparency, researchers should discuss the reasons
for their model selection to demonstrate model appropriate-
ness, show consideration has been given to other potential
models, and guard against ‘flavour of the month’ models.
Many reviews have been released presenting advantages and
disadvantages of models as well as selection criteria, such as:

• Aizpurua and Catterson (2015) presented a design deci-
sion framework for model selection. Models are sepa-
rated into data-driven and model-based approaches with
selection flowcharts provided based on input data.

• Sikorska et al. (2011) discussed the advantages and dis-
advantages of prognostic models. Further issues such as
the fitness for purpose of the model for a specific busi-
ness application and the ability of business to support the
use of the model are covered.

• Kan et al. (2015) discussed data-driven modelling op-
tions for non-stationary and non-linear systems. The re-
source requirements of each model are discussed along
with advantages, disadvantages, application history, and
usage requirements. An example of a standardised scor-
ing system is given to rank modelling techniques based
on the machine type, available data, and the performance
evaluation parameters.

• Lee et al. (2014) suggested the implementation of a qual-
ity function as a ranking method for algorithm selection
as well as providing an overview of many prognostic
models.

From the reviews listed above, a number of points relevant
in a model selection discussion include but are not limited to
data type and availability, prediction horizon, expert knowl-
edge required to build and maintain the model, computational
requirements, and management system support (hardware,
software, and competencies required).

5.2.3. Model Performance Evaluation

Classical metrics for performance evaluation have existed in
the literature for many years, including: accuracy (bias), pre-
cision (spread), timeliness, mean square error, and mean ab-
solute percentage error (Vachtsevanos et al., 2006). Fur-
thermore, off-line evaluation metrics have been developed
with specific reference to prognostics, including providing
a prognostic horizon, alpha-beta performance, relative accu-
racy, and convergence (Saxena et al., 2010).

For models to be used for maintenance planning, there is a
work planning period. This period is necessary to ensure the
right resources are available (Kelly, 2006). For the model to
support planned maintenance activities, it must be able to pre-
dict RUL further out than the planning window. For example,
if the planning period is 7 days, the model should be able to
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infer that failure might occur in more than 7 days’ time with
an appropriate level of confidence. Some discussion about
these types of practical issues would assist potential model
users.

5.2.4. Uncertainty

The nature of prognostics results in uncertainties from all
stages of model design and implementation, such as data
noise, sensor error, model uncertainties, processing faults
and prediction uncertainties. The need to discuss uncer-
tainty from representation, quantification, and management
points of view has been widely discussed (Sankararaman &
Goebel, 2015; Sankararaman, Daigle, & Goebel, 2014). Un-
certainty should be included from initial system-level concep-
tion through to operations and not just in the latter stages after
a prediction has been established. An in-depth review of the
impacts, interpretations, sources, types, and challenges of un-
certainty in prognostic models is presented in (Sankararaman,
Saxena, & Goebel, 2014).

Uncertainty quantification is a complex issue, and still the
subject of research in prognostics. Extensive discussion or
quantification of uncertainty may not be feasible or logical for
inclusion of all prognostic papers. This may especially be the
case where follow-up papers would allow for better commu-
nication and research into model uncertainty. However in it’s
nature, all prognostic models will include multiple sources of
uncertainty. At a minimum this should be acknowledged in
the publication of prognostic models, regardless of depth of
subsequent uncertainty analysis and quantification.

5.2.5. Application Limitations

No one-size-fits-all model has been developed, implying the
existence of limitations in all prognostic systems. Industry’s
capability to perform prognostic modelling and distribute out-
puts to users is dependant on the availability of required data,
skilled personnel, and computing infrastructure. Clear de-
scriptions of model inputs, coupled with application limita-
tions, are necessary to allow for transparency with industry
so that tested results can be reproduced in practise (Sikorska
et al., 2011). Whilst selection criteria that outline the advan-
tages and disadvantages for generic models exist, newly de-
veloped or adapted models do not come with this understand-
ing. Examples of application limitations recommended for
inclusion are data processing limitations, robustness to noise
and uncertainties, training requirements, prediction horizon,
and computation limitations. Many of these items can be
covered under model selection justification and performance
evaluation. However, model limitations should be stated con-
cisely and challenges for their practical implementation dis-
cussed.

5.3. Distribution

Journal articles are the most widely used avenue for the pre-
sentation of scientific results, but generally, journals bear
the responsibility of only reporting scientific findings. For
a study to be classified as reproducible, as defined within this
study, the data and code ought to be submitted along with the
documentation of the study. Three on-line avenues for the
dissemination of this information are as follows: 1) hosted by
the publishing journal, 2) uploaded to a secure centralised or
private database, and 3) available on request. The information
location should be included within the publication.

Many high-impact journals now require articles to submit
data, code, and documentation along with reports. The Trans-
parency and Openness Promotion, consisting of signatories
from 538 journals and 58 organisations (full list available
at https://cos.io/top/), has produced guidelines for journals
to translate scientific openness values into concrete actions
(Nosek et al., 2015). The guidelines consist of eight standards
with four levels of journal commitment. These guidelines, de-
veloped primarily by researchers from social and behavioural
sciences, aim to be generic across all disciplines. Their rel-
evance to the work of PHM researchers depends on groups
such as the PHM Society and relevant journals.

Should publishing journals not support the hosting of data,
code, and further documentation, on-line databases to pro-
mote open research have been developed, such as The Open
Science Frame Work, a free cloud-based server initiated by
the Center for Open Science (Center for Open Research,
2016). Further, The University of Western Australia has
produced a prognostics-specific data management system to
pool data sets from academia and industry (Sikorska et al.,
2016). Authors also may upload information onto private or
institution-based servers.

Should authors not want to pursue any of the aforementioned
routes, all information should be made available upon re-
quest. Although this is the least transparent and most pro-
hibitive option due to increased communication boundaries,
it still satisfies our reproducibility recommendations.

5.4. Towards Reproducible PHM Research

Of the 50 data-driven prognostic papers reviewed, only 8
were based on industrial data. Most prognostic work is de-
veloped in a controlled experimental setting or with data de-
rived from simulation. Note that when industrial data sets are
available, they are often used by multiple researchers, which
has the benefit of allowing models to be compared. An exam-
ple is the condition and event data from centrifugal pumps at
Irving Pulp and Paper originally published by Sundin, Eng,
Montgomery, and Jardine (2007) and subsequently used in
Heng et al. (2009) and Tian, Wong, and Safaei (2010).

The intention of this study is to encourage conversation
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amongst the PHM community with regards to model re-
producibility. In order to support developments, Figure 2
presents a flowchart of all the identified criteria for repro-
ducible PHM research. Moving forward, the PHM commu-
nity may learn from other disciplines addressing reproducibil-
ity by:

• Encouraging reproduction studies. This may add valida-
tion toward successful and well-researched studies and
will add an extra layer of scrutiny to the research.

• Changing journal requirements. Journals may state as a
requirement of publication that data, code, and associ-
ated documentation be provided alongside the findings.

Figure 2. Flowchart of three identified reliability criteria with
requisite steps for each stage.

6. CONCLUSION AND FUTURE WORK

This paper presents a general outline of reproducibility rec-
ommendations for PHM research. Suggestions for future
practice have been adapted from the ongoing research of
reproducibility across multiple scientific disciplines, with
three main recommendations: data and code transparency,
documentation, and distribution. To create a methodology
that incorporates prognostic-specific elements, this paper de-
fined the “modelling ecosystem”, consisting of data descrip-
tion, model justification, performance evaluation, uncertainty
quantification, and application limitations. Description of the
modelling ecosystem inside of the documentation stage aims
to further enable the reproducibility of prognostic models. Fi-
nally, suggestions for further promoting reproducibility and
independent evaluation amongst the PHM community were
made.

Avenues of future work for this project include:

• Widen the review of papers to include data-driven,
model-based and hybrid models from other significant
journals.

• Create a comprehensive check-list for each ecosystem el-
ement so that model developers may efficiently include
ecosystem discussion.

• Present an original case study, with examples of good
practice of reproducibility.

• Contact reviewed authors to assess their readiness to
share data and code.

• Reproduce past models with the inclusion of ecosystem
element documentation.
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